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Abstract
Computational imaging problems are of increasing impor-

tance in domains ranging from security to biology and medicine.
In these problems computational techniques based on an imag-
ing model are coupled with data inversion to create useful im-
ages. When the underlying desired property field itself is discrete,
the corresponding discrete-valued inverse problems are extremely
challenging and computationally expensive to solve because of
their non-convex, enumerative nature. In this work we demon-
strate a fast and robust solution approach based on a new variable
splitting coupled with the alternating direction method of multi-
pliers (ADMM) technique. This approach exploits sub-problems
that can be solved using existing and fast techniques, such as
graph-cut methods, and results in overall solutions of excellent
quality. The method can exploit both Gaussian and Poisson noise
models. We exercise the method on both binary and multi-label
phantoms for challenging limited data tomographic reconstruc-
tion problems.

INTRODUCTION
In computational imaging problems data is combined with an

imaging model to yield an image obtained as the computational
solution of an inverse problem. An interesting and challenging
sub-class of these problems arises when the underlying property
field is constrained to be discrete valued. This situation can arise
when the domain is constrained to be discrete (e.g. imaging a few
materials with known values) or because of interest in higher level
information (e.g. labels). For example, limited angle tomography
problems involving only a few attenuation values commonly exist
in electron tomography of materials where the aim is to visualize
the 3D structure of a sample [1]. In these cases, the corresponding
discrete-valued inverse problems are extremely challenging and
computationally expensive to solve due to their non-convex and
enumerative nature.

One simple, conventional approach to such problems is to
solve the computational imaging inverse problem ignoring the
discrete nature of the scene, and then, subsequently, impose dis-
creteness through rounding or projection. Conventional contin-
uous solution methods (e.g. gradient techniques) can then be ap-
plied. In cases with limited or poor quality data the initial continu-
ous inversion step can produce reconstructions containing signif-
icant artifacts and make any subsequent segmentation and quan-
titation of the result very challenging. Direct solution of the dis-
crete problem can produce significantly improved overall results
in these challenging scenarios.

A number of different approaches have been proposed for the
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solution of the discrete tomographic image reconstruction prob-
lem. Linear programming relaxations of the binary tomography
problem were used in [2, 3] where the latter work employed a
smoothness prior. Batenburg et al. [4] proposed an iterative algo-
rithm called discrete algebraic reconstruction technique (DART)
that makes use of successive steps of algebraic reconstruction and
segmentation. The key idea behind DART is to fix and remove
the set of pixels that are deemed to be correctly segmented from
the set of observation equations which improves the conditioning
of the resulting linear system. A row action method then acts on
just those pixels that were not correctly segmented in the previous
iteration. Although DART has been shown to perform well under
low-noise scenarios, the lack of a principled regularization com-
ponent hampers its performance under more challenging sensing
scenarios. In order to improve the performance of DART under
noisy scenarios, an extension named SDART was presented in
[5]. SDART uses a penalty function to enforce the closeness of
the segmented image to the continuous-valued image at each iter-
ation of the algorithm. The penalty function is determined using
confidence measures derived from the reconstructed images. It
has been demonstrated through experimentation that SDART can
perform better in noisy scenarios than DART.

The above techniques relax the discrete field constraints to
obtain tractable solution methods. There also exists methods that
directly minimize a regularized reconstruction functional over
a combinatorial discrete set of values by employing graph-cuts
techniques. Graph-cut methods have shown themselves to be effi-
cient tools for obtaining solutions to segmentation and label-based
optimization problems [6]. But these approaches have had limited
use in inverse problem contexts because of the coupled variable
structure induced by the sensing operators of corresponding com-
putational imaging problems, which prohibit their direct mapping
to a graph-cut problem. Examples of work in this direction in-
cludes the work of Raj et al. [7], where a surrogate energy func-
tion is dynamically constructed for problems with non-negative
system matrices and the work of Kolmogorov and Rother [8],
where variable relabeling is used to minimize non-graph repre-
sentable functionals. Unfortunately, many pixels can be left unla-
beled if the sensing operator induces pixel coupling, as occurs for
tomography.

