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Abstract. Model-based image reconstruction (MBIR) techniques
have the potential to generate high quality images from noisy
measurements and a small number of projections which can
reduce the x-ray dose in patients. These MBIR techniques rely
on projection and backprojection to refine an image estimate.
One of the widely used projectors for these modern MBIR based
technique is called branchless distance driven (DD) projection
and backprojection. While this method produces superior quality
images, the computational cost of iterative updates keeps it from
being ubiquitous in clinical applications. In this paper, we provide
several new parallelization ideas for concurrent execution of the
DD projectors in multi-GPU systems using CUDA programming
tools. We have introduced some novel schemes for dividing the
projection data and image voxels over multiple GPUs to avoid
runtime overhead and inter-device synchronization issues. We
have also reduced the complexity of overlap calculation of the
algorithm by eliminating the common projection plane and directly
projecting the detector boundaries onto image voxel boundaries.
To reduce the time required for calculating the overlap between the
detector edges and image voxel boundaries, we have proposed
a pre-accumulation technique to accumulate image intensities in
perpendicular 2D image slabs (from a 3D image) before projection
and after backprojection to ensure our DD kernels run faster in
parallel GPU threads. For the implementation of our iterative MBIR
technique we use a parallel multi-GPU version of the alternating
minimization (AM) algorithm with penalized likelihood update. The
time performance using our proposed reconstruction method with
Siemens Sensation 16 patient scan data shows an average of
24 times speedup using a single TITAN X GPU and 74 times
speedup using 3 TITAN X GPUs in parallel for combined projection
and backprojection. c© 2017 Society for Imaging Science and

IS&T Member.
Received July 13, 2016; accepted for publication Sept. 29, 2016; published
online Dec. 8, 2016. Associate Editor: Chunghui Kuo.

INTRODUCTION
Model-Based Image Reconstruction (MBIR) algorithms
provide the potential of producing quantitatively better
images using data from conventional x-ray scanners than
the linear reconstruction algorithms that are the industry
standard. Conventional linear algorithms like the ones
introduced by Feldkamp, David, and Kress (FDK) aremainly
used in clinical settings for simplicity and low computation
time.1–3 Model-based image reconstruction algorithms may
achieve the same image quality with lower dose4,5 or
better image quality at the same dose. Currently, patients
go through multiple x-ray CT scans during image-guided
radiation therapy, which elevates the potential risk for tissue
damage and radiation-induced cancer.6,7 Therefore, there is
demand for fast iterative reconstruction algorithms that can
produce higher quality images in clinically relevant time.

Model-based image reconstruction algorithms are typ-
ically iterative: the next image is computed based on the
current image, a measure of error between the measured
data and the data predicted from the current image, and a
regularization function. Two important components of such
algorithms are the forward data model and an algorithm for
updating the image estimate based on errors inmeasurement
space. For x-ray imaging, the forward data model is based
on line integrals through attenuation images; we call the
mapping from an image to a set of line integrals forward
projection. We refer to the operator that is adjoint (or
transpose) to forward projection as backprojection. Many
MBIR algorithms use backprojection as a core component.
In this paper, we describe implementations of forward
projection and backprojection on a multi-GPU architecture
that achieve significant speedup. We demonstrate the
speedup for one choice of an MBIR algorithm, namely the
alternating minimization (AM) algorithm.
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For MBIR algorithms to be feasibly implemented in
practice, the computation time must be sufficiently low. The
actual time demand depends on the application. In security
applications, three-dimensional image volumes must be
computed at the rate for bags to travel through the scanner.
For many medical applications, the time depends on the
availability of radiologists, which can vary widely. There are
various pathways to decrease the time in iterative image
reconstruction. One important pathway is through advanced
algorithms from convex optimization theory.23 A second
pathway is through varying step sizes in existing algorithms,
perhaps decreasing computation time for most images at the
expense of not having guaranteed convergence properties. A
third pathway is through parallel processing.

Many convex algorithms are designed to yield par-
allel updates that map well onto many computational
architectures, after computing a forward projection and a
backprojection.All such algorithmswill have decreased com-
putation time when coupled with efficient implementations
of forward projection and backprojection.

