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Abstract 

A supervised learning approach for dynamic sampling 
(SLADS) was developed to reduce X-ray exposure prior to data 
collection in protein structure determination. Implementation of 
this algorithm allowed reduction of the X-ray dose to the central 
core of the crystal by up to 20-fold compared to current raster 
scanning approaches. This dose reduction corresponds directly to 
a reduction on X-ray damage to the protein crystals prior to data 
collection for structure determination. Implementation at a 
beamline at Argonne National Laboratory suggests promise for the 
use of the SLADS approach to aid in the analysis of X-ray labile 
crystals. The potential benefits match a growing need for 
improvements in automated approaches for microcrystal 
positioning.  

Background and Motivation  
Beam-scanning or sample-scanning measurements are 

commonplace in many imaging application, spanning wavelengths 
from the visible in confocal microscopy to X-ray in scanning 
electronic microscopy. In many instances, the time required to 
produce a signal at a particular location represents the rate-limiting 
step for image generation. When the single-pixel measurement 
time is much less than the random-access time, opportunities for 
dynamic sampling emerge, in which the location of the next 
measurement is informed by the preceding set of measurements 
rather than chosen blindly.  

X-ray diffraction imaging (XRDI) represents precisely such a 
scenario. XRDI is routinely used in structural biology as a means 
of automatically positioning protein crystals prior to diffraction 
data collection at synchrotron sources.1-5 In XRDI, a full X-ray 
scattering pattern is collected at each location in a sample using a 
tightly collimated X-ray source. In the presence of a protein 
crystal, a series of sharp diffraction features appear in the 
scattering image. Peak identification is used to indicate locations 
corresponding to crystal locations. In this approach, a raw high 
resolution image of X-ray scattering is converted into a single 
scalar value in an image of crystal position.   

While XRDI has the distinct advantage of generating image 
contrast based on the measurement of highest priority (i.e., 
diffraction efficiency), it suffers from two key limitations. First, 
XRDI is relatively slow, since a high resolution (e.g., 4 or 16 
MPixel) image is acquired for each point in the real-space image. 
Integration of 0.5-2 seconds per pixel is often used to generate 
sufficiently high signals for reliable crystal positioning given the 

relatively low scattering cross-sections of the atoms within organic 
molecules. Second, XRDI can result in significant sample damage 
from X-ray exposure prior to data collection. 

Damage from X-ray exposure represents one of the most 
challenging issues to address in protein structure determination by 
X-ray diffraction. For every 1 diffracted X-ray photon contributing 
to structure determination, roughly 10 are absorbed to produce 
local disorder and loss of diffracted power.6,7 The cumulative 
damaging effects of X-ray absorption ultimately dictate the signal 
to noise ratio (SNR) achievable in a given diffraction experiment, 
and the corresponding confidence in the resulting protein structures 
produced by the analysis. As such, major efforts have evolved to 
reduce SNR losses associated with damage, such as using high flux 
synchrotron X-ray sources and performing diffraction 
measurements under cryogenic conditions. At cryogenic 
temperatures, diffusion of damaging radicals produced upon X-ray 
exposure is greatly suppressed.6,8,9  However, it is not always clear 
whether the diffraction results obtained at cryogenic temperatures 
are representative of the structures present under ambient 
conditions. These advances have significantly pushed the 
boundaries of the measurements to analysis of ever smaller crystals 
using ever smaller X-ray beams, such that diffraction experiments 
can now be performed on crystals smaller than 1 µm in dimension.  

This size reduction has in turn exacerbated practical 
challenges in positioning protein crystals within the X-ray beam 
prior to diffraction data collection. For small crystals requiring 
high flux for detection and for X-ray labile crystals, this additional 
exposure can reduce the remaining dose available for diffraction 
data collection. As the sizes of both the sources and the crystals 
continue to be reduced, the challenges of centering on the basis of 
diffraction will continue to grow in significance.  

In this work, exposures to the central core of protein crystals 
are greatly reduced using dynamic scan patterns, in which the 
location for the next diffraction measurement is selected on the 
basis of the preceding set of measurements. In this manner, the 
total number of locations within the field of view exposed to X-
rays is reduced by up to 20-fold compared to conventional raster 
scanning. Implementation of dynamic sampling on a synchrotron 
beamline at Argonne National Laboratory suggests direct 
compatibility of this approach with hardware currently in place at 
many macromolecular synchrotron diffraction facilities.  