Recent work has made progress, however. In [9] a dual for-
mulation for the binary tomographic reconstruction is proposed,
where the observation model is used as a set of linear constraints
to an integer program, thus avoiding quadratic terms. In addition,
the discrete regularized reconstruction problem was analyzed in
[10] with respect to submdoularity and an iterative surrogate min-
imization framework that can be mapped as a graph-cut problem
was proposed. Extensive experimentation showed that this al-
gorithm performed better than DART and other competing tech-
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niques under noisy data situations.
This paper further examines the discrete tomographic frame-

work presented in [11]. The framework in [11] directly formulates
discrete computational imaging problems in the discrete domain
and then solves the resulting challenging inverse problem through
a variable splitting coupled with the alternating direction method
of multipliers (ADMM) framework. This approach is versatile,
inherently discrete, and allows the use of efficient solvers at each
step of the algorithm. In this work we extend the analysis of [11]
by presenting reconstruction results for sparse tomographic data
scenarios.

Reconstruction Framework
Observation Model

In modeling discrete-valued computational imaging prob-
lems, an unknown image, represented by the n-dimensional vec-
tor x, is related to a set of observed data, represented by the m-
dimensional vector y, through a linear operator, represented by
the m×n matrix C:

y = N (Cx) , (1)

where N represents the effects of a noise operator. Equation (1)
is our general observation model. For the purposes of this work
we focus on two different observation noise models discussed in
further detail below: additive Gaussian noise and signal depen-
dent Poisson noise.

Discrete Image Creation Framework
We obtain an estimate of the underlying image as the solu-

tion of an inverse problem. In particular, a reconstructed image is
obtained as the minimizer of an energy function that captures the
problem elements we deem significant:

argmin
x

J (x) such that x ∈L n, (2)

where x ∈L n captures the constraint that the values in x are con-
strained to be in the discrete set of pixel values L = {l1, . . . , lL}.
We assume that the |L |-levels li of the image are known. The
energy J (x) is composed of two terms:

J (x) = Jdata (x)+λJprior (x) , (3)

where the regularization parameter λ balances the trade-off be-
tween the two terms. The first term in the objective function,
Jdata (x), represents the fidelity to the observed data. We set this
term to be proportional to the negative log-likelihood of the data
based on the noise model under consideration, as shown in Ta-
ble 1. The second term Jprior (x) represents a regularizer that pro-

Gaussian Noise Jdata (x) = Poisson Noise Jdata (x) =

‖y−Cx‖2
2

m

∑
i=1

I0e−[Cx]i +yi[Cx]i

Noise-based data penalties Jdata (x)
motes stable solutions and incorporates prior information on the
behavior of the reconstructed discrete-valued field. A variety of
choices are possible for this term. In this work we use a continu-
ity or smoothness prior capturing the fact that for many problems
nearby pixel values are similar:

Jprior (x) = ∑
(p,q)∈B

p<q

|xp−xq|, (4)

where B defines a neighborhood structure among pixels. The
prior can be equivalently formulated using a discrete difference
operator D as follows:

Jprior (x) = ‖Dx‖1
1. (5)

We assume an 8-connected neighborhood in this work.
Since the energy functional given in (2) depends on a vari-

ables that take on a discrete set of values, conventional gradient-
based methods cannot be utilized, rendering minimization chal-
lenging and requiring a different approach than brute force appli-
cation of existing tools.