One of the state-of-the-art projection algorithms, called
distance driven (DD) projection and backprojection, was
proposed by De Man and Basu.8,9 In 2006, they proposed
an extension to their algorithm called branch DD projection
and backprojection in which they basically parallelized the
inner loop of their overlap calculation.10 They divided the
overlap kernel in three distinct and independent steps:
digital integration, interpolation, and digital differentiation.
Schlifske et al.11 proposed a 2D extension to the branchless
DD algorithm in which they ‘‘pre-integrate’’ the 2D image
slice of the image volume before projection and after back-
projection. In our work, we use a similarmethod in which we
pre-accumulate the image intensities in four perpendicular
image slabs in a recursive manner before projection in order
to accommodate the 3D helical nature of the data. We
have also employed a recursive adjoint accumulation scheme
after backprojection to retrieve our final 3D image volume.
Our proposed method of pre-accumulation enables us to
employ interpolation directly into the image accumulation
array which reduces the computational burdens associated
with the sequential integration of the original branchless DD
method.

Along with the efforts to improve the structural
aspects of reconstruction algorithms, there is also an
overwhelming trend shifting toward multithreaded CPU
and GPU implementations for improved time performance.
The GPU technology has come a long way from its
invention in the late 80s to its latest release of GeForce
GTX TITAN X GPUs consisting of eight billion transistors
on a single chip. Modern GPU technologies with their
high memory bandwidth and peak arithmetic performance
are rapidly outpacing their CPU counterparts.12 Due to
their inherent parallel architecture, GPUs can provide quite
significant performance improvement for algorithms with
highly pipelined structure. Current GPUs also provide very
high global memory storage, which is ideal to fit the whole
data volume and image array in the GPU itself during kernel

execution, in turn eliminating the high latency penalty for
accessing external memory. Due to all these advantages, it
is quite logical to use GPUs to improve the speed of image
reconstruction.

Over the years, several groups have accelerated their iter-
ative reconstruction methods using GPUs. Andreyev et al.13
have accelerated their blob-based iterative reconstruction
using a Tesla GPU. Jia et al.14 implemented a low dose cone
beam CT reconstruction with total variation regularization
on an NVIDIA Tesla C1060 GPU. McGaffin et al.15
proposed a multi-GPU based fast converging stochastic
group ascent algorithm to perform dual maximization and
implemented their algorithm on NVIDIA Tesla C2050
GPUs. Wu et al.16 accelerated separable footprint based
projection and backprojection algorithms using NVIDIA
Tesla C2050 GPUs. Quivira et al.17 developed an iterative 3D
reconstruction algorithm for sparse x-ray CT data on Titan
X GPUs.

In our work we describe a Poisson model for the mea-
sured x-ray CT data. The maximum likelihood estimation
problem is then reformulated as the double minimization
of an I-divergence problem. An AM algorithm is then
formulated with the addition of a Huber type penalty
function. After that we focus on the parallelization of
the branchless DD projection and backprojection over
multiple GPUs. We first simplify the overlap computation of
branchless DD algorithm by projecting detector boundaries
directly onto the image voxel boundaries. After that, we
added a pre-accumulation scheme, which reduces the
sequential integration burden on individual GPU threads.
Next, we present a pseudocode for the implementation of
our proposed algorithm on single and multiple GPUs. Lastly
we have validated our overall parallelization scheme by
reconstructing images from Siemens Sensation 16 helical CT
data using the AM algorithm and its ordered subsets version.

METHODS
Mathematical Model
Multislice helical x-ray CT is a useful imaging modality in
many clinical applications and is now in widespread use.
This type of CT is inherently 3D because the x-ray tube
continuously projects a cone beam through the patient as
the patient is translated through the scanner. Each detector
row captures data in a partial rotation of the gantry that
corresponds to each image slice.

