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Abstract
In order to accurately monitor neural activity in a living

mouse brain, it is necessary to image each neuron at a high frame
rate. Newly developed genetically encoded calcium indicators
like GCaMP6 have fast kinetic response and can be used to target
specific cell types for long duration. This enables neural activ-
ity imaging of neuron cells with high frame rate via fluorescence
microscopy. In fluorescence microscopy, a laser scans the whole
volume and the imaging time is proportional to the volume of the
brain scanned. Scanning the whole brain volume is time consum-
ing and fails to fully exploit the fast kinetic response of new cal-
cium indicators. One way to increase the frame rate is to image
only the sparse set of voxels containing the neurons. However, in
order to do this, it is necessary to accurately detect and localize
the position of each neuron during the data acquisition.

In this paper, we present a novel model-based neuron de-
tection algorithm using sparse location priors. We formulate the
neuron detection problem as an image reconstruction problem
where we reconstruct an image that encodes the location of the
neuron centers. We use a sparsity based prior model since the
neuron centers are sparsely distributed in the 3D volume. The in-
formation about the shape of neurons is encoded in the forward
model using the impulse response of a filter and is estimated from
training data. Our method is robust to illumination variance and
noise in the image. Furthermore, the cost function to minimize in
our formulation is convex and hence is not dependent on good ini-
tialization. We test our method on GCaMP6 fluorescence neuron
images and observe better performance than widely used meth-
ods.

Introduction
Mapping the functional connectivity in the brain continues to

be a major challenge in neuroscience. An important component
in developing such a map is the ability to measure the activity of
many neurons accurately at a high frame rate. Fluorescence mi-
croscope imaging using recently developed fluorescent calcium
indicators is a good candidate for making these measurements
due to a combination of high spatial and temporal resolution. The
foundation of this form of neural imaging is the increase in cal-
cium ion concentration whenever a neuron is activated [1]; this
increased concentration leads to fluorescence from the calcium
indicator, which is captured by a fluorescence microscope [2] [3].
Recently developed calcium indicators like GCaMP6 respond to
changes in calcium ion concentration quickly and thus provide the
possibility of measuring neural activity at a high frame rate [4].

In conventional raster scan fluorescence microscopy, in
which all the voxels in the volume are scanned equally often, the

frame rate suffers markedly as the size of the brain volume to be
imaged increases [5] [6]. However, for purposes of capturing neu-
ral activity, it is necessary to scan only the volume containing the
neurons, which is typically a small fraction of the total volume.
Thus, replacing a full raster scan for each frame with a scan of the
much smaller neural volume can dramatically increase the scan
frame rate. Of course, this strategy relies on accurate knowledge
of the neural volume, which we propose to obtain using a single
GCaMP6 scan of the full volume of interest.

The central challenge of this research is to create a method
for accurately detecting and determining the location of each neu-
ron in a GCaMP6 image so that the volume can be sparsely
scanned at a high frame rate. This goal presents a number of
difficult challenges. First, there can be large illumination varia-
tions across the image, along with high noise. Furthermore, there
is often fluorescence from the dense network of axons and den-
drites, referred to as neuropil. There are also cylindrical blood
vessels in the images that have similarities with neurons, making
the detection of neurons more challenging. Also, some neurons
are saturated with fluorescence; this is an artifact of GCaMP over-
expression that leads to a significantly different type of calcium
fluorescent image relative to other neurons [1] [3].

Before describing our method, we briefly review related
work on cell segmentation and tracking methods, including frame
to frame association and active contour models.

Several algorithms [7] [8] track cells in a sequence of 2D im-
ages by detecting cells in each frame and then establishing frame
to frame association based on several criteria. However, there
are problems in the frame to frame association phase if there is
large variation in illumination from frame to frame, a high den-
sity of cells, and/or a large number of cells entering or leaving the
frame [9] [10].

Active contour models have also been proposed for segment-
ing and tracking cells in microscopy images [11] [12] [13] [14]
[15]. Active contour based methods take a deformable contour
with a certain energy function and minimize that energy to seg-
ment a cell. However a good initialization is often required to
avoid getting stuck on a local minima [16]. Active contours re-
quire a data attachment term to guide the contour. Many methods
use a data attachment term that depends solely on the edge map
computed from the image gradient [17] [18] [19]. However, in
images with high noise, gradient information is unreliable. Other
methods use statistical intensity information computed for the re-
gion inside the contour [20] [21].

