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Abstract
We introduce a new algorithm to reduce metal artifacts in com-
puted tomography images when data is acquired using a single
source spectrum. Our algorithm is a hybrid approach which cor-
rects the sinogram vector followed by an iterative reconstruc-
tion. Many prior sinogram correction algorithms identify projec-
tion measurements that travel through areas with significant metal
content, and remove those projections, interpolating their values
for use in subsequent reconstruction. In contrast, our algorithm
retains the information of random subsets of these metal-affected
projection measurements, and uses an average procedure to con-
struct a modified sinogram. To reduce the secondary artifacts
created by this interpolation, we apply an iterative reconstruction
in which the solution is regularized using a sparsifying transform.
We evaluate our algorithm on simulated data as well as data col-
lected using a medical scanner. Our experiments indicate that our
algorithm reduces the extent of metal artifacts significantly, and
enables accurate recovery of structures in proximity to metal.

Introduction
Most scanners used in Computed Tomography (CT) applications
use x-ray sources that generate photons based on Bremsstrahlung
radiation, thereby resulting in source spectra that span a broad
range of energies. Since the attenuation properties of different
materials are energy dependent, the spectral mixture of photon
energies changes as the x-rays penetrate through different mate-
rials. In particular, the presence of denser materials with higher
attenuation such as metals can lead to significant spectral distor-
tion through absorption of low-energy photons. Most reconstruc-
tion algorithms fail to account for such distortions in their pro-
cessing, resulting in the presence of significant artifacts in the re-
constructed images. Further artifacts are introduced through im-
proper modeling of photon scatter, partial volume effects in the
discretizations used for image reconstruction, and noisy signals
due to photon starvation and errors in data sampling [1].

In medical imaging, metal is not a normal part of most
anatomies, so metal artifact arise in areas where external metal
has been introduced. When metal is present, it causes streaks and
shadows that obscure surrounding tissue, making it difficult for
radiologists to evaluate images. In security imaging, the presence
of metal in luggage is ubiquitous, and can recreate significant arti-
facts, such as shadows or bright streaks and blurring, that interfere
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with the task of object segmentation and recognition. These arti-
facts can lead to splitting or merging of objects, and result either
in missed detection of important objects or false alarms.

There has been significant prior work to reduce the presence
of metal artifacts in CT images [2–10] motivated by different ap-
plications. The most common approach is based on sinogram re-
placement through interpolation. Examples of sinogram interpo-
lation schemes are the linear interpolation (LI) algorithm [3] and
the metal deletion technique (MDT) [4]. Both of these approaches
have been effective in removing metal artifacts in medical im-
agery [4] when there is minimal amounts of metal present. These
methods start from a reconstructed image using filtered back pro-
jection (FBP), and identify locations of high attenuation, defin-
ing this as the metal region. They subsequently identify projec-
tion measurements that pass through the metal region, and seek to
modify these measurements. In the LI method, the values of these
metal-passing projection measurements are linearly interpolated
using the adjacent projections that did not overlap the metal re-
gion. The MDT method performs a more complicated iterative
correction: The first step is to perform the interpolation using an
LI approach; in subsequent iterations, it reconstructs the image
and does further modifications to the sinograms in order to gener-
ate a reconstructed image without the presence of metal. A differ-
ent approach to sinogram interpolation was proposed in [5], where
sparse wavelet interpolation was used to generate estimates of the
projection measurements that pass through the metal region.

One of the main limitations of these sinogram interpolation
techniques is that they discard the information of projection mea-
surements that overlap the metal region, and thus lose a lot of in-
formation about areas in proximity to metal regions or surrounded
by metal. This can lose critical information in security imaging,
leading to inability to detect objects in metal enclosures or ad-
jacent to significant metal structures. Furthermore, the sinogram
manipulations often result in introduction of secondary artifacts
in the reconstruction. More sophisticated techniques for sinogram
interpolation use iterative reconstruction together with removal of
projections that intersect the metal region, as in [2].

Another class of metal artifact reduction technique are based
on image domain approaches, and aim to correct the image by
modifying the areas affected by metal. Examples of such methods
are image in-painting approaches, coupled with different methods
of iterative reconstruction of the original sinogram [6–8]. In [6],
Jin et al. proposed a metal artifact reduction method in which
regions in the image affected by metal were identified, and then
interpolated using an image in-painting technique. in [9, 10], the
authors used the identified metal region, along with iterative re-
construction techniques, to compute estimates of the artifacts in
the image, which they then subtracted from the original image.