In this paper, we consider a mono-energetic scatter-free
statistical model to account for the x-ray photon randomness
as was done previously.18,19 At the basis of our statistical
model, we assume the photons arrive at the detectors in
accordance with a photon counting process. Let the 3D
image volume of linear attenuation coefficients (in mm−1)
be represented by the vector µ. Let i denote a ray path
between the x-ray source and a pixel in the multi-row
detector array and j denote a voxel in the image volume.
Themeasured transmission data, d , ismodeled as originating
from independent Poisson counting processes. In discretized
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form, the mean value of di is

gi(µ)= Iie−li(µ), (1)

where li(µ) is the forward projection given by

li(µ)=
∑
j
aijµj. (2)

Ii is the mean number of counts in the absence of
an attenuating medium, and µj is the linear attenuation
coefficient in voxel j. The system matrix elements aij
comprise the appropriately discretized point spread function
relating the projection space to the image space. If projection
i does not pass through voxel j, then aij is zero.

Alternating Minimization Reconstruction Algorithm
For our AM algorithm we use the maximum likelihood
solution derived byO’Sullivan andBenac.19 The problemwas
formulated as the double minimization of an I-divergence
over a linear and exponential family, thereby resulting in a
closed-form update for each iteration. The objective function
to be minimized for the mono-energetic case is

I [d||g (µ)],
∑
i
[di ln(di/gi(µ))+ gi(µ)− di]. (3)

For our implementation of the AM algorithm, we compute
two backprojections using a branchless DD algorithm on
measured data and predicted data which are represented
below as bj and b̂(k)j

bj ,
∑
i
aijdi (4)

b̂(k)j ,
∑
i
aijgi(µ̂(k)). (5)

From O’Sullivan and Benac,19 the update for linear attenua-
tion coefficients is

µ̂
(k+1)
j ,

[
µ̂
(k)
j −

1
Z

ln
( bj
b̂(k)j

)]
, (6)

where µ̂k is the estimate of µ at iteration k and Z is an
auxiliary variable that satisfies Z =maxi

∑
j aij.

Since the measured data is noisy, it is necessary to
regularize the optimization problem to prevent the algorithm
from over-fitting the data through unrealistic images. We
take an approach analogous to that of Erdögan et al.20
and decouple the image variables of our penalized objective
function such that all the voxels can still be updated in
parallel. To derive the algorithm for penalized maximum
likelihood estimation, we add a penalty term, R(µ), to
the objective function used in the AM reconstruction, and
weight it by a regularization parameter λ, where λ is a
scalar that reflects the amount of smoothing desired. A larger
value will give emphasis to the penalty term (i.e., the prior
expectation that the imagewill be smooth), whereas a smaller
value will give more emphasis to the I -divergence term (i.e.,

the discrepancy between the measured data and the data
estimated by the model). The added penalty term is defined
as

R(µ),
∑
j

∑
j′∈Nj

ωj,j′ψ(µj−µj′). (7)

For 3D regularization, we use the 26-voxel neighborhood
Nj surrounding voxel j. The weights ωj,j′ control the relative
contribution of each neighbor. The potential function ψ(t)
is a symmetric convex function that penalizes the difference
between the values of neighboring voxels. For computational
simplicity, we use a modified potential function used by
Lange,21

ψ(t), δ2
[∣∣∣∣ tδ

∣∣∣∣− ln
(

1+
∣∣∣∣ tδ
∣∣∣∣)], (8)

where δ is a parameter that controls the transition between
a quadratic region (for smaller t) and a linear region (for
larger t). For our specific reconstruction, the first and last
set of image slices are not included in the penalty calculation
because those slices will have severe artifacts due to cone
beam truncation. Calculating the penalty for those slices
could negatively impact reconstruction of the inner slices
since the artifacts do not have the type of structure that can
meaningfully be penalized by R(µ). The overall problem is
then to find the penalized likelihood estimate,

µ̂
(k+1)
j = argmin

µ̂
(k)
j ≥0I [d||g (µ̂

(k)
j )] + λR(µ̂

(k)
j ). (9)

For our specific implementation, we use Newton’s method
to find the optimum iteratively. It is worth noting that our
solution in (6) is a special case of (9) when λ = 0. The
complete AM algorithm scheme is shown in Figure 1.