Active contour models have been extended to include strong
prior shape information in [22] [23] [24] [25]. However it is dif-
ficult to detect an unknown number of objects [26]. To mitigate
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Figure 1. Example of a GCaMP6 calcium fluorescence image used in this

study. The bright circle is a neuron affected with GCaMP over-expression.

The large black circles are blood vessels. The annular rings are normal

neurons.

this, variations of active contour with Marked Point process is
proposed in [26] [27]. But these methods are formulated for 2D
images and cannot be directly applied to 3D images.

In this paper, we solve the problem of detecting neuron cen-
ters in a 3D volume using a novel model-based neuron detection
algorithm (MBND). We formulate this as an image reconstruc-
tion problem in which we construct a sparse location image that
encodes the neuron centers. That is, a non-zero value in the loca-
tion image corresponds to the center of a neuron. We model the
observed neurons as a linear combination of shape models in the
forward model and use separate shape models for normal neurons
and abnormal over-expressed neurons; the coefficients in this lin-
ear combination are the nonzero entries in the location image. We
use a sparsity based prior model for the construction of the loca-
tion image since the neuron centers are sparsely distributed in the
3D volume. We model the background illumination variation in
the image as a linear combination of low-frequency basis vectors
of the Discrete Cosine Transform, and we model the presence of
sparsely distributed bright dendrites as additive impulsive noise.
We compute the MAP estimate of the location image by mini-
mizing a convex cost function. Tests on GCaMP6 fluorescence
neuron images show better accuracy than widely used methods.

Forward and Prior Model
To formulate the problem, let us denote the observed vec-

torized image as Y ∈ RN , where N is the total number of voxels
in the 3D image. Let S denote the lattice in R3 representing the
voxel locations in the image and let Ω map from the lattice points
in S to an index i such that 1 ≤ i ≤ N. Then YΩ(s) is the value of
the image at the voxel location s ∈ S

Let A(1),A(2) ∈ RN×N be matrices corresponding to linear
space invariant filters. The impulse responses of A(1),A(2) are the
shape model of normal and over-expressed neurons. A(1),A(2)

perform convolution with the shape model as their convolution
kernel.

X (1)

X (2)

A(1)

A(2)

A(1)X (1)

A(2)X (2)

A(1)X (1) + A(2)X (2)

Figure 2. Illustration of how A(1)X (1) +A(2)X (2) model the neurons in the

image. The ring shapes represent normal neurons and the disk shaped ones

represent over-expressed neurons
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Figure 3. Illustration of all the variables in the forward model and their sizes

Let X (1),X (2) ∈ RN be sparse images which encode the lo-
cation of the normal and over-expressed neuron centers respec-
tively.We shall refer to them as location images. X (1) and X (2)

represent the contribution of two neuron models to explain the
data at each voxel location. X (k) is non-zero only at the center
of neurons that are modeled by the shape model of A(k) and the
non-zero value is proportional to the brightness of the neuron it
models.

Therefore, A(1)X (1)+A(2)X (2) models the neurons in the im-
age Y . This is illustrated in figure 2.

Let the columns of the matrix B ∈ RN×M be the M basis
vectors of the 3D Discrete Cosine Transform corresponding to
the low-frequency components. Then given appropriate choice
of the parameter vector θ ∈ RM , Bθ can be used to model the
low-frequency background illumination variation in the image for
an appropriate choice of θ ∈ RM . We shall refer to Bθ as the
background offset and θ as the background offset coefficients.
Using these, we model the image Y as

Y =
2

∑
k=1

A(k)X (k)+Bθ +WI +WG, (1)

where WI represents additive impulsive noise from dendrites, and
WG represents additive Gaussian noise. The variables in equa-
tion 1 and their sizes are illustrated in figure 3

We consider the Gaussian noise to be white so that the for-
ward model (likelihood of the data, Y given unknown variables
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X (1), X (2), WI and θ ) can be written as

p(Y |X (1),X (2),θ ,WI) =

1
zF

exp
(
− 1

2σ2
wG

‖Y −
2

∑
k=1

A(k)X (k)−Bθ −WI‖2
2

)
, (2)

where zF is the normalizing constant or the partition function of
the forward model and σ2

wG
is the variance of the gaussian noise.

