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Abstract 

Super-resolution (SR) is an elegant technique that can 

reconstruct high-resolution (HR) videos/images from their low-

resolution (LR) counterparts. Most of the conventional SR methods 

utilize linear mappings to learn complex LR-to-HR relationships, 

where these linear mappings are often learned from training. 

Inspired by our previous linear mapping based SR method [1], we 

propose a novel super-interpolation based SR method that utilizes 

adjusted self-exemplars. That is, in order to find sufficient amounts 

of LR-HR patch pairs in self-exemplars, we iteratively augment self-

exemplars from an LR input image to create additional self-

exemplars. In doing so, our proposed SR method is able to find well-

learned linear mappings on-line from self-exemplars without using 

external training images, and outperforms other conventional SR 

methods. 

Introduction 

Recent mobile phones and TVs come with ultra-high-
definition (UHD) displays. Therefore, the HR contents are 
increasingly demanded. In addition, it often requires HR 
images for accurate image analysis in many fields such as 

medical imaging, satellite imaging and military imaging. 
However, it is difficult to obtain HR contents of good quality 
from LR ones such as images of full-high-definition (FHD) 
resolution. Thus, super-resolution, a sophisticated technique 
that can reconstruct HR videos/images from their LR 
counterparts, is necessarily required. 

To obtain HR images, previous SR methods utilize either 
external dictionaries or self-exemplars in order to learn LR-to-
HR relationship. Among them, some SR methods [1]-[7] used 
external LR-HR training image patches to learn LR-to-HR 
mappings. Meanwhile, as for the self-exemplar-based SR 
methods [8]-[10], they exploited self-similarity by generating 
self-exemplars, or self-dictionaries from LR inputs. 

Inspired by super-interpolation (SI) [1], we take a different 
approach and propose a novel self-exemplar-based SR 
method by incorporating a self-similarity technique into SI. 
Also, additional self-exemplars are generated via iterative 
augmentation of self-exemplars for learning better LR-to-HR 
mappings. Experiment results show that the proposed SR 
methods can reconstruct HR images of higher quality 
compared to external dictionary-based linear mapping SR 
methods [1]. 
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Figure 1. LR-to-HR conversion of our SR method using on-line learning-based linear mapping with augmentation of self-dictionary exemplars. 
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Proposed Method 

In order to create self-dictionaries from an LR input image, 
bicubic interpolation is used to down-scale the LR input image 
by a scaling ratio of 1/2. This down-scaled image is used as 
an LR self-dictionary (LRD). Since we often lack of training 
exemplars in one LRD, we further increase the amount of the 
training exemplars by applying data augmentation (flipping, 
rotating and down-sizing) to LR and obtain additional LR-LRD 
image pairs. Here, 7×7 LRD patches and the corresponding 
2×2 LR patches are used to learn LR-to-HR mappings. For 
each 7×7 LRD patch, we first obtain a 3×3 center patch, which 
is then divided into four 2×2 sub-patches as 
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where 33Y   is the 3×3 center patch, and 41L   are the four 2×2 

sub-patches. Only 3×3 center patch within each 7×7 patch is 
used to avoid computation complexity where the 3×3 patch 
size is empirically found as a good compromise between 
overall complexity and mapping accuracy. 

Next, prior to clustering for learning linear mappings, the 
gradients of 4 sub-patches for each LRD patch are used to 
determine a class number for the current LRD patch. Two 
gradient operators are used and defined as 
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where xh and yh  are a horizontal and vertical gradient 

operator respectively. For example, for the sub-patch 1L , the 

gradient operators are applied as 
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where 1L,xg  and 1L,yg  are filtered sub-patches, which are 

obtained by applying two gradient operators to the sub-patch 

1L , and ,  indicates an inner product operator. From this, 

we can obtain the magnitude and angle of gradients for each 
sub-patch as 
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where 1LM  and 1LP  are a magnitude and an angle of sub-

patch 1L , respectively. Similarly, the gradient operators are 

applied to the other three sub-patches 42L   as well. Next, if 

the magnitude of the sub-patch gradient is smaller than a 

predefined threshold, this sub-patch is categorized as a flat 
region and index 0 is assigned. Otherwise, the sub-patch is 
regarded as an edge region and index 1 is assigned. Because 
there are 4 sub-patches for each 7×7 LRD patch, one of 16 (= 
(1 + 1)4 = 24) class indexes can be assigned to each 7×7 LRD 
patch. This process of assigning a class index to each LRD 
patch will be referred to as classification. 

All the LRD-LR patch pairs are grouped into K (=16) 
clusters, based on the class indexes of the LRD patches. Here, 
for the kth LRD-LR cluster, one linear mapping can be learnt 
using ridge regression. First, we vectorize the 7×7 LRD 

patches of the kth class (
k
0L ) and their corresponding 2×2 LR 

patches, 
kH0 . The kth linear mapping,

k
0G , can be obtained as 
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Therefore, we need to solve the following optimization 
problem: 
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which minimizes the reconstruction error between the original 

LR patches (
k
0H ) and the reconstructed patches (

k
0

k
0 LG ). This 

L2 norm minimization problem has a closed form solution as  
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which becomes the kth linear mapping. By repeating this 
process for all 16 clusters, we can obtain 16 linear mappings 
for LR-to-HR conversion. 

Next step is to up-scale the LR input image using the 
learnt linear mappings. We decompose the LR input image 
into 7×7 patches and perform classification for them. By 
applying appropriate linear mappings to these 7x7 patches 
based on their class indexes from classification, we can obtain 
an up-scaled image SR1. However, because we utilize only 16 
edge directions for classification and an insufficient amount of 
exemplars, the quality of the SR1 image may not be 
satisfactory. To overcome this limitation, we repeat the SR 
procedure for another 2 more iterations by generating another 
dictionary pairs.  