Branchless Distance Driven Operators
The core calculation of the algorithm is the computation
of the overlap between the projection of an individual slab
of the image volume onto a 2D detector array. For our
specific reconstruction, we used helical CT geometry. We
have also exploited the quarter rotation symmetry22 because
it significantly reduces our computational burden. In our
algorithm, the overlap calculations are performed directly at
the level of the slab of interest. This differs slightly from the
method proposed by De Man and Basu,9 where the overlap
calculations are performed in the xz or yz plane passing
through the origin. In that case, both the flattened voxel
edges and detector edges would need to be projected onto
the plane passing through the origin. In our implementation,
the only projection calculations are from the detector edges
to the slab. The coordinates of the source-to-detector ray
intersections with the flattened slab determine the 2D
rectangular region of the slab that contributes to each
detector element. These rays are constructed using the
edges of each detector element. For the completion of an
x-ray projection image for a particular view angle, all the
slab contributions are aggregated for a particular detector
array. The contribution is also scaled by the length of the
intersection of the ray through that slab. For our particular
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Figure 1. Schematic diagram for iterative AM reconstruction algorithm.

reconstruction, we assumed the slabs are flat and of uniform
thickness.

Parallel Implementation of Branchless Distance Driven
Forward Projection
First, we consider the contribution from a 1D pixel array
(i.e., one slab of a 2D image) to a detector element at a fixed
view angle. The pixels are uniformly spaced and represent
a continuous function, f (x), using a rectangle basis of unit
width,10

f (x),
∑
i
fiφ(x − i), (10)

where

φ(x)=


0 x <−0.5
1 −0.5≤ x ≤ 0.5
0 x > 0.5.

(11)

We wish to find the total contribution of the pixel array to
detector element k with edges x = u1 and x = u2. This is
mathematically expressed as

gk ,
1

u2− u1

∫ u2

u1

f (x) dx

=
F(u2)− F(u1)

u2− u1
, (12)

where
F(u),

∫ u

−∞

f (x) dx. (13)

Let K , buc, i.e., floor (u). Plugging it into (10), Eq. (13) can
be rewritten as

F(u)=
∑
i
fi
∫ u

−∞

φ(x − i) dx (14)

=

K−1∑
i=0

fi
∫ K

−∞

φ(x − i) dx

+ fk
∫ u

K
φ(x −K ) dx (15)

=

K−1∑
i=0

fi+ (u−K )fK . (16)

Next, we can define an accumulated pixel array,

A[m],
m−1∑
i=0

fi. (17)

We can rewrite Eq. (16) using (17) as follows:

F(u)=A[K ] + (u−K )fK (18)
F(u)=A[K ] + (u−K )(A[k+ 1] −A[K ]). (19)

Now F(u) can be calculated simply in terms of the pre-
accumulated array A, and the original pixel values fi are no
longer needed. In fact, (19) is a linear interpolation into array
A. The final step to calculate gk is to perform the operation
in (12)

gk ,
1

(u2− u1)(v2− v1)

∫ u2

u1

∫ v2

v1

f (x, z) dz dx. (20)

We can define a continuous-coordinate slab using separable
rectangular functions

f (x, z),
∑
i

∑
j
fijφ(x − i)φ(z − j). (21)

We can represent in-plane calculations for each basis position
j in the z direction

Fj(u)=Aj[K ] + (u−K )(Aj[K + 1] −Aj[K ]), (22)

where

Aj [m] ,
m−1∑
i=0

fij. (23)

This leads to

gk =
1

(u2− u1)(v2− v1)
(24)

×

∑
j
Fj(u2)− Fj(u1)

∫ v2

v1

φ(z − j) dz

=
G(u1, u2, v2)−G(u1, u2, v1)

(u2− u1)(v2− v1)
, (25)
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(a)

(c) (d)

(b)

Figure 2. (a) Schematic representation of De Man and Basu’s9 2D distance driven method. (b) Schematic representation of our 2D distance driven
method. (c) Schematic representation of De Man and Basu’s9 3D distance driven method. (d) Schematic representation of our 3D distance driven method.

where

G(u1, u2, v)=
∑
j
Fj(u2)− Fj(u1)

∫ v

−∞

φ(z − j) dz . (26)

Similarly, we can define an accumulated voxel array in the z
direction

Cu1,u2 [n],
n−1∑
j=0

Bj(u1, u2). (27)

Analogous to (19) we define J , bvc. We can write

G(u1, u2, v)= Cu1,u2 [J ] + (v−J )(Cu1,u2 [J+1] −Cu1,u2 [J ]).
(28)