In the prior model formulation, we model the variables
X (1), X (2), WI as independent. Thus their joint prior probability
p(X (1),X (2),WI) can be factored into the individual prior proba-
bilities p1(X (1)), p2(X (2)) and pI(WI) as:

p(X (1),X (2),WI) = p1(X (1))p2(X (2))pI(WI) (3)

Since, X (1), X (2) and WI are sparse, we model their negative
log prior to be proportional to their L1 norm. The L1 norm prior is
known to induce sparsity in a convex fashion [28]. The individual
prior probabilities are then given by:

pk(X
(k)) =

1
zk

exp
(
− 1

σi
‖X (i)‖1

)
, k = 1,2 (4)

and

pI(WI) =
1

zWI

exp
(
− 1

σWI

‖WI‖1

)
, (5)

where z1, z2 , zWI are the corresponding partition functions and
σ1, σ2 , σWI are scale parameters.

Neuron Centers Estimation
Since the location of the neuron centers are encoded in the

location images , X (1) and X (2), they need to be estimated first
in order to calculate the neuron centers. The variables θ and WI
are not needed for calculating the neuron centers but they need to
be estimated in order to estimate X (1) and X (2). For estimating
the location images we use the maximum a posteriori probability
(MAP) estimate. Since we also have the parameter vector θ , we
find the joint MAP estimate of X (1) ,X (2), WI and θ as:

{X (1)∗ ,X (2)∗ ,θ∗,W ∗I }=

argmin
X (1),X (2),θ ,WI

{
− log(p(Y |X (1),X (2),θ ,WI))

− log(p(X (1),X (2),WI))
}

, (6)

where p(Y |X (1),X (2),θ ,WI) is the likelihood of the image Y given
X (1),X (2),θ ,WI and p(X (1),X (2),WI) is the prior probability of
X (1), X (2) and WI . Using equations 4 and 5 we can find the MAP
estimate as:

{X (1)∗ ,X (2)∗ ,θ∗,W ∗I }=

argmin
X (1),X (2),θ ,WI

{ 1
2σ2

wG

‖Y −
2

∑
k=1

A(k)X (k)−Bθ −WI‖2
2

+
2

∑
k=1

1
σk
‖X (k)‖1 +

1
σWI

‖WI‖1 . (7)

1: function [X (1),X (2),θ ,WI ]← MAP ESTIMATE(Y,A(1),A(2),B,
σ1,σ2,σWI ,σWG )

2: Initialize X (1)← 0
3: Initialize X (2)← 0
4: Initialize W(I)← 0
5: Initialize θ ← BTY
6: Initialize e← Y −Bθ

7: while Stopping criterion is not met do
8: for i = 1 to N do
9: for k = 1 to 2 do

10: v← X (k)
i

11: X (k)
i ← Shrink

(
v+

eT A(k)
∗,i

‖A(k)
∗,i ‖2

,
σ2

WG

σk‖A
(k)
∗,i ‖2

)
12: e← e−A(k)

∗,i (X
(k)
i − v)

13: end for
14: v←WIi

15: WIi ← Shrink
(

v+ ei,
σ2

WG
σk

)
16: e← e− (WIi − v)
17: end for
18: ẽ← e+Bθ

19: θ ← BT ẽ
20: e← ẽ−Bθ

21: end while
22: end function

Figure 4. Pseudocode of MAP estimation

1: function ζ ← MBND(Y,A(1),A(2),B,σ1,σ2,σWI ,σWG ,W )
2: Initialize ζ ←{}
3: [X (1),X (2),θ ,WI ]← MAP ESTIMATE(Y,A(1),A(2),B,

σ1,σ2,σWI ,σWG )
4: for each s ∈ S do
5: for k = 1 to 2 do
6: if X (k)

Ω(s) > 0 and X (k)
Ω(s) > X (k)

Ω(r)∀r ∈ δ s then
7: ζ ← ζ ∪{s}
8: end if
9: end for

10: end for
11: end function

Figure 5. Pseudocode of MBND. Output, ζ is the set of all detected neuron

centers. Input is the image Y , shape models A(1),A(2) and the parameters

B,σ1,σ2,σWI ,σWG ,W . S is the set of all lattice points representing voxel loca-

tions. Ω() maps the lattice points to a linear index.