Algorithm: Variable Splitting and ADMM
In this section we review the new reconstruction framework

presented in [11], summarizing the development therein. The dif-
ficulty of minimizing Eq. 3 stems from the fact it has to be min-
imized over a set that is combinatorially large. Furthermore, the
variables are coupled due to the operator C, making straightfor-
ward use of existing discrete optimization tools impossible. To
overcome these challenges in [11] the original optimization prob-
lem given in Eq. 3 is recast using a particular variable splitting to
obtain the following equivalent formulation:

JSPL (x,z) = Jdata (x)+λ‖Dz‖1
1 (SPL)

such that x = z, z ∈L n,x ∈Rn.

Note that this choice of variable splitting places a continuous vari-
able in the coupled data penalty and a discrete variable in the
smoothness-based regularizer. With this new splitting the Alter-
nating Direction Method of Multipliers (ADMM) from the field
of convex optimization is now applied to solve problem SPL effi-
ciently.

The particular variable splitting in (SPL) brings problem (2)
into the general ADMM form, except that (SPL) is a non-convex
problem due to the discrete constraint on z. While the guaranteed
properties of ADMM are lost in such cases, the application of
ADMM to non-convex problems has proved successful in solving
other non-convex problems [12, 13, 14] in practice. In the present
case, the individual updates in the ADMM-based algorithm can
be solved for optimally and efficiently. The steps for the TOMO-
SPL algorithm are given as follows [11]:

xk+1 = argmin
x∈Rn

Jdata (x)+(ρ/2)‖x− zk−uk/ρ‖2
2, (6)

zk+1 = argmin
z∈L n

λ‖Dz‖1
1 +(ρ/2)‖xk+1− z−uk/ρ‖2

2,(7)

uk+1 = uk− τρ(xk+1− zk+1). (8)

For the noise models of interest here, the solution of 6 can be
obtained in closed-form or via conventionally efficient iterative
methods. The problem in 7 represents a discrete optimization
problem of conventional form, since the variable mixing due to
the operator has been eliminated. In particular, powerful graph-
cut methods can be applied. Lastly, the update in 8 is simple. In
the next subsections we review the individual updates.
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x-update: Additive Gaussian noise model
The additive, white Gaussian model is given as follows:

y = Cx+n, (9)

where n represents the noise vector of size m drawn from indepen-
dent and identically distributed Gaussian random variables. For
the additive, Gaussian noise case the data-fidelity term is simply:

Jdata (x) = ‖y−Cx‖2
2. (10)

The update with respect to x amounts to solving the following set
of normal equations:(

CT C+
ρ2

4
I
)

x = CT y+
ρ2

4
zk +

ρ

4
uk. (11)

Many efficient linear solvers exist. Here we use the conjugate
gradient method initializing with xt .

x-update: Poisson noise model
Under a Poisson noise model each observation, yi, is sam-

pled from the Poisson random variable Yi,

Yi ∼ Poiss
(

I0e−[Cx]i
)
, (12)

where I0 is the blank scan factor. The data-fidelity term is ob-
tained from the negative log-likelihood and is given by:

Jdata (x) =
m

∑
i=1

I0e−[Cx]i +yi[Cx]i. (13)

The x update step can be interpreted as computing the Poisson
maximum likelihood estimator coupled with a simple regularizer,
for which many efficient solvers exist.

z-update: Submodular minimization
The z update step amounts to solving the so called discrete

total-variation problem. The problem is submodular and can be
solved globally both in the binary and multi-label cases. Fur-
thermore there exists algorithms that solve this problem in the
complexity of a single maximum-flow computation, regardless of
the number of labels [15]. Here we use the FAST PD algorithm
[16, 17].

