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Abstract
The problem of identifying materials in dual-energy CT images
arises in many applications in medicine and security. In this pa-
per, we introduce a new algorithm for joint segmentation and clas-
sification of material regions. In our algorithm, we learn an ap-
pearance model for patches of pixels that captures the correlation
in observed values among neighboring pixels/voxels. We pose the
joint segmentation/classification problem as a discrete optimiza-
tion problem using a Markov random field model for correlation
of class labels among neighboring patches, and solve the prob-
lem using graph cut techniques. We evaluate the performance
of the proposed method using both simulated phantoms and data
collected from a medical scanner. We show that our algorithm
outperforms the alternative approaches in which the appearance
model is based on pixel values instead of patches.

Introduction
Automatic material recognition in 2D and 3D CT images has a
wide range of applications both for medical and security purposes.
In the medical domain, an automatic recognition algorithm helps
the radiologist in diagnosis of tumors and pathology in tissues,
particularly when the image contrast is poor. In security, auto-
mated recognition algorithms assist operators in detection of haz-
ardous materials and reduces the need for human inspections.

Existing CT image recognition methods can be categorized
into two general approaches. In the first approach, reconstructed
images are segmented into objects. Features extracted from the
segmented objects are then used to classify the material in each
object. The advantage of this approach is that the features ex-
tracted from the segment information includes information from
the global region, such as value histograms, spatial extent and
other similar features. This approach is commonly used in de-
tection of regions of interest in security, as detailed in the re-
sults [1–4].

The second approach performs the recognition task in two
steps: image reconstruction and joint segmentation/classification
as in Figure 1. In this approach, the goal is to segment regions
with homogeneous classification. The idea behind this approach
is that comparing the reconstructed values with the values ex-
pected for the different classes of materials will lead to improved
segmentation and recognition. However, this approach has dif-
ficulty capturing regional information such as texture, mass or
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Figure 1: General steps in a joint segmentation/classification algorithm
for CT images; SE refers to single energy and DE refers to dual-energy
measurements.

shape. Examples of this approach are found in [5, 6].

In [5], Martin et al., proposed a joint segmenta-
tion/classification method for dual-energy CT images. In their
model, they learned the appearance model using supervised train-
ing images. The training images are collection of filtered back
projection (FBP) images reconstructed using two different source
spectra. For simplicity, we consider 2D images in our discussion.
Each pixel in the training 2D images is labeled for material classes
of interest and background. To learn the appearance model they
assume conditional independence of the intensity vectors at dif-
ferent pixels, given the label values. Hence, the training data is
used to learn the pixel appearance model for each label, using the
labeled training images.

In this paper, we introduce a new appearance model based on
patches. Instead of learning an appearance model for each pixel,
for each labeled class, we learn a joint appearance model for the
collection of pixels in a patch. The goal is to capture correlations
in nearby pixel values in order to represent better the texture and
regional information. We model the prior information on patch la-
bels using a Markov random field (MRF). We then pose the joint
segmentation/classification problem as a maximum a posteriori
estimation problem for the discrete patch labels. We solve the
resulting optimization problem using discrete optimization tech-
niques based on graph cuts [7, 8]. We evaluate our algorithm
on both simulated dual energy data phantoms and data collected
using a medical scanner. Our results show that our patch-based
segmentation/classification approach outperforms alternative ap-
proaches based on pixel-based likelihood models.

The rest of this paper is organized as follows: In the next
section, we provide an overview of the previous pixel-based joint
segmentation/classification algorithm in [5]. Subsequently, we
describe the maximum a posteriori formulation for our joint seg-
mentation/classification problem, and describe our proposed algo-
rithm in detail. The next section discusses our experiment results
where we compare the performance of our algorithm to alterna-
tive algorithms. We conclude the paper with a brief discussion of
directions for future investigation.
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Background work
In this section, we review the joint segmentation and classification
method of [5], which forms the background for our work. In [5],
dual-energy labeled CT images are used as training data for learn-
ing an appearance model for the different classes. For each label
class of interest and background, roughly, the same number of
pixels were collected to be included in the training set. Using this
training data, the appearance model that is learned is a probabil-
ity density for the random values of the pair of intensity values
at high and low energies, xi, associated with voxel i given that its
label is `i. We denote this density as p(xi|`i). To model the joint
distribution of pixel value pairs over the full image, one assumes
a naive Bayes model where the values at different pixels are as-
sumed conditionally independent given the labels of the pixels.
That is,