We can also write
∑

j Fj(u2)− Fj(u1) as weighted sum of few
elements of Aj[m],

Bj(u1, u2)=
∑
m
ωmAj[m], (29)

where ωm is nonzero for up to four distinct values of m,
as determined by (19) and (22). Therefore, the slab can be
pre-accumulated in both the x and z directions, as shown
below:

Cu1,u2 [n] =
n−1∑
j=0

∑
m
ωmAj[m] (30)

=

∑
m
ωm

n−1∑
j=0

m−1∑
i=0

fi,j (31)

=

∑
m
ωmS[m, n], (32)

where

S[m, n],
n−1∑
j=0

m−1∑
i=0

fi,j. (33)
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Finally, this accumulation can be written in recursive form
for faster calculation as follows:

S[m, n] =
n−1∑
j=0

Aj[m] (34)

=

n−2∑
j=0

Aj[m] +An−1[m] (35)

= S[m, n− 1] +
m−1∑
i=0

fi,n−1. (36)

For the projection model, as shown above, we pre-
accumulate original pixel values in a recursive manner to a
pre-accumulation array corresponding to four perpendicular
slabs, each contributing to a different orientation of our
view angle. After the pre-accumulation, the original voxel
values are no longer required. In fact, we perform direct
interpolation of detector edges onto this accumulation array
which gives us a big boost on the time performance over
the sequential computation of digital integration for every
overlap computation. Before performing interpolation and
differentiation, we determine which part of the algorithm
could be divided into independent processes to run on a
single GPU thread. The way branchless projection methods
are structured, the interpolation and digital differentiation
for each slab at each quarter rotation are independent of one
another, so it can be implemented on a single GPU thread.

Parallel Implementation of Branchless Distance Driven
Backprojection
Backprojection for the DD kernel is defined as the transpose
of the forward projection operator. Using flow graph reversal,
the transpose of the entire kernel can be done by transposing
each sub-operation and performing them in the reverse
order, i.e.:

(a) Transposed digital differentiation,

(b) Transposed linear interpolation or ‘‘anterpolation,’’

(c) Transposed integration.

By writing out the 2D slab accumulation operation (34)
in matrix form, it can be shown that the transpose of slab
accumulation is

f ∗i,j =
Nz∑

n=j+1

Nx∑
m=i+1

S[m, n], (37)

where Nx and Nz are the number of voxels in the two
directions, respectively. This operation can also be written
recursively for faster calculation. If we let

D[i, n],
Nx∑

m=i+1

S[m, n], (38)

Figure 3. Schematic diagram of the GPU implementation of the iterative
reconstruction algorithm.

then

f ∗i,j =
Nz∑

n=j+1

D[i, n] (39)

=

Nz∑
n=j+2

D[i, n] +D[i, j+ 1] (40)

= f ∗i,j+1+D[i, j+ 1] (41)

= f ∗i,j+1+

Nx∑
m=i+1

S[m, j+ 1]. (42)

For transposed digital integration we perform the similar
recursive post-accumulation technique over the accumulated
backprojection array to retrieve the individual voxel values
from four mutually perpendicular image slabs.

Implementation on Multiple GPUs
Each GPU is assigned a contiguous group of projections
whose cardinality is a multiple of the number of views in
a quarter rotation. With ordered subsets (OS), each subset
consists of evenly distributed projections over all GPUs. For
example, if two subsets are used, subset 0 would consist of the
even-indexed source angles on each processor, and subset 1
would consist of the odd-indexed source angles.

This design allows for theoretically perfect load bal-
ancing (in the absence of memory-related latencies) during
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forward and backprojection since each GPU essentially
makes use of the same number of nonzero aij elements.
The full-sized accumulation images and the projection data
corresponding to each subset are stored in GPU global
memory.

In our approach, we systematically add slices with
minimal synchronization overhead between the devices. We
have also determined the maximum block size that can be
summed concurrently by all devices.

