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Abstract 

We propose an inverse tone mapping (iTM) method which can 
both handle the details of low dynamic range (LDR) images and 
expand the dynamic ranges of the LDR images. The conventional 
iTM algorithms often fail to precisely restore the details of the input 
LDR images. To deal with this problem, we take a two-layer 
approach where each LDR image is separated into a base layer and 
a detail layer by bilateral filtering. The detail layer is mapped into 
that of a high dynamic range (HDR) image via linear mapping while 
the base layer is expanded via linear stretching to the dynamic 
range of a target display device. Then, the two resultant base and 
detail layers are used to reconstruct one final HDR image. From 
this, the details of the reconstructed HDR image can be revived via 
learned linear mapping. In order to learn the mapping from the LDR 
detail layer to an HDR detail layer, the HDR-LDR pairs of training 
patches of detail layers are classified into various groups based on 
the features of LDR detail patches. For each group, a linear 
mapping is learned during a training phase, which can then be 
applied for HDR reconstruction in testing phases. From the 
experimental results, we observed that proposed method can restore 
much more details of HDR images than the conventional methods. 

Introduction 
In spite that commercial HDR TVs are appearing in the current 

consumer markets, there are lack of HDR videos and images. Also, 
legacy LDR services are mostly available, and are expected to be 
somehow prevailed for a certain period of time. That is, since LDR 
contents are more dominated compared to HDR contents for a while, 
the need for good inverse tone mapping (iTM) methods that can 
expand the dynamic ranges of LDR images to the dynamic range of 
HDR display devices will increase in order to enhance the visual 
qualities of LDR contents and to fully utilize the HDR display 
devices available in the current markets.  

There are many works related to the iTM [1]-[14]. However, 
most of them have considered only the expansion of the dynamic 
range of the input LDR images. They are designed by focusing on 
how much they expand to a certain range the dynamic ranges of the 
LDR images so that the expanded images are to be realistic or 
natural when they are displayed on target HDR display devices. 
However, besides the compression of overall dynamic range, there 
is a more critical problem in LDR images. Often, the LDR image 
are lack of details or have low contrasts, which results from the 
narrower dynamic ranges. Therefore, the iTM methods should be 
designed by considering not only the expansion of the dynamic 
ranges but also the restoration of the details with high contrast. In 
this paper, we propose an elaborate solution to this problem. 

The purpose of this work is to enhance the subjective qualities 
of inverse-tone-mapped images by restoring the details of the 
corresponding HDR images and by expanding their dynamic ranges 
onto target display devices. The restoration of the details is an ill-
posed problem since there is little remained detail. Therefore, it is 
necessary to find a solution for this ill-posed problem in a more 
elaborated way, which motivates our learning-based linear mapping 

method. So the lost details of LDR images can be restored by 
applying learned linear mappings, which is otherwise often difficult 
to be reconstructed via conventional methods. 

Banterle et al. [1] suggested the first work that uses the term, 
inverse tone mapping. They formulated the inverse of Reinhard’s 
tone mapping algorithm [15] to expand the dynamic range of input 
LDR images. In addition to the inversion of the tone mapping 
algorithm, they calculated an expand map that indicates how much 
of the dynamic range the LDR pixels should be expanded depending 
on pixel locations. Their expand map not only expands the 
suppressed highlight regions of the LDR images, but also mitigates 
contouring artifacts that can occur due to the quantized pixel values 
in the LDR images during the expansion operation. 

In [2], Akyüz et al. generated the HDR images from the LDR 
images based on a gamma curve, where the gamma value is a user-
configurable parameter. In [2], they performed experiments to 
answer two questions: first, whether an HDR display device can 
give a better impression than LDR display devices; second, how we 
can handle the legacy LDR images. The experimental results 
confirmed that subjects actually turned out to prefer the HDR 
display to the LDR display and that it is possible to produce a 
plausible HDR image with a simple liner expansion with the gamma  
parameter set to ‘1’. However, with this simple linear expansion, it 
is impossible to reconstruct the lost details of the image. 

In [3], Meylan et. al proposed an inverse tone mapping 
algorithm that expands the dynamic range of the input LDR image 
in a piece-wise-linear manner. In other words, they divide each input 
LDR image into two regions: the diffuse region and the specular 
region. Then they apply two different linear functions to stretch the 
dynamic range of each region. The decision on whether a pixel 
belongs to the diffuse region or the specular region is made based 
on the pixel value. If the pixel value is larger than a predefined 
threshold, the pixel belongs to the specular region and otherwise, to 
the diffuse region. This makes the suppressed pixel values in the 
specular region of the input LDR image get more expanded than 
those in the diffuse region. 