In this paper, we introduce a hybrid approach to reduce metal
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artifacts in CT images when the data is acquired using a sin-
gle source spectrum. To reduce the chance of information loss,
we utilize the information of both metal-passing and non-metal
passing projection measurements to generate an interpolated sino-
gram. The sinogram correction is performed through several iter-
ations: at each iteration, a random subset of metal-passing pro-
jection measurements is selected to be corrected and the value of
other projection measurements are kept fixed as in their original
values. To correct the selected subset, sinogram values are in-
terpolated in wavelet domain as in [5]. This process is repeated
several times and each time we obtain a new sinogram vector. Our
final sinogram is the average over the corrected sinogram vectors.
In the next step, we reconstruct the image from the average cor-
rected sinogram. We choose an iterative reconstruction with the
motive of removing secondary artifacts that are the by-products
of sinogram manipulation in the previous step. To this end, we
learn a sparsifying transform from the patches of the original FBP
image which does not contain the secondary artifacts, then we
use this transform as a regularization term for the iterative image
reconstruction.

We evaluate our algorithms on data generated through simu-
lations, as well as data collected from a medical scanner. Our ex-
periments show that our algorithm effectively reduces the metal
artifacts and reconstructs the attenuation properties of materials
near metal accurately, whereas alternative algorithms fail to ac-
complish.

In the following sections, we explain the steps of our algo-
rithm in details. Then, we present our experiments and evalu-
ate the performance of our algorithm, followed by a comparison
against recent methods suggested for reduction of metal artifacts
in CT. Our conclusion section discusses our results, and indicates
directions for future work.

Our algorithm
We propose a new hybrid algorithm in which we correct the metal
passing projection measurements in the sinogram domain fol-
lowed by an iterative reconstruction. Unlike previous algorithms
in [3], [4], and [5] that discard information from metal-passing
projection measurements, we will use this information as well as
the information in non-metal passing projection measurements in
order to reduce the chance of information loss in correcting the
sinogram. We describe our algorithm in three steps below: sino-
gram correction, learning a sparsifying transform, and iterative
reconstruction.

Sinogram correction
Our algorithm starts from an FBP image obtained using a filtered
backprojection algorithm (FBP). We detect any pixels where the
estimated attenuation coefficient exceeds a threshold T h to obtain
a set of pixels M which we refer to as a metal mask. Typically, this
threshold is selected in the range from 3000 to 4000 in MHU.1

Our next step is to identify projection measurements in the
sinogram where the projections intersect the metal mask M. These
projection measurements in the sinogram are identified as YM ,
the set of measurements that are affected by metal. The remain-
ing projection measurements in the sinogram represent the set of

1MHU is the HU unit with offset in which linear attenuation of water
is 1000: µMHU = µ

µwater
×103.

measurements not affected by metal, and are denoted as the com-
plement set YMc . Therefore, we have:

Y = YM ∪YMc , (1)

where Y is the complete set of projection measurements, the sino-
gram matrix.

Our goal is to generate a set of corrected measurements ỸM .
To do so, we perform the following steps in an iterative manner:

1. Initialize ỹk = 0 for all measurements k.
2. For each iteration in 1 to Ns:

(a) Select a random subset S⊂M.
(b) Interpolate values in the set S as the solution to the

following constrained minimization problem:

Y (i) , argmin
Ŷ
‖WŶ‖1 (2)

such that

ŶSc = YSc (3)

(c) Set ỹk = ỹk + ŷ(i)k for all measurements k

3. Compute the average sinogram Y avg as

yavg
k ,

1
Ns

ỹk for all pixels k (4)

In (2), W is a 2D wavelet transform operator2 and ‖.‖1 is the
`1-norm which is applied to the wavelet coefficients in the vector
form. Also, in (3), set Sc is the complement set of set S in the set
of all measurements; this constraint ensures that all values in Sc

are fixed and are equal to the values of the original sinogram at
those indices. Note that the values of non-metal passing rays in
set Mc in Y avg will be the same as in the original sinogram Y , due
to the constraint in (3). The constrained optimization in (2) was
solved using majorization-minimization technique and projected
gradient descent [5].