Convergence, Parameter Selection and Stopping
Criterion

The ADMM framework has two parameters that need to be
defined. The first is the penalty parameter ρ , which affects the
rate of convergence. In convex problems, the penalty parameter ρ

is generally picked between (0,(1+
√

5)/2) for convergence [18].
Furthermore it is customary to adjust ρ during the iterations. In
nonconvex problems the situation is more complex [12]. We have
empirically observed that for the algorithm in [11], increasing ρ is
important for convergence. We illustrate this in Fig. 1 (b), where
convergence with respect to fixed ρ and increasing ρ are com-
pared. The particular choice of ρ and the increase rate are de-
tailed in the experimental section. We further note that ρ and its
increase rate can be picked from a fairly large range without af-
fecting the overall convergence. Therefore, we use the same set
of parameters throughout a diverse set of experiments.
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Figure 1. (a) Images used in the experiments. Top row: Binary phantom,

bottom row: Multi-label phantom. (b) Convergence plots with (blue) and with-

out (red) increasing ρ. Top row: Norm of primal feasibility, ‖xk−zk‖2. Bottom

row: Normalized distance of xk to ground truth, ‖x−xk‖2/‖x‖2. The y-axis is

shown in logarithmic scale.
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Figure 2. Performance of TOMO-SPL (solid black), GCWSA (dashed

black), DART (solid red), SART (solid blue), FBP (dashed red) with vary-

ing number of projections: Binary phantom (a) without noise, (b) with noise.

Multi-label phantom (c) without noise (d) with noise.

Experiments
Sparse and limited angle acquisition scenarios pose a chal-

lenge for existing continuous and discrete reconstruction algo-
rithms. In our experiments we focus on these challenging data
collection scenarios using simulated data. The simulated data
has been generated using the ASTRA toolbox [19]. In our ex-
periments the width of the sensor array was set to 1.5 times of
the image size and the sensor size was set to be same as the
pixel size. We compare the performance of the proposed method
which we call TOMO-SPL, with the baseline techniques, fil-
tered back projection (FBP), simultaneous algebraic reconstruc-
tion technique (SART) and the discrete algebraic reconstruction
technique (DART) [20] and the graph-cuts with separable approx-
imation (GCWSA) method [10]. We use the publicly available
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Figure 3. (a) Performance of TOMO-SPL (solid black), GCWSA (dashed

black), DART (solid red), SART (solid blue), FBP (dashed red) with changing

angular range under noise: (b) Binary phantom, (c) Multi-label phantom.

implementations of the first three methods as provided in the AS-
TRA toolbox. We evaluate the performance of the proposed tech-
nique using binary and multi-label phantoms of size 512× 512
that are adapted from [4] as shown in Fig 1 (a).

For all methods used, we optimized their parameters (if there
is any) by manual tuning. The DART was run 200 iterations where
we set the percentage of random points to 0.1 and 0.4 for noise-
free and noisy sensing scenarios respectively and smoothing in-
tensity to 0.2. In [4], it was shown that increasing the number of
random points is helpful when there is observation noise. TOMO-
SPL was run with an initial ρ of 10 and we increased ρ with a fac-
tor of 1.005 at every iteration. The iterations were stopped when
the primal residual dropped below 10−2. SART was run with
nonnegativity constraints for 100 and 200 iterations for noisy and
noiseless cases respectively and FBP results were thresholded to
eliminate negative pixel values with zeros. FBP and SART re-
constructions are segmented with Otsu’s thresholding technique
[21] before counting the number of missed pixels. All methods
that required initialization was initialized with an all zeros image.
Regularization parameter selection for GCWSA and TOMO-SPL
was based on visual judgement. The label set for each experiment
was assumed to be known for a priori.

Sparse Angle Experiments
We sample the the full angular range equidistantly to simu-

late sparse angle data collection experiments. We first start with
a noise-free sensing scenario. The performance plots illustrat-
ing the number of misclassified pixels for each of the compared
techniques are shown in Fig. 2 (a) and (c) for the binary and multi-
label phantoms, respectively. Although DART and GCWSA show
similar performance to TOMO-SPL when there are enough pro-
jections, TOMO-SPL outperforms them when data is scarce. We
show example reconstructions with 8 projections for the binary
phantom and 6 for the multi-label phantom in Fig. 4. For the bi-
nary phantom, TOMO-SPL was able to generate a faithful repre-
sentation whereas the other techniques techniques failed to do so.
This observation is in agreement with the results presented in the
DART paper [4] where they showed that with 8 projections the
DART reconstruction exhibited similar artifacts. For the multi-
label phantom we were able to generate a good quality image with
only 6 projections. Similarly, all other techniques exhibited more
artifacts with 6 projections.