In [4], Rempel et. al proposed an inverse tone mapping 
algorithm that expands the suppressed dynamic ranges of LDR 
images by finding the saturated pixel regions and by boosting the 
pixel values in the saturated pixel regions. In [10], an inverse tone 
mapping algorithm based on a human visual system is proposed. It 
specifically simulated the response of the retina with a sigmoid-like 
function which is non-linear. It strengthened the local contrast, 
hence preserved image details. In [11], an iTM algorithm is 
proposed by applying a cross-bilateral filter. The iTM algorithm is 
designed for a variety of exposure ranges, including under-exposure 
and over-exposure. In [10] and [11], DRIM [16] is used as an 
objective indicator to evaluate the performance of iTM algorithms, 
and these iTMOs improved to restore the details of the LDR images. 

As mentioned above, most iTM algorithms only consider the 
dynamic range of the pixel values of the LDR images. That is, given 
a target HDR display, the main purpose of inverse tone mapping was 
to determine how plausibly to expand the dynamic range of pixel 
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values in a particular region of an LDR image. However, in HDR 
restoration, the restoration of lost details have not been addressed as 
a major topic. Therefore, in this paper, we propose a machine 
learning based iTM method that can not only expand the dynamic 
range of the LDR image but also restore the lost details of the LDR 
image. 

Bilateral Filtering 
In order to restore the lost details of LDR images, we separate 

each input LDR image into a base layer and a detail layer. By doing 
so, we can extract the detailed components of the input LDR image 
that can be handled independently to the background luminance. For 
the separation into the detail layer and the base layer, we used a 
bilateral filter [17]. The bilateral filter is an edge-preserving filter 
that preserves relatively large edges while blurring the details. The 
bilateral filter is defined as 
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where  xp
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Gaussian functions [17]. In this paper, 15.0r and 
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w and h are the width and the height of an LDR image. And pW is a 
normalization factor, and is defined as 
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We can obtain a base layer of an LDR image, p
LB , by applying the 

bilateral filter to an LDR image. Once we obtain a base layer of an 
LDR image, we can obtain its detail layer by 

p
L

p
L

p
L BID                                          (3) 

where p
LD  is the detail layer of an LDR image. 

Method 
To restore the lost details in LDR image is an ill-posed problem. In 
order to solve this, we adopt a learning-based iTM method that finds 
linear mappings from LDR details to HDR ones. Our proposed iTM 
method consists of two phases: training phase and reconstruction 
phase. In the training phase, a linear mapping function, which 
represents the relation between the detail layer of the original HDR 
image and that of the corresponding LDR image, is learned. In the 
reconstruction phase, the input LDR image is decomposed into a 
base layer and a detail layer by applying a bilateral filter and then, 
the base layer is linearly stretched, and the detail layer is mapped to 
that of the HDR image through the linear mapping function learned 
in the training phase. Finally one HDR image is reconstructed by the 
stretched base and linearly mapped detail layer. Fig. 1 shows the 
entire procedure of our proposed iTM method. A more detailed 
explanation for our proposed iTM method in Fig. 1 is provided in 
the following sections. 

Clustering 
As aforementioned, we learn the relation between the detail 

layers of LDR images and those of HDR images in the training 
phase and apply the learnt mapping functions to the detail layers of 
the LDR input images in the reconstruction phase. In order to learn 
this relation, we should cluster images into some categories 
depending on their features. Since images consists of nonstationary 
local texture regions, one single universal mapping may not be 
sufficient to describe the LDR-HDR relation of detail layers. So, we 
use patch-wise linear mapping from the detail layer of an LDR patch 
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Fig. 1.  Overview of the proposed iTM algorithm.  
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to that of its corresponding HDR patch. For this, we first split each 
training image into small-sized local patches (e.g., size of 10×10). 
All patches of the training images are clustered into 5 categories 
according to their background luminance values. Then, each 
clustered patch-group is sub-clustered into 256 categories 
depending on the pixel variation types. Fig. 2 describes how to 
determine the pixel variation type for each patch. In Fig. 2, 1,rm , 

2,rm , refrm , , 3,rm  and 4,rm  indicate the means of pixel values in 
the first, second, third, fourth and fifth two rows of an LDR image’s 
detail layer, respectively. Similarly, 1,cm , 2,cm , refcm , , 3,cm  and 

4,cm  indicate the means of pixel values in the first, second, third, 
fourth and fifth two columns of the LDR image’s detail layer, 
respectively. For the vertical pixel variation, we compare 1,rm , 

2,rm , 3,rm  and 4,rm  with refrm , , and determine whether each 

mean is larger or smaller than refrm , . For the horizontal pixel 

variation, we repeat the same procedure for  1,cm , 2,cm , refcm , , 

3,cm  and 4,cm . From this, each image in a patch group can be 
characterized as one of 256 categories. So, all patches are clustered 
into 1,280 (= 5  256) categories. For each category, one single 
linear mapping is learned for the LDR-to-HDR mapping in detail 
layers. 