The MAP estimate is computed by iteratively minimizing
the cost function above. This is similar to the LASSO cost func-
tion [29]. We use the iterative co-ordinate descent method [30]
to minimize the cost function in equation 7. We iteratively min-
imize the cost function in equation 7 until the change in forward

model cost,
1

2σ2
wG

‖Y −∑
2
k=1 A(k)X (k)−Bθ −WI‖2

2 , falls below a

certain threshold ε . The pseudo-code for the minimization of the
cost function in equation 7 is given in figure 4, where the shrink-
age function Shrink(x,λ ) is defined as:

Shrink(x,λ ) = sign(x)max(|x|−λ ,0) (8)

After the location images X (1) and X (2) have been estimated,
we can find the neuron center locations by finding the location of
its non-zero voxels. However, due to imperfect matching between
our shape model and the shape of the neurons in the data, we
might have consecutive non-zero voxel values in the estimated lo-
cation images X (1) and X (2) leading to duplicate neuron centers.
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Figure 6. Overview of neuron center estimation in MBND

To mitigate this, we compute the normal and over-expressed neu-
ron centers as the local maxima of location images X (1) and X (2)

respectively. In other words, we consider the location s ∈ S to be
a neuron center if X (k)

Ω(s) > 0 and X (k)
Ω(s) > X (k)

Ω(r)∀r ∈ δ s, k = 1,2,
where the neighborhood δ s of s is given by:

δ s = {r ∈ S | ‖W−1(s− r)‖2 < 1,r 6= s}, (9)

where W = diag(wx,wy,wz) is a weighting matrix providing the
size of the neighborhood.

The overview of the full process of neuron center estimation
is shown in figure 6 and the pseudo-code is given in figure 5.

Shape Model Estimation
The impulse responses of A(1) and A(2) serve as shape mod-

els and are estimated from training data. The impulse responses
of A(1) and A(2) are image patches that represent the shape of the
typical neuron of normal and over-expressed type respectively as
shown in the first images in figure 8(a)(b). Let the impulse re-
sponse of A(1) and A(2) be u(1) , u(2) ∈RL in vectorized form. We
extract neuron patches from the training volume to estimate u(1)

and u(2). Let Z be the vectorized training volume. We manually
select P1 neuron centers of the normal type and P2 neuron cen-
ters of the over-expressed type in the training volume and train
the shape models using these. These neuron centers need not be
exhaustive, i.e. there might be other neuron centers present in the
training volume apart from these. To estimate the shape models
that best fit the training volume, we minimize the minimum re-
construction error in equation 7 in the neuron region with respect
to the shape models. To simplify the training, we find the back-
ground offset variable, θ by minimizing the reconstruction error
with respect to θ to get θ = BT Z. We then compute the back-
ground offset subtracted training volume, Z̃ as:

Z̃ = Z−BBT Z (10)

We then extract P1 training patches of size L from Z̃ centered
around the P1 neuron centers of the normal type and put them in
the matrix Y (1) ∈RL×P1 . Similarly, we extract P2 training patches
of size L from Z̃ centered around the P2 neuron centers of the over-
expressed type and put them in the matrix Y (2) ∈ RL×P2 . The

Z

BBT

Σ

 !Z

Background offset 

Training volume 

Training  
patches 
(normal neuron) 

Training  
patches 
(over-expressed 
neuron) 

Extract 
Normal
Neuron
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Manually determine  
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Figure 7. Overview of the process of extracting training patches and esti-

mating the shape models

process of extracting training patches and estimating the shape
models is illustrated in figure 7.

Then, to estimate u(k) for k = 1,2, we minimize the mini-
mum reconstruction error with respect to u(k) as:

u(k) = argmin
u∈RL

{ Pk

∑
i=1

min
ρ∈R
‖Y (k)
∗,i −ρu‖2

2

}
(11)

Define the sample correlation matrices R(k)
Y ∈ RL×L, for k =

1,2 as

R(k)
Y =

1
Pk

Y (k)(Y (k))T . (12)

Solving the least squares problem in equation 11 gives

u(k) = argmax
u∈RL

(uT R(k)
Y u

‖u‖2
2

)
. (13)

Let the eigenvalues and eigenvectors of R(k)
Y be Λ(k) and E(k)

for k = 1,2. So that

R(k)
Y = E(k)

Λ
(k)(E(k))T . (14)

The solution to equation 11 is well known: u(k) is the eigen-
vector of R(k)

Y corresponding to the highest eigenvalue. Since
the solution to equation 13 is scale invariant, we set ‖u(k)‖2 =

(Λ
(k)
1,1)

1/2 to capture the brightness scale of the neurons:

u(k) = (Λ
(k)
1,1)

1/2E(k)
∗,1 . (15)

Experimental Results
In this section we compare our Model Based Neuron De-

tection algorithm (MBND) with CellSegm [31]. CellSegm is a
publicly available software for high throughput cell segmentation
in fluorescence microscopy images. We use the segmct method
within CellSegm toolbox which segments cells by iterative thresh-
olding, hole filling and classification based on sizes of regions
above threshold. We take the connected component centers of the
final segmentation result to be the neuron centers.
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(a) Equatorial slice of eigen-images for normal neuron training data

(b) Equatorial slice of eigen-images for over-expressed neuron training data

Figure 8. The equatorial slices of the eigen-images for the (a) normal neu-

ron data (b) neurons affected by GCaMP over-expression. Only the eigen-

images corresponding to the highest eigenvalues are shown.