We then added white Gaussian noise to observations result-
ing in a SNR of 20 dB. The performance plots are shown in

Fig. 2 (b) and (d) for the binary and multi-label phantoms, respec-
tively. We observe that the performance of all the reconstruction
techniques degrade and good quality reconstructions require more
projections compared to the noise free case. Example reconstruc-
tions are shown in Fig. 5 using 12 and 8 projections for the binary
and multi-label phantoms respectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Sparse angle reconstruction without noise: Binary and multi-

label phantoms using 8 and 6 projections, respectively. (a), (e) SART. (b), (f)

DART. (c), (g) GCWSA. (d), (h) TOMO-SPL. FBP results were left out due to

space limitations.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Sparse angle reconstruction with observation noise (20 dB SNR):

Binary and multi-label phantoms using 12 and 8 projections, respectively. (a),

(e) SART. (b), (f) DART. (c), (g) GCWSA. (d), (h) TOMO-SPL. FBP results

were left out due to space limitations.

Limited Angle Experiments
Limited angle scenarios are usually more challenging since

they do not offer distinct projections of the underlying field. As
a result very few observations are available for certain regions of
the underlying field. In limited angle scenarios, the angular span
was sampled at every 1◦. Here we only focus on reconstruction
from noisy data. White Gaussian noise was added to observations
resulting in a SNR of 20 dB.

The performance of the compared techniques over the angu-
lar range is illustrated in Fig 3 (b) and (c). TOMO-SPL outper-
forms GCWSA, DART and the conventional techniques by yield-
ing a more reliable representation of the underlying scene in all
measurement scenarios. The advantage of TOMO-SPL is even
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more striking when reconstructing the multi-label image from 60◦

angular span. In this case the error of TOMO-SPL is 3 times
smaller than its closest competitor. It was also reported by [10]
that although DART has good reconstruction performance under
low noise scenarios, its performance degrades under noise. This
can be attributed to the fact that DART does not have a princi-
pled regularization framework. GCWSA was unable to recover
the objects at lower angular spans. The authors have observed
this behavior previously for the multi-label phantom noting that
they were not able to generate a good reconstruction below 120◦

in [10]. In comparison, TOMO-SPL was able to generate a faith-
ful representation at 70◦. Sample reconstructions with 90◦ span
for the binary phantom and 70◦ span for the multi-label phantom
are shown in Fig.6. TOMO-SPL yielded more accurate represen-
tations of the underlying fields with low angular coverage in the
presence of measurement noise compared to other techniques.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Reconstruction of binary and multi-label phantoms using projec-

tion data from 90◦ and 70◦ limited angle observations, respectively. White

Gaussian noise is added to the observations resulting in 20 dB SNR. (a), (e)

SART. (b), (f) DART. (c), (g) GCWSA. (d), (h) TOMO-SPL. FBP results were

left out due to space limitations.

Conclusions
In this work, we further develop and examine the variable

splitting approach for the discrete tomography problem proposed
in [11]. This framework provides a method to solve regularized
discrete valued computational imaging problems. The solution is
obtained exploiting the ADMM technique. We tested and com-
pared the performance of the proposed TOMO-SPL technique to
a variety of existing conventional and a state of the art reconstruc-
tion method in sparse and limited angle tomography examples.
We showed that the proposed method yields a reliable represen-
tation of the underlying field under challenging data collection
scenarios.

References
[1] Downing, K. H., Sui, H., and Auer, M., “Electron tomography: A

3D view of the subcellular world,” Analytical Chemistry 79(21),
7949–7957 (2007).