p(x1,x2, . . . ,xT |`1, `2, . . . , `T ) =
T

∏
i=1

p(xi|`i) (1)

where T is the total number of pixels in the 2D image. In (1),
xi denotes the attenuation vector associated with pixel i, T is the
total number of pixels in the 2D image, and `i is the label assigned
to pixel i.

Instead of learning a parametric model p(xi|`i), the approach
in [5] used a K-nearest neighbor likelihood estimation for estimat-
ing the conditional likelihood p(xi|`i) for each xi, with K = 19:

p(xi|`) =C
1
K ∑

j∈N (xi)

1{` j=`} (2)

In (2), N (xi) defines the K-nearest neighbors in the training data
to the observed data xi, based on Euclidean distance among atten-
uation vectors. 1{` j=`} is the indicator function. The constant C
is a normalizing factor for the density.

In addition to the appearance model, the prior information on
the label field `i, i = 1, . . . ,T is given by a Markov random field,
in the form

P(`1, . . . , `T ) =C1e−λ ∑
T
i=1 ∑ j∈N (i) 1{`i 6=` j}φ(xi,s,i, j)

where the function φ(xi,s, i, j) will be discussed later.
With this background, the problem of joint segmentation and

classification was formulated as the minimization of the negative
logarithm of the probability of the field of object labels given the
observed attenuation vectors per pixel. After discarding constants
with respect to pixel labels, the discrete optimization becomes

min
{`i}Ti=1

`i∈{1,...,M}

T

∑
i=1

vi lnP(xi|`i)+λ

T

∑
i=1

∑
j∈N (i)

1{`i 6=` j}φ(xi,s, i, j)

(3)

where the variables vi and the function is defined to alleviate the
effects of metal artifacts. In a preprocessing step on the higher
energy image, pixels corresponding to metal are identified. The
weights vi increase to 1 as the distance to the nearest metal pixel
increases, thereby placing less emphasis on matching the appear-
ance distribution for pixels near metal. Also, function φ(xi,s, i, j)
depends on an estimate of the boundary field among objects, s,

which is obtained based on the gradients of the high-energy at-
tenuation image. This estimate assigns high penalty values when
neighboring pixels i, j have different labels when there is little
likelihood of boundaries between them. It assigns low penalty
values when the likelihood of boundaries between them is high.
This requires a complicated estimate of the boundary field s, ob-
tained by solving an inverse problem.

The solution to (3) is obtained using a multi-class graph cut
optimization algorithm, as in [8]. Graph cut techniques [7] are
commonly used in computer vision to solve discrete optimization
problems associated with segmentation and classification. For-
mulating these minimization problems as graph cut optimization
problems requires special structure in the objective functions, in-
cluding sub-modularity [7]. The original graph cut approach was
developed for optimization problems with binary-valued decision
variables, and was subsequently extended in [8], to problems with
expanded discrete values, corresponding to multiple labels.

The graph cut algorithm maps the objective function of in-
terest into a graph where nodes are categorized as either sites or
terminal nodes. Site nodes often represent pixels in the image,
and terminal nodes are possible labels. Edges are divided into two
categories known as n-links (edges between two sites) and t-links
(edges from a site node to a terminal node). The capacity assigned
to an n-link captures the penalty for the Markov random field term
for the log-likelihood of the two label classes they were assigned.
The capacity of a t-link represents the penalty for assigning the
associated label to the associated site. The general form of the
objective function used for graph cut algorithms is represented as

E(L) = ∑
p

fp(Lp)+ ∑
(p,q)∈N

Vp,q(Lp,Lq) (4)

where L = {Lp|p∈P} is a labeling (a partitioning) on image P .
fp(Lp) is a data penalty function which determines the cost of t-
links, Vp,q is an interaction potential which determines the cost of
n-links, and N is a set of all pairs of neighboring pixels.