Dataset Description
We use GCaMP6 labeled calcium imaging data of a mouse

brain to evaluate our neuron detection algorithm. The data was
provided by Prof. Meng Cui and Dr. Lingjie Kong at Purdue Uni-
versity. The full 3D data volume is of size 512x512x421 voxels
along the x,y and z axes respectively. The inter-voxel distance
is 1µm. The neuron cells are approximately ellipsoids with di-
ameter 10µm along each axis. Contrast stretching is done on the
whole volume to improve the contrast and then the voxel values
are normalized in the range 0-1. A section of the volume (after
contrast stretching and normalization) is shown in figure 1 as an
example.

We test our algorithm on a section of the full volume of size
104x101x21 that we will call test volume henceforth. We col-
lect neuron patches for training from a separate section of size
351x201x51 from the whole volume. We will call this the train-
ing volume henceforth. We do not use the whole volume since
collecting ground truth is time and labor intensive.

Training
We subtract the low-frequency background from the training

volume and then extract 84 centered neuron patches from it, 79
of them normal neuron patches and 5 over-expressed ones. For
background subtraction we construct B by using the first 6 , 5 , 11
basis vectors of the 1D Discrete cosine transforms along the x,y,z
directions respectively so that we have M = 6×5×11 = 330 ba-
sis vectors of the 3D Discrete cosine transform in B. The patches
extracted were of size 15x15x7. After extracting the training
patches, the shape models u(1) and u(2) were estimated using so-
lution to equation 15. The equatorial slices of the eigen-images
for the normal and over-expressed neuron training data are shown
in figure 8. We only show the eigen-images corresponding to the
highest eigenvalues. The eigenvalues are shown in figure 9.

As a first order approximation, we use only the eigen-image
of the highest eigen-value for the shape models.

(a) Eigenvalues of normal neuron
training data

(b) Eigenvalues of over-expressed
neuron training data

Figure 9. Eigenvalues of the (a) normal neuron data (b) neurons affected

by GCaMP over-expression

Testing and Evaluation
We apply both the CellSegm method and MBND on the test

volume. To determine the accuracy of the detected centers we rely
on a ground truth: a list of actual neuron center co-ordinates. The
ground truth was manually determined by looking at the 3D stack
and was verified by an expert. We consider a detected neuron
center to be a correct one if it differs from the true center by a
certain tolerance value. Namely, if c1 = [x1,y1,z1]

T is the location
of a true neuron center, and c2 = [x2,y2,z2]

T is the location of a
detected neuron center, then c2 is considered a true detection of
c1 if:

‖D−1(c1− c2)‖2 < 1 (16)

where, D = diag(dx,dy,dz) is a weighing matrix providing the
tolerances along each of the x,y,z directions. The values of dx, dy,
dz should be small enough so that the ellipsoid with radii dx, dy,
dz is well inside the neuron and large enough that small deviations
in center co-ordinates are still considered true detection. We take
dx = 3, dy = 3, dz = 4 since there are roughly half of the radii of
the ellipsoidal neurons.

Each detected neuron center that is a true detection of some
neuron in the ground truth is termed a true positive. If multiple
neuron centers are detected within the tolerance limit of the actual
neuron center, only one of them is considered a true positive and
the rest are considered false positives. If a detected neuron center
is not a true detection of any neurons in the ground truth then it is
termed a false positive. All neuron centers in the ground truth that
are not detected are termed false negatives. For a set of detected
centers and ground truth, let the total number of true positives,
false positives and false negatives be denoted as: NT P, NFP and
NFN respectively. We evaluate the list of detected centers by the
precision and recall metric defined as:

precision =
NT P

NT P +NFP
(17)

recall =
NT P

NT P +NFN
(18)

Precision and recall values lie in the range [0,1] and high values
for both are desirable. Combining both precision and recall, we
define a metric F-score as:

F =
2 · precision · recall
precision+ recall

(19)
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(a) Original image: slice 3 (b) Ground Truth: slice 3 (c) CellSegm Detected neurons: slice
3