Training Phase 
As shown in Fig. 1, the HDR images to be used for training is 

degraded by a tone mapping operator. In this paper, Reinhard’s 
TMO [15] is used as a degradation model. Then, we apply a bilateral 
filter to each training LDR and HDR image pair so that we obtain 
the detail layer of the HDR image, p

HD  and the detail layer of the 

LDR image, p
LD . p

LD  and p
HD  are then split into 10×10-sized 

training patches and they form HDR-LDR training patch pairs. Here 
we assume that for each pair, there is linear relation between the i-
th HDR-LDR detail layer patch pair as 

iii lMh                                               (4) 

where hi is a vectorized i-th HDR detail layer patch and li is its 
corresponding vectorized LDR detail layer patch. Mi is a linear 
mapping matrix from the i-th LDR detail layer to the i-th HDR detail 
layer. In addition, we assume that the LDR and HDR detail layer 
patch pairs in a same category share an identical linear mapping 
function. That is, for the LDR and HDR patch pairs in category c, 
the relation between the i-th LDR and HDR detail layer patch pair 
can be represented as 

c
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c
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where c
ih  is a vectorized i-th HDR detail layer patch in category c, 

c
il is its corresponding vectorized LDR detail layer patch, and cM  

is a linear mapping matrix for the patch pairs in category c. 
In training phase, we calculate the linear mapping matrices for 

each category from a training set. For this, we define batch matrices 
as 
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where Hc and Lc are the batch matrices of vectorized HDR and LDR 
detail layer patches in category c, and n is the number of HDR-LDR 
detail layer patch pairs in category c. For category c in a training set, 
(5) is rewritten as 

ccc LMH  .                                       (7) 

Although we assume that the patch-pairs in a same category share 
an identical mapping function, it is obvious that the difference 
between the left side and the right side does exist. So we want find 
the optimal Mc which can best estimate Hc by formulating a kernel 
ridge regression problem such as  

22
2minarg Fccc MMLHM

M
                     (8) 

where is a regularization parameter. We can obtain the optimal 
solution to (8) as [18] 

  1
 ILLLHM T

CC
T
CCC                         (9) 

where I is the identity matrix. From (6) and (9), we can learn a linear 
mapping matrix for category c from a training set. We apply this 
procedure for all other categories. 

Reconstruction Phase 
As shown in Fig. 1, the reconstruction phase is applied to the 

base layer and the detail layer of each input LDR image 
independently. When the input LDR image is given, the image is 
separated into a base layer and a detail layer by applying a bilateral 
filter. The detailed procedures for each layer are described in the 
following sections. 

Reconstruction for detail layers 
For the detail layer of the input LDR image to be reconstructed, 

we first split the detail layer of the input LDR image into 10×10-
sized patches as done in the training phase. Then each is assigned 
into one of the 1,280 categories. Then the detail layer of its 
corresponding HDR image is obtained by multiplying the 
corresponding category’s linear mapping matrix to the detail layer 
of the LDR image. 

Reconstruction for base layers 
For the base layer of the input LDR image to be reconstructed, 

it should be expanded to fit the dynamic range of the target HDR 
display device. It is known that a simple linearly-stretching ensures 
sufficient subjective image quality [2]. Thus, in this paper, we just 
linearly stretch the dynamic range of the base layer of the input LDR 
image. More specifically, we first linearize the pixel intensity values 
in the base layer by applying a de-gamma curve [19], and then the 
pixel values becomes linearized luminance values. The linearized 
luminance value of each pixel is then stretched linearly to fit into the 
dynamic range of the target HDR display device. Then, the 
luminance values are transformed via PQ-OETF [20], so that it can 
be input for the target HDR display device. 

After completing the procedures for the two layers described 
above, the two layers are multiplied and finally reconstructed into 
one single output HDR image as 
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p
H

p
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p
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where p
HI  , p

HD  and p
HB  are the reconstructed HDR image, the 

detail layer and base layer of the reconstructed HDR image, 
respectively. 

Results 
To show the effectiveness of our proposed iTM method, some 

experiments are performed and subjectively tested on a commercial 
HDR TV, Samsung SUHDTV TM. Because the HDR TV can support 
the maximum luminance up to 1,000 cd/m2, the maximum 
luminance of the iTM methods for comparison is set to 1,000cd/m2. 
That is, for the proposed iTM method, the base layer is stretched to 
that luminance. For the detail layer, we use a training set of 90 HDR 
images and their corresponding LDR images which are tone mapped 

by Reinhard’s TMO method [15]. Figs. 3-8 show the comparison of 
our proposed algorithm against the conventional method [3]. As 
shown in Figs. 3-8, our proposed iTM method can restore more 
details in the reconstructed HDR images. 

Conclusion 
In this paper, we proposed a learning-based linear mapping 

iTM method. It should be noted that most of the conventional iTM 
methods have focused their attentions on the dynamic range 
expansion of input LDR images, not the restoration of lost details. 
However, we presented an elaborate iTM method that can restore 
the lost details of the input LDR images. To get the detail layers, we 
used a bilateral filter. And the base layer is expanded by linear 
stretching, independent of the detail layer. From this, the suppressed 
dynamic ranges of LDR images can appropriately be expanded and 

 

 
Fig. 3. Comparison of HDR output images: Top - conventional method; bottom - proposed method. 
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the lost details of LDR images can be revived into HDR 
reconstruction. 
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