IS&T International Symposium on Electronic Imaging SCIENCE AND TECHNOLOGY

29 January 2017 - 2 February 2017 • Burlingame, CA, USA

Computational Imaging XV

Editors: Charles A. Bouman, Purdue Univ. (United States), Robert Stevenson, Univ. of Notre Dame (United States)

These papers represent the program of Electronic Imaging 2017, held January 29 – February 2, 2017, at the Hyatt Regency San Francisco Airport in Burlingame, CA.

Copyright 2017

Society for Imaging Science and Technology 7003 Kilworth Lane • Springfield, VA 22151 USA 703/642-9090; 703/642-9094 fax info@imaging.org; www.imaging.org All rights reserved. These proceedings, or parts thereof, may not be reproduced in any form without the written permission of the Society.

ISSN 2470-1173

https://doi.org/10.2352/ISSN.2470-1173.2017.17.COIMG-A Manuscripts are reproduced from PDFs as submitted and approved by authors; no editorial changes have been made.

electronicimaging.org

Computational Imaging XIV

Symposium Chairs

Nitin Sampat, Rochester Institute of Technology (United States) Joyce Farrell, Stanford University (United States)

Symposium Short Course Chairs

Mohamed-Chaker Larabi, University of Poitiers (France) Jonathan B. Phillips, Google, Inc. (United States)

At-large Conference Chair Representative Adnan Alattar, Digimarc (United States)

Past Symposium Chair Choon-Woo Kim, Inha University (Republic of Korea)

Conference Chairs

Charles A. Bouman, Purdue Univ. (United States) Robert Stevenson, Univ. of Notre Dame (United States)

Computational Imaging XIV

Monday, January 30, 2017

Scientific Imaging

Session Chair: Garth Simpson, Purdue University (United States)

8:50 - 10:30 am

Cypress C

8.50

Deep neural networks for synchrotron X-ray imaging,

Francesco De Carlo, Charudatta Phatak, Vincent De Andrade, and Doğa Gürsoy, Argonne National Laboratory (United States) (COIMG-453)

9.10

Synchrotron x-ray diffraction dynamic sampling for protein crystal centering, Nicole M. Scarborough¹, G. M. Dilshan P. Godaliyadda¹, Dong Hye Ye¹, David J. Kissick², Shijie Zhang¹, Justin A. Newman¹, Michael J. Sheedlo¹, Azhad Chowdhury¹, Robert F. Fischetti², Chittaranjan Das¹, Gregery T. Buzzard¹, Charles A. Bouman¹ and Garth J. Simpson¹; ¹Purdue University and ²Argonne National Laboratory (United States) (COIMG-415)

9.30

An iterative method to estimate and recover systematic and random

errors in grating based x-ray phase contrast imaging, Teck-Yian Lim¹, Minh Do¹, and Amber Dagel²; ¹University of Illinois at Urbana-Champaign and ²Sandia National Laboratories (United States) (COIMG-416)

9:50

A model based neuron detection approach using sparse location priors,

Soumendu Majee¹, Dong Hye Ye¹, Gregery Buzzard², and Charles Bouman¹; ¹School of Electrical and Computer Engineering, Purdue University and ²Dept. of Mathematics, Purdue University (United States) (COIMG-417)

10:10

Multi-resolution Data Fusion (MDF) for computational electron

microscopy, Suhas Sreehari¹, Jeffrey Simmons², Lawrence Drummy², and Charles Bouman¹; ¹Purdue University and ²Air Force Research Laboratory (United States) (COIMG-449)

> 10:30 - 10:50 am Coffee Break

Tomography

Session Chair: W. Clem Karl, Boston University (United States)

10:50 am - 12:30 PM

Cypress C

10.50

High spatial resolution detection method for point light source in scintillator, Kai Xu, Tetsuya lizuka, Toru Nakura, and Kunihiro Asada; The University of Tokyo (Japan) (COIMG-418)

11:10 24 A randomized approach to reduce metal artifacts in x-ray computed tomography, Parisa Babaheidarian and David Castanón, Boston University (United States) (COIMG-419)

11:30 Joint segmentation and material recognition in dual-energy CT images,

Parisa Babaheidarian and David Castanón, Boston University (United States) (COIMG-420)

11:50

Multi-GPU acceleration of branchless distance driven projection and backprojection for Clinical Helical CT (JIST-first), Avan Mitra¹, David Politte², Bruce Whiting³, Jeffrey Williamson⁴, and Joseph O'Sullivan¹; ¹Washington University, ²Washington University School of Medicine, ³University of Pittsburg, and ⁴Virginia Commonwealth University (United States) (COIMG-421)

12:10

6

10

Fast and robust discrete computational imaging, Ahmet Tuysuzoglu¹ Yuehaw Khoo², and W. Clem Karl³; ¹Siemens Medical Solutions USA, ²Stanford University, and ³Boston University (United States) (COIMG-422)

> 12:30 - 2:00 pm Lunch Break

El 2017 Opening Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) 2:00 - 3:00 pm Grand Peninsula Ballroom D

Giga-scale 3D computational microscopy, Laura Waller, University of California, Berkeley (United States)

Laura Waller is the Ted Van Duzer Endowed Assistant Professor of Electrical Engineering and Computer Sciences (EECS) at UC Berkeley. She is a Senior Fellow at the Berkeley Institute of Data Science, and received her BS (2004), MEng (2005), and PhD (2010) in EECS from the Massachusetts Institute of Technology (MIT). Waller's talk is on computational imaging methods for fast capture of gigapixel-scale 3D intensity and phase images in a commercial microscope that employs illumination-side and detection-side coding of angle (Fourier) space with simple hardware and fast acquisition. The result is high-resolution reconstructions across a large field-of-view, achieving high spacebandwith-time product.