In [8], The α-expansion algorithm was developed to solve
the multi-label minimization when the interaction potential is a
metric on the space of labels. This algorithm finds provably good
approximate solutions within a known factor of the global minima
by iteratively running a binary min-cut/max-flow algorithm [7] on
appropriate graphs. In case Vp,q is a semi-metric, one can use
the α-β swap algorithm [8]. This latter algorithm does not have
any similar guaranteed optimality as opposed to the α-expansion
algorithm.

Proposed algorithm
Our algorithm is based on learning an appearance model for
patches instead of pixels. Patches are extracted from the training
data, where each patch is characterized by a vector of labels asso-
ciated with the pixels in the patch. We work with dual-energy CT
images, generated from reconstructions using filtered back pro-
jection algorithms at high and low source spectra. Each pixel in
a patch contains an estimate of effective linear attenuation coef-
ficients at both high and low energies. Thus, for a patch of size√

K×
√

K, the feature vector associated with the patch is of length
2K.

We restrict our model to patches where all of the pixels have
the same label. This represents a loss of resolution in the possible
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labels, but results in a major reduction in computation require-
ments and complexity. Using training data from patches with this
property, we estimate the marginal conditional probability den-
sity for the patch of linear attenuation coefficients given the patch
label either using a Gaussian model, as

p(µH
1 ,µL

1 , . . . ,µ
H
K ,µL

K |`)∼N (~µ`,Σ`), (5)

or using a kernel density estimator with Gaussian kernels of the
form

P(x|`)∼ 1
N` h

N~̀

∑
i=1

N (x−~µi,hI) (6)

where vector x , (µH
1 ,µL

1 , . . . ,µ
H
K ,µL

K)
T and N` is the number

of training patches with label `, and h is a kernel’s bandwidth
selected using cross-validation techniques.

We subsequently divide the image into N2/K non-
overlapping patches. We assume conditional independence of the
patch measured features given the patch labels, so that

p(x1, . . . ,xN2/K |`1, . . . , `N2/K) =
N2/K

∏
n=1

p(xn|`n) (7)

In the second step, we cast the joint segmentation and clas-
sification problem as a discrete minimization whose solution is a
set of labels for each non-overlapping patch in the test image of
size N×N, as

min
{`n,n=1,...N2/K}

N2/K

∑
n=1
− log

(
p(µH

1,n,µ
L
1,n, . . . ,µ

H
K,n,µ

L
K,n|`n)

)

+λ

N2/K

∑
n=1

∑
j∈N (n)

φn, j(~̀n,~̀ j) (8)

where λ is a smoothing parameter in (8), and the second term will
be defined below to represent a Markov random field as the prior
information for the field of patch labels.

In our model, we consider 4-way neighborhood for each
patch including left, right, top, and bottom adjacent patches. We
consider a Markov random field (MRF) over patches using Potts
model as

∑
j∈N (n)

φn, j(`n, ` j), ∑
j∈N (n)

1{` j 6=`n} (9)

Expression (9) penalizes mismatch between two neighboring
patches when the associated labels are different. Figure 2 demon-
strates the patch structure used for patches of size 2×2.

Note that there is a trade-off between patch size and resolu-
tion used in segmentation/classification. Bigger patch sizes lead
to better representation of regional information and faster com-
putation, but also lead to loss of resolution. In our experimental
results, we observed a good performance for patches of size 2×2,
i.e., K = 4, which is the size we will use in the rest of this paper.

Note that the Potts model (9) for the Markov random field
results in an energy function that satisfies the metric property. In
addition, for labels β ,γ,α and neighbor pixels n1,n2, we have

φn1,n2(β ,γ)+φn1,n2(α,α)≤ φn1,n2(β ,α)+φn1,n2(α,γ),

Figure 2: An example of a neighborhood for a given patch with label
tuple (1,1,1,1).