(d) MBND Detected neurons: slice 3

(e) Original image: slice 8 (f) Ground Truth: slice 8 (g) CellSegm Detected neurons: slice
8

(h) MBND Detected neurons: slice 8

(i) Original image: slice 13 (j) Ground Truth: slice 13 (k) CellSegm Detected neurons: slice
13

(l) MBND Detected neurons: slice 13

(m) Original image: slice 18 (n) Ground Truth: slice 18 (o) CellSegm Detected neurons: slice
18

(p) MBND Detected neurons: slice 18

Figure 10. Slice by slice comparison of detected neurons by our proposed method(MBND) with CellSegm Here (a), (e), (i), (m) show the original test image

in slices 3,8,13,18 respectively. (b), (f), (j), (n) show the ground truth in slices 3,8,13,18 respectively. (c), (g), (k), (o) show the neurons detected by CellSegm in

slices 3,8,13,18 respectively. (d), (h), (l), (p) show the neurons detected by our MBND in slices 3,8,13,18 respectively. To show the neurons, we draw a sphere

around the neuron centers in 3D and we show the circular intersection of the surface of the sphere with the current slice in the figures. A dot in the center of the

circle indicates that the neuron center is in the current slice. Ground truth and true detection are shown in green, false positives in red and missed detection in

blue.
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Figure 11. Precison recall plot of our proposed method(MBND) compared

with CellSegm

For both MBND and CellSegm, we tune the parameters to
get the best F-score on the test volume. We set the noise standard
deviation σwG = 0.07. For constructing B, use the first 6, 5, 11
basis vectors of the 1D Discrete cosine transforms along the x,y,z
directions respectively so that we have M = 6×5×11= 330 basis
vectors of the 3D Discrete cosine transform in B. We set wx =
wy = wz = 4 for calculating local maxima of the location images.
We set the parameters σWI , σ1, σ2 so that a neuron of typical
intensity and of the trained shape can be detected. Let there be a
neuron cu(k), (k = 1,2) embedded in the test image, where c is a
scalar constant and u(k) is estimated from equation 15. Then to
detect it we need to have a non-zero solution to the equation:

ρ
∗ = argmin

ρ∈R

1
2σ2

wG

‖cu(k)−ρu(k)‖2
2 +

1
σk
|ρ| (20)

It can be shown that a non-zero solution corresponds to σk ≥
cσ2

wG
/‖u(k)‖. This is the motivation behind setting σk =

ckσ2
wG

/‖u(k)‖, (k = 1,2) and σWI = cIσ
2
wG

, where c1, c2 and cWI

are scalar constants. We set c1 = 3.3, c2 = 2.7 and cWI = 2.5.
For MBND, the best F-score obtained was 0.91 with corre-

sponding precision = 0.95 and recall = 0.87. For CellSegm, the
best F-score obtained was 0.13 with corresponding precision =
0.18 and recall = 0.10. The neuron detection results for MBND
and CellSegm corresponding to their best F-score is displayed in
figure 10. We also display the original image and ground truth to
get a visual comparison. To show the neurons, we draw a sphere
around the neuron centers in 3D and we show the circular inter-
section of the surface of the sphere with the current slice in the
figures. A dot in the center of the circle indicates that the neu-
ron center is in the current slice. Ground truth and true detection
are shown in green, false positives in red and missed detection in
blue.

Next, for MBND we vary the neuron regularizer σ1 in equa-
tion 7 and keep the other parameters fixed to get a series of neu-
ron detection results and the corresponding precision and recall
values. For the CellSegm method, we vary the threshold and
keeping the other parameters fixed to get a series of neuron de-
tection results and the corresponding precision and recall values.
We plot these precision recall values to generate a precision-recall

plot. The precision recall plot of MBND is compared to that of
CellSegm in figure 11.

From figures 10 and 11 we can see that MBND has min-
imal false positives and is able to detect many more neurons
than CellSegm. From figures 10(o) and 10(g) we can see that
CellSegm is able to detect only the very bright neurons. This
is because iterative thresholding combined with other image-
processing techniques are not good if there isn’t a strong differ-
ence in illumination level between the object and the background.
On the other hand, in MBND we train shape models for the neu-
rons and thus MBND is able to detect neurons even when there
isn’t much illumination difference between the neuron and the
background.

Conclusions and Future Work
In this paper we presented a novel model based neuron de-

tection scheme(MBND) to detect neuron centers in fluorescence
images of neurons. MBND is able to detect neurons at very low
signal to noise ratios. Results show that MBND performs better
than one widely used method.
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