The intuition behind using wavelet interpolation in (2) is to
reduce high-frequency details and noise by imposing sparsity con-
straint on the corresponding wavelet coefficients. A similar idea
was also used in [5]; however, they used the wavelet interpolation
to update all the metal-passing rays at the same time which led
to loss of information regarding the structures near metal in the
reconstructed image.

Learning a sparsifying transform
In this step, we construct the ingredients of the regularization
term which will be used in the iterative reconstruction. We ob-
served that FBP reconstruction of interpolated sinograms suffers
from secondary artifacts. This phenomenon is common to most
algorithms which modify the original sinogram [3–5]. The sec-
ondary artifacts do not exist in the original FBP image and are
by-products of the sinogram processing. Therefore, in our algo-
rithm, we learn a sparsifying transform [11] from the patches of
the original FBP image as in the following:

min
T,{z j} j

‖T XFBP−Z‖2
F , ‖z j‖1 ≤ q ∀ j (5)

2We used JPEG-2000 in our experiments.
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In (5), T is an over-complete sparsifying transform, ‖.‖2
F rep-

resents the Frobenius norm, XFBP is the matrix of overlapping
patches of the original FBP image, patches are of size

√
K×
√

K
for some K and T is of size 2K×K. Vector z j is the sparse code
for patch j, Z is the matrix of sparse codes for all patches, and q
is the sparsity level which is a parameter of the problem.

The optimization in (5) finds a transform T which maps the
patches of the original FBP image to sparse vectors. We solved
this optimization problem as in [11], using an iterative algorithm
solving for T and for Z respectively. Sparsifying transforms were
used in [11] for image de-noising; in our application, we use it to
learn the transform basis T that should make our reconstruction
sparse.

Iterative reconstruction
In the final step of our algorithm, an image estimate is recon-
structed using an iterative reconstruction algorithm . We work
with the corrected sinogram vector Y avg ≡ yavg. We assume a lin-
ear model between image vector and sinogram vector, i.e., y=Ax,
and use the learned sparsifying transform to regularize the solu-
tion. We cast the image reconstruction problem as:

min
x,{z j} j

‖yavg−Ax‖2
D +λ

(N−
√

K+1)2

∑
j=1

‖T E jx− z j‖2
2 (6)

such that

‖z j‖1 ≤ q ∀ j (7)

Matrix A in (6) is the forward projection matrix (the system ma-
trix), matrix D is the weighting matrix to down-weight the Poisson
noise, which is a diagonal matrix with its i-th element as

D(i, i) = e−cyavg(i), c≥ 1 (8)

Also, E j is the patch extractor matrix for patch j, patches are of
size
√

K×
√

K and are over-lapping and the image vector x is of
size N2×1.

The regularization term in (6) together with constraint (7)
encourages the patches of the image estimate to be sparse in the
domain of transform T . By doing so, the amount of secondary
artifacts in the reconstructed image are reduced since transform T
was learned from the original FBP image in which no secondary
artifacts exist. The parameter λ balances the cost between fitting
the image to the corrected sinogram and the cost of sparsifying
transform.

The constrained minimization problem in (6) is convex. We
used the alternating direction method of multipliers (ADMM)
[13], which enables us to use separate the minimization of x in
the data fidelity term from that of the regularization term, leading
to a simple iterative algorithm.

Experiments
To evaluate the performance of our algorithm versus alternative
approaches, we developed simulated 2-D data sets based on vari-
ations of the FORBILD head phantom [12]. We added metal and
other materials in different locations, the materials included are
bone, air, steel and ethanol. In our phantoms, ethanol regions are
surrounded by thin steel containers, as illustrated in Fig. 1. Next,

Figure 1. The constructed FORBILD phantom with bone, air,
ethanol (gray areas), and metal containers (bright circles) on the
left and a sample FBP reconstruction at 130 Kvp voltage source, in
[0-0.8] cm−1 display range.

we simulated a polychromatic source spectrum with a source op-
erating at 130 Kvp which is an approximation to the Imatron C300
scanner spectral weighting [7]. We sampled the spectrum at 40
energy levels to get the discrete normalized energy weight W (.).
The initial flux was considered as I0 = 3×104. We simulated the
sinogram using 150 projections evenly spaced from 0 to 180 de-
grees and 100 detectors per projection. The linear attenuation co-
efficients of the different materials were obtained from the NIST
XCOM database [14].