 
  

6
IS&T International Symposium on Electronic Imaging 2017

Computational Imaging XV

https://doi.org/10.2352/ISSN.2470-1173.2017.17.COIMG-415
© 2017, Society for Imaging Science and Technology



 

 

Theoretical Foundation 
The theoretical background underpinning  

SLADS illustrated in Figure 1 is detailed elsewhere10  and briefly 
summarized below. For a ground truth underlying object X 
consisting of N pixels, the set of k measurements at locations S 
combine to generate the set of known information Y. 
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The primary goal of the SLADS algorithm is to identify the 
location s(k+1) that reduces the subsequent reconstruction distortion 
between the ground truth and recovered images X and ( )ˆ kX  , 
respectively. For a binary image, the distortion D for pixel r is 
defined by the following. 
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Since increasing the number of measurements will generally 
improve the accuracy of the reconstruction and reduce the 
distortion, the reduction in distortion R from measurement of the s 
pixel after k preceding measurements is given by the following 
definition. 

 ( ) ( )( ; ) ( ) ( ; )ˆ ˆ, ,k s k k s
r r r r

r
R D X X D X X= −∑   (3) 

In practice, X is not known in advance. However, the 
expected reduction in distortion (ERD = R ) can be estimated from 
the expectation value of R.  
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The sequentially optimized sampling location for the k+1 
measurement is the position that maximizes the expected reduction 
in distortion from Eq. 1.4. In SLADS, the relationship between the 
measurements Y and the ERD is a regression function informed by 
an offline training process. 
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In Eqs. 5 and 6, { }2( ) mins
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∈
= − , where, Ω is the set of 

all locations in the image, and S is the set of sampled locations.  

 

Experimental Methods 
Full length mCherry was cloned into pGEX6P1 and 

transformed into Rosetta cells using standard cloning protocols 
detailed previously. The crystals used in these studies were grown 
using both sitting drop and hanging drop vapor diffusion methods 
in mother liquor containing 100 mM Tris pH 8.0, 100 mM sodium 
acetate and 30% PEG 4000 at room temperature, as has been 
previously reported 11. The crystals grew to large clusters of rod-
shaped crystals over the course of 1-4 days. 

Contrast in the XRDI images corresponds to locations of 
protein-like diffraction, which was assessed using the program 
DISTL 12. DISTL is a part of the package, LABELIT 13, which 
estimates potential Bragg candidates. In three steps: i) isolating 
diffraction like peaks from the background in a diffraction image 
considering the noise variability in local environment, ii) 
validating the isolated peaks from the rejection of possible sources 
of ice-rings, salt particles or crystal disorder, and iii) gauging size 
and shapes of each peak. DISTL estimates diffraction peaks more 
quickly than full-blown indexing and processing of diffraction data 
(normally performed with programs like XDS 14,15, MOSFLM 16, 
HKL2000 17., in which patterns containing sufficient numbers of 
identified peaks were classified as corresponding to protein 
crystals, while those below the threshold were classified as blank 
(solution or non-crystalline protein).  

  

Results and Discussion 
Prior to implementation of SLADS, a significant effort was 

devoted to assessing the advantages and limitations in 
reconstructions in which ground truths were known in advance. 
Ground-truth data were obtained by performing a full XRDI 
acquisition with diffraction performed at each location. The ground 
truth data could then be compared directly with the results of the 
reconstructions for statistical evaluation of performance.  A 
representative X-ray scattering pattern recorded from a single 
confined 5µm diameter region is shown in Figure 2. The bright 
puncta in the scattering pattern correspond to diffraction-like 
peaks. Using peak-identification algorithms detailed in the 
Experimental Methods section, the scattering pattern shown in 
Figure 2 was reduced to a single binary classification: 1 = protein 
crystal, 0 = background.  

Prior to implementation of SLADS for protein crystal 
positioning at a synchrotron facility, simulations were performed 
using known ground-truth diffraction images and surrogates.  