[2] Fishburn, P., Schwander, P., Shepp, L., and Vanderbei, R. J., “The
discrete Radon transform and its approximate inversion via lin-
ear programming,” Discrete Applied Mathematics 75(1), 39 – 61
(1997).

[3] Weber, S., Schnorr, C., and Hornegger, J., “A linear programming

relaxation for binary tomography with smoothness priors,” Elec-
tronic Notes in Discrete Mathematics 12(0), 243 – 254 (2003). 9th
International Workshop on Combinatorial Image Analysis.

[4] Batenburg, K. and Sijbers, J., “DART: A practical reconstruction
algorithm for discrete tomography,” IEEE Trans. on Image Process-
ing 20, 2542 –2553 (sept. 2011).

[5] Bleichrodt, F., Tabak, F., and Batenburg, K., “SDART: An algorithm
for discrete tomography from noisy projections,” Computer Vision
and Image Understanding 129, 63 – 74 (2014). Special section:
Advances in Discrete Geometry for Computer Imagery.

[6] Boykov, Y. and Funka-Lea, G., “Graph cuts and efficient N-D image
segmentation,” International Journal of Computer Vision 70, 109–
131 (2006). 10.1007/s11263-006-7934-5.

[7] Raj, A. and Zabih, R., “A graph cut algorithm for generalized image
deconvolution,” in [In ICCV ], 1048–1054 (2005).

[8] Rother, C., Kolmogorov, V., Lempitsky, V., and Szummer, M., “Op-
timizing binary MRFs via extended roof duality,” in [Computer Vi-
sion and Pattern Recognition, 2007. CVPR ’07. IEEE Conference
on ], 1 –8 (june 2007).

[9] Kappes, J., Petra, S., Schnr, C., and Zisler, M., “Tomogc: Binary to-
mography by constrained graphcuts,” in [Pattern Recognition ], Gall,
J., Gehler, P., and Leibe, B., eds., Lecture Notes in Computer Science
9358, 262–273, Springer International Publishing (2015).

[10] Tuysuzoglu, A., Karl, W., Stojanovic, I., Castanon, D., and Unlu,
M., “Graph-cut based discrete-valued image reconstruction,” Image
Processing, IEEE Transactions on 24, 1614–1627 (May 2015).

[11] Tuysuzoglu, A., Khoo, Y., and Karl, W. C., “Variable splitting tech-
niques for discrete tomography,” in [2016 IEEE International Con-
ference on Image Processing (ICIP) ], 1764–1768 (Sept 2016).

[12] Xu, Z., De, S., Figueiredo, M. A. T., Studer, C., and Goldstein, T.,
“An empricial study of ADMM for nonconvex problems,” in [NIPS
2016 Workshop on Nonconvex Optimization for Machine Learning:
Theory and Practice ], (2016).

[13] Kovnatsky, A., Glashoff, K., and Bronstein, M. M., “MADMM:
a generic algorithm for non-smooth optimization on manifolds,”
arXiv:1505.07676 (2015).

[14] Jia, K., Chan, T.-H., Zeng, Z., Gao, S., Wang, G., Zhang, T., and Ma,
Y., “ROML: A robust feature correspondence approach for matching
objects in a set of images,” arXiv:1403.7877 (2015).

[15] Hochbaum, D. S., “An efficient algorithm for image segmentation,
Markov random fields and related problems,” J. ACM 48, 686–701
(jul 2001).

[16] Komodakis, N. and Tziritas, G., “Approximate labeling via graph
cuts based on linear programming,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on 29, 1436–1453 (Aug 2007).

[17] Komodakis, N., Tziritas, G., and Paragios, N., “Performance vs
computational efficiency for optimizing single and dynamic mrfs:
Setting the state of the art with primal-dual strategies,” Comput. Vis.
Image Underst. 112, 14–29 (Oct. 2008).

[18] Glowinski, R. and Marroco, A., “Sur l’approximation, par éléments
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