Forward projection is straightforward in terms of
global memory access, since each device stores values in
separate portions of the projection data array, and access
to the accumulation image is read only. However, if we
were to perform backprojection directly into the full-sized
accumulation images, we would have serious memory
contention issues since multiple devices would be writing to
the same array elements simultaneously. Instead, each device
performs backprojection to its own private accumulation
image arrays (of reduced size compared to the full-sized
arrays). This eliminates any need for synchronization during
the backprojection of a device’s set of views. Once each
device is done backprojecting its set of views, the partial

accumulation image arrays are summed into the full-sized
accumulation image arrays. Fig. 3 illustrates the process
by which non-overlapping groups of slices from each
partial array can be added simultaneously without memory
contention. After each block, a barrier synchronization
construct is used to ensure each device has finished summing
the current block of slices to the full-sized arrays.

However, these two approaches create the following
constraints on several parameters as follows:

• Total number of viewsmust be amultiple of the number
of views in one quarter rotation.
• Total number of quarter rotations must be a multiple of

the number of GPU devices.
• The number of subsets must divide into the number of

views per quarter rotation evenly.

For measured data where these constraints were not
satisfied, we pad the measured sinograms with zeros to
increase the number of views.

To minimize the overhead time that occurs in data
copying, kernel launch, etc., we create the same number of
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CPU threads as the number of GPUs to be utilized. Each of
the threads interacts with an individual GPU. Each of them
copies input data from the CPU to the GPU, executes the
kernel, and copies results back to the CPU. The host CPU
waits for all GPU devices to complete andmerges results into
one.

RESULTS
To compare both time performance and image quality, we
start with an Intel Core i7 5960x with 8 cores, 16 threads,
clocked at 3 GHz, with 20 MB cache and 64 GB of memory.
For our GPU implementation, we used GeForce GTX
TITAN X. TITAN X is based on Maxwell architecture with
3072 CUDA cores and 24 streaming multiprocessors (SMs)
running at 1.2 GHz. Each block contains 65536 registers and
48 KiB of shared memory. Some of the highlights of TITAN
X hardware are shown in Table I.

Table I. Hardware specification of TITAN X.

Single precision 7.468 TeraFLOP/s
Double precision 233.376 GigaFLOP/s
Multiprocessors 24
Clock rate 1.216 GHz
Global Memory bandwidth 336.48 GB/s
L2 Cache size 3MiB
CUDA cores 3072
Shared memory per block 48KiB

We used raw sinogram data from a Siemens Sensation
16. The parameters of the measured data and reconstructed
images are shown in Table II:

Figures 5 and 6 show resulting image reconstruction
from running 10 iterations with 145 ordered subsets
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(a) (b)

Figure 4. (a) Schematic representation of Multi-GPU implementation of branchless DD projection. (b) Schematic representation of Multi-GPU implementation
of branchless DD backprojection.

(a) (b)

Figure 5. Axial Slices of 3D AM Reconstruction of linear attenuation coefficients (in mm−1) of (a) abdomen and (b) lung after 10 iterations of 145 ordered
subsets.

Table II. Parameters of measured data and image.

No. of views 13920
No. of detector channels 672
No. of detector rows 16
No. of image slices 164
No. of pixels/slice 512× 512

using alternating minimization update with Huber type log
likelihood penalty on 3GPUs. Fig. 6 shows time performance
results from the implementation of our algorithm without
any ordered subsets. The leftmost bar in Figure 7 is the execu-
tion time of the baseline serial version and the remaining bars

Table III. Execution times by using different CPU and GPU configurations for single
branchless DD forward and backprojection.

Operations Execution Time (seconds)
Single threaded CPU 16 threaded CPU Single GPU Multi-GPU

Pre-accumulation 8.1 1.7 0.570 0.21
Projection 433 92 15 4.7
Exponentiation 1.1 0.25 0.07 0.029
Backprojection 435 95 22 7.6
Image Update 4.8 1.2 0.17 0.06
Total 882 190.15 37.81 12.6

44
IS&T International Symposium on Electronic Imaging 2017

Computational Imaging XV



(a) (b)

Figure 6. Coronal Slices of 3D AM Reconstruction of linear attenuation coefficients (in mm−1) of abdomen after 10 iterations of 145 ordered subsets.