(10)

which implies that the cost function in (8) is sub-modular, and can
be minimized effectively using the α-expansion algorithm [8].

In the resulting graph cut algorithm, each site node in the
graph represents a non-overlapping patch in the test image, the
total number of site nodes in the graph is N2

K for a test image of
size N×N pixels with patches of size

√
K×
√

K. In addition, the
number of terminal nodes corresponds to the number of labels M,
similar to the pixel-based model described in the previous section.

Experiments
To illustrate the performance of our algorithm, we conducted ex-
periments using both simulated data and data collected from a
medical scanner. As a measure of performance, we computed the
percentage of pixels that have a different estimated label from the
ground truth image label, defined as

Ne =
N2

∑
k=1

1`k 6= ˆ̀k

where `k is the true label of pixel k and ˆ̀k is the label assigned by
our algorithm.

In addition, for each material class of interest m, we compute
measures of precision and recall, defined as follows: Let TPm

denote the number of true positive pixels of class m, defined as

TPm =
N2

∑
k=1

1`k=m1 ˆ̀k=m

Let FPm denote the number of false positive pixels of class m,
defined as

FPm =
N2

∑
k=1

1`k 6=m1 ˆ̀k=m

Let FNm denote the number of false negative pixels of class m,
defined as

FNm =
N2

∑
k=1

1`k=m1 ˆ̀k 6=m

Then, the precision Prm and recall Rem for class m are defined as

Prm ,
TPm

TPm +FPm ; Rem ,
TPm

TPm +FNm (11)

In the first experiment, we created four variations of the FOR-
BILD head phantom with metal implants using the tools provided
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Figure 3: System spectra used when simulating dual-energy measure-
ments [9].

in [10]. To generate simulated FBP images at lower and higher
energies, we approximated the Imatron C300 source spectra op-
erating at 95 Kvp and 130 Kvp voltages. The normalized spectral
weighting functions for the Imatron source is displayed in Figure
3. We sampled the spectra at 40 points between 20 Kev to 100
Kev energies to obtain the energy weights associated with the two
source spectra, Wm(.),m= 1,2. The materials in the created phan-
toms include water, air, bone, and iron. The linear attenuation co-
efficients for each material at different energy levels were derived
from the NIST reference in [11]. We considered I0 = 3×104 pho-
tons per path as the initial flux. The received photon counts were
simulated as a Poisson process as in the following:

cm
i = Poi

(
40

∑
j=1

I0Wm( j)e−
∫

Li
µ(~r, j)d`

)
m = 1,2 (12)

In this equation, cm
i denotes the photon counts associated to path

Li and source spectrum m, which is a Poisson random variable.
Also, µ(~r, j) is the linear attenuation coefficient at energy level
j and is a function of spatial location for a fixed j. Lastly,∫
Li

µ(~r, j)d` denotes the line integral along path Li and at energy
level j.

The sinogram value for each path Li is given by

ym
i =− log

(
cm

i
I0

)
(13)

To form the image, we generated 200 views evenly distributed
from 0 to 180 degrees, with 100 detectors per view. After com-
puting the simulated sinogram vector for both source spectra, we
reconstructed the images using the filtered backprojection (FBP)
algorithm. Figure 4 displays the FBP images of the four phan-
toms reconstructed for the 130 Kvp source spectrum. Due to
the presence of iron, there are visible metal artifacts in the re-
constructed images. With these phantoms, we ran three exper-
iments. The fourth phantom in Figure 4 was used as a cross-
validation image to tune the smoothing parameter λ in (8). From
the first three phantoms, at each experiment, two phantoms ran-
domly were selected as training images and the remaining phan-
tom was used as the test image. In the three experiments, we
used multi-variate Gaussian distributions to estimate the patch-
based conditional likelihoods. Figure 5 displays the visual result
of applying our algorithm to the tested phantom. We included a

Figure 4: Sampled FBP reconstructed images at 130 Kvp source spec-
trum for the created phantoms.