> 3:00 - 3:30 pm Coffee Break

Computational Color

Session Chair: Charles Bouman, Purdue University (United States)

3:30 - 4:30 pm

Cypress C

18

30

3:30

Linear mapping based inverse tone mapping, Dae Eun Kim and Munchurl Kim, Korea Advanced Institute of Science and Technology (Republic of Korea) (COIMG-423)

3.50

62 Performance of the 14 skin-colored patches in accurately estimating human skin color, Hayan Choi, Kyungah Choi, and Hyeon-Jeong Suk,

Korea Advanced Institute of Science and Technology (Republic of Korea) (COIMG-424)

4:10 66 Skin-representative region in a face for finding real skin color, Hayan Choi, Kyungah Choi, and Hyeon-leong Suk, Korea Advanced Institute of Science and Technology (Republic of Korea) (COIMG-425)

49

36

55

Symposium Welcome Reception 5:00 - 6:00 pm Atrium

Tuesday, January 31, 2017

Computational Optics

Session Chair: Stanley Chan, Purdue University (United States)

8:50 - 10:10 am

Cypress C

8.50

Atomistic simulations of interface characteristics in materials systems, Jeffrey Rickman, Lehigh University (United States) (COIMG-454)

9.10

70

76

81

87

94

A phase-coded aperture camera with programmable optics, Jieen Chen¹, Michael Hirsch², Rainer Heintzmann³, Bernhard Eberhardt⁴, and Hendrik Lensch¹; ¹University of Tuebingen, ²Max Plank Institute for Intelligent Systems, ³Leibniz Institute of Photonic Technology, and ⁴Stuttgart Media University (Germany) (COIMG-426)

9:30

Wavefront correction using self-interference incoherent digital

holography, Kiseung Bang¹, Changwon Jang¹, Jonghyun Kim¹, Myung Kim², and Byoungho Lee¹; ¹Seoul National University (Republic of Korea) and ²University of South Florida (United States) (COIMG-427)

9.50

Non-iterative image reconstruction for single photon image sensors, Stanley Chan, Purdue University (United States) (COIMG-428)

10:00 am – 7:30 pm	Industry Exhibition
10:10 – 10:50 am	Coffee Break

Computational Photography

Session Chair: Henry Dietz, University of Kentucky (United States)

10:50 am - 12:30 pm

Cypress C

10.50

Single image super-interpolation using adjusted self-exemplars, Hyun-Ho Kim, Jae-Seok Choi, and Munchurl Kim, Korea Advanced Institute of Science and Technology (Republic of Korea) (COIMG-429)

11.10

Temporal super-resolution for time domain continuous imaging, Henry Dietz, Paul Eberhart, John Fike, Katie Long, and Clark Demaree, University of Kentucky (United States) (COIMG-430)

11:30

Edge-aware light-field flow for depth estimation and occlusion detection, Wenhui Zhou¹, Andrew Lumsdaine², Lili Lin³, Wei Zhang³, and Rong Wang³; ¹Hangzhou Dianzi University (China), ²Pacific Northwest Laboratory (United States), and ³Zhejiang Gongshang University (China) (COIMG-431)

11:50 100 Evaluating age estimation using deep convolutional neural nets, Carlos Belver¹, Ignacio Arganda-Carreras^{1,2}, and Fadi Dornaika^{1,2}; ¹University of the Basque Country and ²Basque Foundation for Science (Spain) (COIMG-432)

12:10

106

122

136

142

3-D Shape recovery from real images using a symmetry prior, Vijai Jayadevan, Aaron Michaux, Edward Delp, and Zygmunt Pizlo, Purdue University (United States) (COIMG-452)

> 12:30 - 2:00 pm Lunch Break

El 2017 Tuesday Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) 2:00 - 3:00 pm

Grand Peninsula Ballroom D

VR 2.0: Making virtual reality better than reality, Gordon Wetzstein, Stanford University (United States)

Gordon Wetzstein is an Assistant Professor of Electrical Engineering and, by courtesy, of Computer Science, at Stanford University, and leads the Stanford Computational Imaging Group. He received a PhD in computer science from the University of British Columbia (2011) where his doctoral dissertation focused on computational light modulation for image acquisition and display. In his talk, Wetzstein explores the frontiers of VR systems engineering. Eventually, VR/AR systems will redefine communication, entertainment, education, collaborative work, simulation, training, telesurgery, and basic vision research, as next-generation computational near-eye displays evolve to deliver visual experiences that are better than the real world.