In the 2nd iteration, we create another self-dictionary pair, 
SRD1-SR1, by applying bicubic interpolation to the SR1 image 
with a scaling ratio of 1/2. And now we repeat the SR 
procedure with LRD-LR and SRD1-SR1 pairs. In contrast to 
the first iteration where the edge magnitude of a sub-patch 
gradient was only considered, we further utilize edge angles 
in the 2nd iteration, which are quantized with angle step-size 
of 90°. Note that the two opposite directions are considered 
the same direction (e.g. 45° = 225°). Here, index 0 is assigned 
to sub-patches that are considered a flat region. Index 1 is 
assigned to sub-patches whose edge angle is between 0° and 
90°, and index 2 is assigned to those within 90° to 180°. Thus, 
each sub-patch can now hold one of 3 indexes, according to 
its edge direction and magnitude. As a result, one of 81 (= (2 
+ 1)4 = 34) class indexes can be assigned to each 7x7 patch, 

and from this, we can obtain 81 linear mappings 1G . Finally, 

by applying 1G  to the LR input image, we can obtain an up-

scaled image SR2. The quality of the SR2 image is higher than 
that of the previous SR1 image, but its quality is still not 
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sufficient. Therefore, we again generate another self-
dictionary pair, SRD2-SR2, by applying bicubic interpolation to 
the SR2 image with a scaling ratio of 1/2. 

In the final iteration, we repeat the previous steps using 
the SRD2-SR2 pair and the LRD-LR pair. In this case, edge 
directions are quantized as an angle step-size of 60°. Here, 
index 0 is assigned to sub- index 2 is assigned to those within 
60° to 120°, and index 3 is assigned to those within 120° to 
180°. So each sub-patch can patches that are considered as 
flat regions. Index 1 is assigned to sub-patches whose edge 
angles are between 0° and 60°,  now hold one of 4 indexes, 
according to its edge direction and magnitude. Therefore, we 

can obtain linear mappings 2G , which has 256 (= (3 + 1)4 = 

44) classes. By applying 2G  to the LR input image, we can 

reconstruct the final HR image, whose quality is superior to 
the previous SR1 image and SR2 image in terms of PSNR 
values. Figure 1 shows the overall SR process of the 
proposed method.  

In order to improve PSNR performance, we present 

another variant of our proposed method that utilizes an 
ensemble method. Here, we use new gradient operators as  
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where 2xh and 2yh  are a horizontal and vertical gradient 

operator, respectively, and these operator were obtained 
empirically. We repeat another SR procedure by using these 
gradient operators to generate another result image. Next, we 
average two result images, which are generated by using two 
different gradient operator sets (2) and (8). Figure 2 shows the 
comparison between two proposed methods with and without 
ensemble.  

Experimental Results 

We conducted various experiments using images in LIVE 
database [11] for test images. Experiment results show that 
the proposed method outperforms other conventional SR 

Table1. Experimental Results (Live Data set) 

Images Bicubic ANR [10] SI-3 [1] Ours Ours (Ensemble) 

12003 31.14 32.69 32.77 32.97 33.16 

118035 31.89 34.17 35.03 35.50 35.78 

189080 35.72 38.07 38.36 38.41 38.69 

253027 25.34 26.92 26.97 27.24 27.34 

Coinsinfountain 29.90 31.41 31.14 31.22 31.25 

Lena 35.46 37.37 37.26 37.39 37.52 

Parrots 36.03 38.22 38.09 38.03 38.30 

Womanhat 34.10 35.48 35.40 35.56 35.62 

Average 32.45 34.29 34.38 34.54 34.71 

 

 

Figure 2. LR-to-HR conversion of our SR method using ensemble method 
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methods in terms of PSNR. Table 1 shows PSNR values of 
the reconstructed HR images using various SR methods for 
the Live Data set. The average PSNR for our proposed 
method without ensemble was 34.54 dB, while PSNR for the 
proposed method with ensemble was 34.71 dB. Compared to 
bicubic interpolation, our method reconstructs HR images of 
average 2.26 dB higher PSNR values. Compared to anchored 
neighborhood regression (ANR) method [13], our method 
reconstructs HR images of average 0.42 dB higher PSNR 
values. Compared to SI [1], our method reconstructs HR 
images of average 0.33 dB higher PSNR values. Figures 3-5 

show the visual comparison for the reconstructed images by 
our method and other SR methods. As shown in Figure 3, it 
can be observed that the proposed method can reconstruct 
HR images with sharper edges than the SI-3 method [1]. Also, 
the ringing artifacts in the HR image of SI-3 are not visible in 
the HR image of the proposed method. Note that while the 
conventional SR methods require many external training 
images to learn linear mappings, our proposed method can 
learn better linear mappings by only using self-exemplars 
from LR input images.  

 
                          Original HR image                                                                Bicubic                                                                           ANR 

 
                                      SI-3                                                                         Proposed                                                             Proposed (ensemble) 

Figure 3. Comparison of HR output images (× 2 on 118035) 

 

 
                          Original HR image                                                                Bicubic                                                                           ANR 

 
                                      SI-3                                                                         Proposed                                                             Proposed (ensemble) 

Figure 4. Comparison of HR output images (× 2 on 253027) 
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Conclusion 

In this paper, we proposed a novel self-exemplar-based 
SR method by incorporating self-similarity technique. In doing 
so, our proposed SR method is able to learn well-trained linear 
mappings compared to SI [1]. As a result, the proposed 
method reconstructed HR images of higher PSNR with 
reduced ringing artifacts and noise. For future work, our SR 
method may further be improved by incorporating other 
sophisticated clustering algorithms to obtain better linear 
mappings, instead of using EO-based clustering. 
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