The received photon counts at a detector were simulated as a
Poisson random variable. Letting Li denote the projection path to
detector i, we have

ci = Poi

(
40

∑
j=1

I0W ( j)e−
∫

Li
µ(~r, j)d`

)
(9)

where ci are the simulated photon counts measured by detector i,
µ(~r, j) is the linear attenuation coefficient at energy level j and is
a function of the energy j at spatial location~r. The line integral∫

Li
µ(~r, j)d`, along the projection path Li at energy level j, was

computed using the software tools in [12].
The sinogram values we use for the detectors are measured

in log scale, as

yi =− log
(

ci

I0

)
(10)

We reconstructed the images from the simulated sinograms using
filtered backprojection (FBP). An original image and the recon-
structed image are shown in Fig. 1. Note the presence of circular
ringing artifacts and additional streaks introduced by the presence
of the two steel circles.

To compare the performance of our algorithm, we imple-
mented several other metal artifact reduction techniques: the LI
interpolation technique of [3], the MDT algorithm of [4], the im-
age in-painting technique of [6], and the artifact subtraction tech-
nique of [10]. We tested each of these algorithms, as well as our
algorithm, to reconstruct the image illustrated in Fig. 1. The final
reconstructions provided by the different algorithms are shown in
Fig. 2.

Examining the reconstructions in Fig. 2, the simple LI algo-
rithm does a good job of reducing the metal artifacts. However, it
also deletes all information in the ethanol region, reconstructing it
as air. This is a consequence of discarding all of the information
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Figure 2. Performance comparison on FORBILD phantom, in [0-
0.8] cm−1 display range: the top row, from left to right: LI [3], MDT
[4], and FBP reconstruction of the average corrected sinogram in
our algorithm. The bottom row, from left to right: An image in-
painting method [6], a hybrid approach [10], and our algorithm’s
final image.

in measurement projections that include metal in the projection
path. The more complex MDT algorithm also reduces the origi-
nal metal artifacts, but creates a number of secondary artifacts in
its iterations. It also deletes all information concerning the ethanol
region in the two steel enclosures.

The image in-painting technique of [6] and the artifact sub-
traction technique of [10] are able to preserve information as to
the presence of some material inside of the steel circles. How-
ever, the in-painting technique does not reduce the original ar-
tifacts much, because many of the artifacts are not shaped like
streaks. The images on the right side of Fig. 2 correspond to two
variations of our algorithm. The top image is the filtered backpro-
jection reconstruction of our modified sinogram, and the bottom
image is the iterative reconstruction algorithm described previ-
ously. Note that the FBP image has reduced the original artifacts
significantly, but there are some secondary artifacts introduced,
as evidenced in the blurring near the metal circles. Our full algo-
rithm with iterative reconstruction reduces these secondary arti-
facts.

Even though the algorithms of [6, 10] preserved the pres-
ence of material inside of the steel cylinders, the resulting re-
constructed values were inaccurate. To determine the appropriate
reconstructed value for the ethanol region, we created a new phan-
tom where the metal containers were removed, and performed an
FBP reconstruction using the new data. We computed the mean
and variance of the reconstructed linear attenuation coefficient in
the ethanol region for this new phantom, and considered that as
the “ground truth” that the algorithms should estimate when the
metal cylinders are present. Subsequently, we computed the mean
and variance of the reconstructed linear attenuation coefficient in
the regions inside of the metal cylinders for each of the recon-
structions shown in Fig. 2.

Table 1 displays the results of this analysis. Due to metal
artifacts, the original FBP reconstruction overestimates the atten-
uation inside of the metal cylinders significantly. Interestingly,
the algorithms of [6, 10] improve minimally on this estimate, and
continue to overestimate the attenuation in the region enclosed by

Mean Variance
FBP no metal container 0.2512 0.0015
FBP with metal container 0.5543 0.7559
Our algorithm 0.2763 0.008
MDT [4] 0.0819 0.8603
LI [3] 0.0406 0.00025
Alternative
3 [10] 0.5020 0.6862

Alternative 4 [6] 0.4838 0.3343

Table 1. Performance evaluation of different reconstruction methods on
the FORBILD phantom with metal shields and ethanol. The mean and
variance were computed in the ethanol regions.

metal by nearly a factor of 2, which would likely lead to erroneous
classification of this material. As expected, the LI and MDT algo-
rithms significantly underestimate the attenuation in this region.
Our algorithm shows accurate reconstruction in the region, with
small errors in mean and variance when compared to the estimates
obtained from the FBP reconstruction with no metal enclosures.
This suggests that our approach preserved essential information
concerning the enclosed region.