Estimate expected 
reduction (ERD) in 

distortion for all 
unmeasured pixels

Find location where 
ERD highest 

Measure selected pixel 
location

Check if stopping 
condition is met

Input: Initial 
Measurements

Figure 1. Schematic overview of the SLADS reconstruction 
algorithm. 
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A comparison of the ground truth diffraction-based mapping 

results and the recovered binary map is shown in Figure 3. In the 

 
diffraction mapping, a 4Mpixel X-ray scattering pattern such as 
shown in Figure 2 was acquired at each spatial position in the 
image and the number of diffraction-like peaks used as the 
greyscale value in the corresponding diffraction images. A binary 
map was generated upon thresholding the diffraction image. 
Dynamic sampling of the ground truth results allowed image 
reconstruction and assessment of reconstruction error.  

Plots of the reconstruction error arising from the simulation 
results shown in Figure 3 and analogous simulations performed 
with a 1 µm beam allowed assessment of the capabilities of the 
SLADS approach as the number of pixels is increased. The total 
distortion given by Equation 2 was normalized and plotted for both 
SLADS and a more conventional low-discrepency sampling 

approach. In both instances, SLADS offered marked improvements 
in performance. Notably, the differential was significantly greater 
for higher resolution measurements, in which a greater total 
fraction of pixels were in-painted in the reconstructions. These 
results suggest that reasonably accureate reconstructions can be 
obtained with only a few % of the pixels sampled for the crystals 

considered in the present work.  
From the reconstructions in Figure 3, the SLADS algorithm 

preferentially samples pixels at the edges between regions of 
different classification. The origin of this bias is straightforward; 
the ambiguity for classification is greatest for the pixels on the 
borders, such that the overall reduction in normalized distortion 
(ND) is optimized by preferentially sampling those pixels most 
likely to be potentially mis-classified.  

An analogous set of operations was also performed for two-
photon excited ultraviolet fluorescence (TPE-UVF) images, which 
served as surrogates for the next generation of X-ray “minibeam” 
sources targeting ~1 µm diameter beams.  

Following the proof-of-concept studies, SLADS was 
implemented on a beamline with the GM/CA@APS group at 
Argonne National Laboratory, the results of which are summarized 

Figure 2. Representative X-ray scattering pattern containing 
protein-like diffraction features (bright puncta) recorded from a 
single pixel in the XRDI. The black shadow to the left and center is 
cast from beam-stop to remove the primary specular X-ray beam. 
The spot count serves as a classifier for assigning locations as either 
protein crystals or background. 

Figure 3. X-ray raster images of mCherry protein crystal: a) pixels 
accessed by dynamic sampling, with yellow indicating crystalline 
regions, teal noncrystalline locations, and dark blue unsampled 
pixels, b) the corresponding reconstructed image of crystal 
locations, and c) the ground truth diffraction image expressed as a 
binary map.  

Figure 4. Comparison of the reconstruction distortion produced by 
SLADS and conventional low discrepancy sampling for the 
measurements obtained with a 5 µm diameter X-ray source (a) and 
the surrogate TPEF measurements for a 1 µm diameter beam (b).  

a)  b)  

Figure 5. Implementation of dynamic sampling for 3D localization of a 
protein crystal prior to diffraction data collection. Red pixels indicate 
locations of protein-like diffraction and teal the absence. The 
reconstructed crystal is indicated in white. 
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in Figure 5. Prior to data collection for structure determination, 
protein crystals are typically centered in X and Y, then rotated 90o 
and centered in X and Z, consistent with the combined data set in 
Figure 4. Once centered, diffraction measurements are typically 
recorded every few degrees as the crystal is rotated through a pre-
set range of angles. Centering prior to data collection ensures that 
the protein remains within the beam during this rotation operation.  

Consistent with the predicted trends based on the simulations, 
SLADS reliably identified locations of the protein crystals with 
significant reductions in exposure to damaging X-rays prior to data 
collection. Specifically, the crystals were positioned with just 3% 
of the locations and just 5% of the protein exposed to X-rays. 
Furthermore, the SLADS algorithm preferentially samples the 
crystal edges, leaving unexposed the central regions of the protein 
crystal that produce the brightest diffraction.   
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