> 3:00 - 3:30 pm Coffee Break

Image Analysis

Session Chair: Avideh Zakhor, University of California, Berkeley (United States)

3:30 - 5:10 pm

Cypress C

3:30

116 Augmenting salient foreground detection using Fiedler vector for multiobject segmentation, Michal Kucer¹, Nathan Cahill¹, Alexander Loui², and David Messinger¹; ¹Rochester Institute of Technology and ²Kodak Alaris Inc. (United States) (COIMG-433)

3:50 In situ height and width estimation of sorghum plants from 2.5d infrared images, Tavor Baharav, Mohini Bariya, and Avideh Zakhor, University of California, Berkeley (United States) (COIMG-435)

4.10

Non-parametric texture synthesis using texture classification, Kyle Ziga¹, Judy Bagchi², Jan Allebach¹, and Fengging Zhu¹; ¹Purdue University and ²DZine Steps (United States) (COIMG-436)

4:30

On-the-fly performance evaluation of large-scale fiber tracking, Hongkai Yu¹, Jeffrey Simmons², Craig Przybyla², and Song Wang¹; ¹University of South Carolina and ²Air Force Research Laboratory (United States) (COIMG-437)

4:50 148 Point cloud based approach to stem width extraction of sorghum, Jihui Jin and Avideh Zakhor, University of California, Berkeley (United States) (COIMG-438)

4

Symposium Demonstration Session 5:30 – 7:30 pm Grand Peninsula Ballroom F

Wednesday, February 1, 2017

El 2017 Wednesday Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) **2:00 – 3:00 pm** Grand Peninsula Ballroom D

Designing VR video camera systems, Brian Cabral, Facebook, Inc. (United States)

Brian Cabral is Director of Engineering at Facebook, leading the Surround 360 VR camera team, specializing in computational photography, computer vision, and computer graphics. He has published a number of papers in the area of computer graphics and imaging including the pioneering Line Integral Convolution algorithm. Cabral discusses developing Facebook Surround 360, an open, high-quality 3D-360 video capture system. VR video capture systems are composed of multiple optical and digital components - all of which must operate as if they are one seamless optical system. The design of VR video cameras, optical choices, SNR, etc., require a new set of technologies and engineering approaches, with tight coupling to the computational system components.

3:00 – 3:30 pm Coffee Break

Computational Imaging XV Interactive Papers Session

5:30 - 7:00 pm

Atrium

The following works will be presented at the El 2017 Symposium Interactive Papers Session.

156

Non-iterative joint demosaicing and super resolution framework, Xenya Petrova, Ivan Glazistov, Sergey Zavalishin, Vladimir Kurmanov, Kirill Lebedev, Alexander Molchanov, Andrey Shcherbinin, Gleb Milyukov, and Ilya Kurilin, Samsung R&D Institute Rus (Russian Federation) (COIMG-439)

163

Localized high dynamic range plenoptic image compression, Chuan-Chung Chang¹, Hsin-Hsiang Lo¹, Han-Hsuan Lin¹, Zhi-Rong Fan², Shao-Hsuan Cheng¹, Chih-Hung Lu¹, Fu-Ming Chuang¹, and Jiun-In Guo²; ¹Coretronic Corp. and ²National Chiao Tung University (Taiwan) (COIMG-440) COIMG

Compressive light field display using scattering polarizer, Dukho Lee, Seokil Moon, Seungjae Lee, Changwon Jang, Chang-Kun Lee, and Byoungho Lee; Seoul National University (Republic of Korea) (COIMG-442)

174

High-resolution image reconstruction for PET using local and non-local regularizations, Xue Ren and Soo-Jin Lee, Pai Chai University (Republic of Korea) (COIMG-443)

179 Multiple view depth generation based on 3D scene reconstruction using heterogeneous cameras, Dong-won Shin and Yo-Sung Ho, Gwangju Institute of Science and Technology (Republic of Korea) (COIMG-444)

185

Deep convolutional neural networks for the classification of snapshot mosaic hyperspectral imagery, Konstantina Fotiadou^{1,2}, Grigorios Tsagkatakis¹, and Panagiotis Tsakalides^{1,2}; ¹FORTH and ²University of Crete (Greece) (COIMG-445)

191

Space-variant smoothing in median-regularized reconstruction

for transmission tomography, Ji Eun Jung^{1,2} and Soo-Jin Lee¹, ¹Pai Chai University (Republic of Korea) and ²Kumamoto University (Japan) (COIMG-446)

196

A viewing direction control camera without mechanical motion based on computational imaging, Daiki Teraya and Tomohiro Yendo, Nagaoka University of Technology (Japan) (COIMG-447)

200

The human sclera and pupil as the calibration targets, Hayan Choi, Kyungah Choi, and Hyeon-Jeong Suk, Korea Advanced Institute of Science and Technology (Republic of Korea) (COIMG-448)