Figure 5: Labeled result for the tested phantoms. The top row is
the ground truth with materials including iron=red, water=light blue,
bone=yellow, and background (air)=dark blue. The second row displays
our algorithm’s result, and the bottom row displays the result of pixel-
based KNN with MRF spatial smoothing.

pixel-based alternative’s result in Figure 5, too. Specifically, we
compared our algorithm against a pixel-based K-nearest neighbor
(KNN) with spatial smoothing. The spatial smoothing in the latter
approach was applied through a MRF over pixels with a similar
penalty model as in (9). The pixel-based algorithm required heav-
ier regularization to smooth out the result in the uniform regions.
Therefore, it loses some information due to over-smoothing. Our
algorithm’s result also shows some error in the labeled images
especially in the left ear of the phantoms. This is due in part to
the loss of resolution in the patch-based model. Table 1 summa-
rizes the numerical result for the tested phantoms in terms of the
percentage of pixels with wrong labels. We compared the perfor-
mance of our algorithm against three pixel-based alternatives. Al-
ternative 1 is the pixel-based KNN with MRF. The second alterna-
tive uses pixel-based KNN with MRF and additional boundary in-
formation as in [5]. Finally, alternative 3 uses pixel-base Gaussian
distribution to estimate the appearance model along with MRF
over pixels. The table shows that the advantage of our algorithm
over the alternatives becomes more significant when it is tested
on harder cases, e.g., the third phantom in which iron pieces are
placed closer. In other cases, our algorithm’s performance is com-
parable with alternative 2 which utilizes the additional boundary
field information. We further computed the average recall and
precision of the materials in the ground truth for our algorithm,
the pixel-based KNN+MRF, and the algorithm in [5]. The result
is displayed in Figure 6. Our algorithm has higher precision and
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Algorithm
Our algo-
rithm

alternative
1

alternative
2

alternative
3

Phantom
1

2.42 2.62 2.38 3.19

Phantom
2

2.32 2.35 2.23 2.4

Phantom
3

3.38 4.15 4.05 5.21

Table 1: Performance of our algorithm versus the pixel-based alternatives
on the tested phantoms with respect to the percentage of pixels labeled
incorrectly compared to their ground truth.

Figure 6: The bar plot demonstrates the performance of our algorithm
against two pixel-based alternatives in terms of average precision and re-
call values. For each material, from left to right, the first three bars show
the average precision over our algorithm’s results, the results of the algo-
rithm in [5], and the pixel-based KNN+MRF, respectively. The remaining
three bars shows the average recall values for each material class using the
same algorithms, respectively.

recall for each of the four materials than the competing alterna-
tives.

In the next experiment, we evaluated our algorithm and the
pixel-based alternatives on the data collected from bag scans in
ALERT Task Order 3 data-set [12]. The bags were scanned using
the GE Imatron 300 scanner at two voltage levels, 95 Kvp and
130 Kvp, which we refer to as low and high energy sources, re-
spectively. We used 30 slices from bag 1 to serve as the training
images. The bags contained a diverse set of background objects,
as well as specific objects of interest such as water, saline water,
metal, and rubber sheets. Including the background class, the ex-
periment had five classes of interest. For each of these classes, we
selected roughly the same number of pixels and patches from the
30 slices to use as training data.

In this experiment, the background class can have many
types of objects with a wide range of linear attenuation coeffi-
cients. Since this would be a poor fit to a Gaussian distribution,
we used KDE with normal kernels in our algorithm to estimate
the patch-based conditional likelihood for each class. The band-
width parameter h in (6) was tuned using cross-validation slices
from bag 2 which were different from the tested slices.

Figures 7 and 8 display the result of our patch-based algo-
rithm and the pixel-based alternatives on two slices of bag 2. Fig.
7 shows that using KDE models for patch likelihoods is superior
to using KNN models, Comparing the patch-based KDE recon-
struction in the bottom right to the ground truth labeling in the
top left illustrates that the patch based algorithm loses some res-
olution, as seen in the merging of metal pieces that are close by,
and in the partial filling of the water in the bottle. However, the

ALERT Task Order 3 data experiment 

[Limor et al., 2015] 

ü Patch-based KDE appears to best describe the data and detects smaller metal 
pieces. 
 