show runtimes for the specific optimizations using multiple
CPU threads and multiple GPU devices. Table III shows the
time of execution of each component of our algorithm with
different hardware configurations. For the baseline serial
version, we run our projector algorithms on a single CPU
core with nested for loops representing the parallel GPU
threads. For multithreaded CPU implementation, each CPU
core launches two hyper threads for every logical processor
in the core. Each hyper thread basically acts as a standalone
GPU device. Instead of parallel GPU threads, we use a
corresponding number of nested for loops. We also use
a barrier synchronization to wait for every CPU thread
to finish its projection and backprojection in their private
projection and image accumulation arrays respectively. To
calculate the parallelization efficiency of the multithreaded
CPU version we define our speedup ratio according to
Amdahl’s law as follows

S=
T1

TN
<

1(
f +

1− f
N

) < 1
f

as N→∞, (43)

where, T1 and TN are elapsed times of 1 and N workers. f is
the fraction of the code that is not parallelizable. The parallel
efficiency is then defined as,

E = S/N . (44)

From our experimentation withN = 16 CPU threads, we get
S = T1/TN = 4.7 for the projection operation. As a result,
f = 0.1603 and parallel efficiency is E = 0.2963. So we
can conclude, our multithreaded CPU implementation can
achieve a maximum speedup of 6.2 times for the projection
operation.

Since we can divide the projection array according to
its number of ordered subsets and the number of GPU
devices available, the effective size of the projection array
passed to GPUs is much smaller than the size of the partial
image accumulation array. As a result, the backprojection

Figure 7. Time performance improvement using different CPU and GPU
configurations for single Branchless DD projection and backprojection.

operator tries to accumulate and write the result on a
much bigger image accumulation array than the projection
array from which it tries to read. So the time required for
backprojection is higher than for projection. The difference
is much more significant when we use more ordered subsets
since the number of subsets only reduces the volume of
projection array keeping the size of partial accumulation
array unchanged.

Figure 8 shows the time required for single iteration
of different ordered subset configurations by using three
GPUs in parallel. The time needed to combine partial image
accumulation arrays from different GPU devices after every
backprojection increases the iteration time for ordered subset
configurations. For ordered subset implementation, we also
need to perform measured data backprojection after every
subset iteration since themeasured data backprojection array
for all the subsets cannot be saved in finite device memory.
In Figure 9, we show the change in objective function
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Figure 8. Time performance for a single iteration of various ordered subsets.

(a) (b)

(d)(c)

Figure 9. Objective function values versus iteration number (a) without ordered subsets, (b) 5 ordered subsets, (c) 29 ordered subsets and (d) 145 ordered
subsets.
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Figure 10. Objective function values in different time interval for various ordered subset configurations.

values (defined in equation (9)) with iteration number for
various ordered subset configurations. Since minimizing the
objective function values will maximize the penalized log
likelihood between themeasured data and our estimated data
by the model, we can use this distance method to estimate
the accuracy and noise reduction of our reconstruction.
In Figure 10, we show the change in objective function
values with corresponding time interval for different ordered
subset configurations. The objective function values at 0th
iteration of Fig. 9 and 0th second of Fig. 10 denote the
value of objective function between measured data and
projection sinogram of FDK reconstruction of the data.
The significant decrease in the objective function values
clearly illustrates the improvement in image quality with
our proposed reconstruction algorithm. In the end, we can
clearly conclude that our optimizations are effective and that
our multi-GPU approach is beneficial for both forward and
backprojection cases.

CONCLUSIONS
We have observed that our approach of using multiple
GPUs to reconstruct images gives us better performance
in computational cost compared to our best available CPU
configuration. Our primary contribution is a novel approach
to pre-accumulate for projection (see equation (36)) and ad-
joint pre-accumulate for backprojection (see equation (42))
in three-dimensional branchless DD algorithm. Elimination
of the common projection for 3D branchless DD projectors
reduces complexity of the algorithm (see Fig. 2). We can
also observe that computational time shows a linear decrease

in time performance with the addition of more GPUs. Use
of texture memory of the GPU devices for storing our
accumulation array is expected to reduce our computation
time of backprojection. We can expect to reduce run times
withmoreGPUs (see Fig. 7), which opens the door to exciting
new possibilities in clinical settings. For precision critical
applications we can use the double precision floating point
with TITAN Z GPUs, with some performance degradation
compared to our single precision TITAN X GPUs.
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