We further evaluated the performance of our proposed algo-
rithm on real data acquired by a medical scanner, the GE Imatron
C300 electron-beam tomography (EBT) scanner. The data we
used was collected as part of the ALERT TO3 data collection [7].
The data set consisted of different slice scans of a cluttered bag,
which contained bottled water, rubber sheets, a Teflon box, metal
objects, and other clutter such as clothing. The X-ray tube was
driven at 130 kVP. The sinogram was generated using a re-binned
collection of parallel projections, with 720 projections and 1024
detectors per projection. The reconstructed images are of size a
512×512 and are displayed in MHU units and the display range
used in the figures is [0-1500] MHU.

To evaluate our algorithm’s performance on this data set, we
chose a slice and collected its corresponding parallel projection
data. Using the original FBP image, we identified the metal region
by selecting pixels with reconstructed attenuation that exceeds a
threshold of 4000 MHU to the original FBP image. Using the
forward projection system matrix, as estimated in [7], we identi-
fied the projections in the sinogram that intersect the metal region.
The random sub-sampling and sinogram modification process was
performed for Ns = 100 iterations. At each repetition, we selected
as a random subset S to correspond to 80% of the projections that
intersect the metal region. Using this approach, the average sino-
gram was computed as described in (4). The final images were
reconstructed using the optimization in (6).

Figure 3 illustrates the metal artifact reduction performance
of our algorithm, and compares it to those obtained using the
methods in [3] and [4]. As it was expected, our algorithm dis-
plays an improvement in reconstructing the boundaries of metal
and structures close to metal regions, and it reduces the secondary
artifacts significantly. In order to make the images comparable,
the value of pixels in the metal region were added to the final im-
ages in the MDT and LI reconstructions.

Figure 4 illustrates the performance of the tested algorithms
on a different slice of the bag which compares our algorithm’s
performance against the LI method in [3]. In this reconstruction,
we did not insert back the metal region values in the image gen-
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Figure 3. Reconstructed image of a slice of a highly cluttered bag in
ALERT task order 3 dataset [7] using different methods in [0-1500]
MHU display range: the top-left image is the original FBP image,
the top-right is the MDT image [4], the bottom-left shows our algo-
rithm’s result, and finally the bottom-right shows the LI image [3].
Our algorithm recovers the area near the metal and boundaries ef-
fectively while the tested alternatives struggle in proximity to metal
and show visible secondary artifacts.

erated by the LI algorithm. Our algorithm recovers structures that
are located near metal better than the tested alternative.

Conclusion
In this paper, we introduced a new metal artifact reduction algo-
rithm for CT images. Our algorithm is a hybrid approach which
corrects projection measurements passing through metal regions,
followed by an iterative reconstruction. The sinogram modi-
fication procedure uses a novel randomized sampling approach
that preserves a fraction of the affected projection measurements.
The iterative reconstruction approach uses a sparsified transform
learned from the original filtered backprojection image in order
to reduce the presence of secondary artifacts introduced by the
sinogram modification.

We evaluated our algorithm, and compared its performance
to several alternative metal artifact reduction approaches sug-
gested in the literature. In limited testing using both simulated
data and data from a medical scanner, our algorithm had superior
performance to the alternative algorithms. In particular, the re-
sults indicate that our algorithm is able to recover structures that
are surrounded by metal much more accurately than the alterna-
tive approaches.

The main limitations of our algorithm are the processing
time complexity, both in the sinogram correction technique and
in the iterative reconstruction algorithm. The sinogram correction
technique requires the solution of multiple sparse wavelet interpo-
lation problems. The iterative reconstruction algorithm requires
learning a sparsifying transform, and subsequently using this in a
sparse regularized iterative reconstruction technique.

In terms of future directions, the promising results shown
in this paper need to be verified using more extensive simulation

Figure 4. Reconstructed image of another slice of a highly clut-
tered bag in ALERT task order 3 dataset [7] using different methods
in [0-1500] MHU display range: the left image is the original FBP
image, the image in the middle is the LI image [3] before super-
imposing metal mask, and the right image shows our algorithm’s
result. Our algorithm keeps the metal and recovers the structures
near the metal effectively.

and data collection. We have recently collected additional data
sets on the same medical scanner with significantly more metal
present, including metal enclosures. In addition, we will explore
alternative algorithms that can lead to reduction in computation
time.
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