 
  

ü The data was collected using Imatron scanner in Task Order 3 [Crawford, 
2013]. Material classes in this slice include water, metal, and background. 

Pixel-based KNN
+smoothing 

Patch-based KNN
+smoothing 

Patch-based KDE
+smoothing 

Stratovan  
label [TO3] 

(ground truth) 

ALERT Task Order 3 data experiment 

[Limor et al., 2015] 

ü Patch-based KDE appears to best describe the data and detects smaller metal 
pieces. 
 
 
  

ü The data was collected using Imatron scanner in Task Order 3 [Crawford, 
2013]. Material classes in this slice include water, metal, and background. 

Pixel-based KNN
+smoothing 

Patch-based KNN
+smoothing 

Patch-based KDE
+smoothing 

Stratovan  
label [TO3] 

(ground truth) 

Figure 7: The labeling results on a slice of bag 2 with water (green area)
and metal regions (red areas). The top row from left to right shows the
ground truth labeling and the result using the algorithm in [5], respec-
tively. The bottom row from left to right shows the patch based result
when using KNN and KDE, respectively.

pixel-based algorithm of [5] also loses that resolution, and cre-
ates artifacts near those metal regions, mislabeling background
pixels as water. The KNN patch-based algorithm also mislabels
the background as water, indicating that the KNN model is not
appropriate in these cases.

Fig. 8 displays the result of three labeling algorithms on a
different slice, comprised primarily of metal regions, background
and rubber. The image on the left corresponds to a pixel-based
(patch size K = 1) using KNN conditional likelihood models; the
center image was generated by the algorithm in [5], and the left
image is our algorithm using KDE models with 2× 2 patches of
size. The pixel-based algorithm is very susceptible to pixel label
errors in the neighborhood of metal. The algorithm in [5] avoids
this using boundary information to avoid this problem, while still
using KNN models. Our patch-based algorithm provides compa-
rable results without using any extracted boundary information;
however, the labeling shows some loss in resolution due to the use
of patches vs pixels in the assignment of labels, as was expected.

Conclusion
In this paper, we introduced a new algorithm for joint segmen-
tation/classification of dual energy CT images using appearance
models based on patches. These models are learned from train-
ing data, and capture the spatial correlation among neighboring
pixel values to represent regional texture information. We mod-
eled the prior information on patch labels using a Markov Random
Field approach, and to pose the joint segmentation/classification
problem as a maximum a posteriori estimation problem for the
discrete patch labels. We developed an algorithm to solve the es-
timation problem using graph cut techniques, and evaluated the
performance of this algorithm versus that of competing alterna-
tives on both simulated data and on data collected using a med-
ical scanner. Our results indicate that our patch-based segmen-
tation/classification approach outperforms alternative approaches
based on pixel-based appearance models.

There are several directions of interest for future investiga-
tion. First, we would like to explore whether patch-based appear-
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Figure 8: The labeling results on a different slice of bag 2 with rubber-
sheets (orange area) and metal regions (red areas). From left to right
shows the results of the pixel-based KNN+MRF algorithm, the algorithm
in [5], and our algorithm, respectively.

ance models provide improvement when using different feature
representations. In particular, we are interested in systems that
use a single excitation spectra rather than dual energy systems,
making the separation between object classes harder. We are also
interested in exploring the effect of different representations for
dual-energy reconstruction, such as the photoelectric and Comp-
ton reconstructions or the material basis reconstructions that have
been proposed to alleviate metal artifacts in reconstruction. In ad-
dition, the emergence of less expensive photon-counting detectors
can provide alternative features for reconstruction by collecting
measurements over multiple energy bands. We would like to ex-
tend our patch based techniques to systems that use such features.

Along different directions, a weak point of our approach is
the assumption that training data will be available on the materi-
als of interest and on the scanner of interest. We would like to
investigate whether such training data can be replaced by appro-
priately specifying appearance models based on material charac-
teristics that may be generalized across scanners. These directions
are currently under investigation in our ongoing research efforts.
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