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Abstract

In the field of competitive swimming a quantitative evalua-
tion of kinematic parameters is a valuable tool for coaches but
also a labor intensive task. We present a system which is able
to automate the extraction of many kinematic parameters such
as stroke frequency, kick rates and stroke-specific intra-cyclic pa-
rameters from video footage of an athlete.

While this task can in principle be solved by human pose
estimation, the problem is exacerbated by permanently changing
self-occlusion and severe noise caused by air bubbles, splashes,
light reflection and light refraction. Current approaches for pose
estimation are unable to provide the necessary localization pre-
cision under these conditions in order to enable accurate esti-
mates of all desired kinematic parameters. In this paper we re-
duce the problem of kinematic parameter derivation to detecting
key frames with a deep neural network human pose estimator. We
show that we can correctly detect key frames with a precision
which is on par with the human annotation performance. From
the correctly located key frames, aforementioned parameters can
be successfully inferred.

Motivation

In this paper, we consider a real-world computer vision ap-
plication that assists a competitive athlete in assessing and im-
proving his or her performance by taking advantage of the pro-
posed pose estimation system. In the field of competitive swim-
ming a quantitative evaluation of kinematic parameters is both a
valuable tool for trainers as well as a labor intensive task.

The training scenario is limited to a competitive swimmer
swimming in a special pool: a swimming channel (see Figure 1).
The water in this pool can be artificially accelerated to constantly
flow from one end of the pool to the other. The swimmer per-
forms regular swimming motions while being filmed through a
glass wall by a single camera. After the training session, the video
footage is evaluated by trainers and athletes. A qualitative evalua-
tion is usually supplemented by a quantitative analysis, where the
video footage is assessed and annotated frame by frame to extract
points of interest like joint positions, body part angles relative to
the image plane, and other variables of interest. From theses an-
notations, kinematic parameters can easily be derived and used
for rating the efficiency of an athlete’s swimming style and giving
recommendations for pose adjustments, which finally can lead to
a significant performance improvement. The whole task of manu-
ally performing a quantitative analyses is extremely time consum-
ing and therefore performed only for very few athletes nowadays.

We present a system which is able to automate the extraction
of many kinematic parameters such as stroke frequency, kick rates
and stroke-specific intra-cyclic parameters from video footage of
an athlete. It reduces the problem of kinematic parameter deriva-
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Figure 1. A female swimmer in a swimming channel. The proposed system
continuously and reliably detects poses from which kinematic parameters are
extracted.

tion to detecting key frames. A key-frame depicts a key-pose,
which is a pose defined by a human expert based on arbitrary fea-
tures of the pose.

While this task can in principle be solved by human pose
estimation, the problem is exacerbated by permanently changing
self-occlusion and severe noise caused by air bubbles, splashes,
light reflection and light refraction. Current approaches for pose
estimation are unable to provide the necessary localization preci-
sion under these conditions in order to accurately estimate all de-
sired kinematic parameters. Our system is two-staged: Firstly, we
develop a deep convolutional neural network (DCNN) architec-
ture for efficiently computing pose configurations of swimmers
in a swimming channel. Secondly, we classify the output using
a neural network to distinguish between key-poses and all other
poses in a swimming cycle. We show that we can correctly de-
tect key frames with a precision which is on par with the human
annotation performance. From the correctly located key frames,
aforementioned parameters can be successfully inferred. Our con-
tributions are two-fold:

- We propose a novel representation of pictorial structure
models in terms of a deep neural network, taking advantage of
existing infrastructure.

- Our algorithm for deriving kinematic parameters performs
on par with a human annotator, allowing quantitative performance
assessments not only for top-level athletes, but also for a larger
spectrum of athletes.

Pictorial Structures for Human Pose Estimation. In the
last decade, pictorial structure models, commonly denoted de-
formable part models (DPMs), have played a central role in hu-
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man pose estimation and object detection in general. Some of
best performing and most influential systems ([4], [29], [11]) are
based on derivatives and modifications of pictorial structures.

The fundamental concept of DPMs is to represent an object,
in our case a person, by a collection of parts arranged in a de-
formable configuration. A part is usually defined as a local area
centered on the position of some joint of a human body, although
parts might be added that explicitly cover locations that lie be-
tween two adjacent joints. Extensions have been proposed for
mixtures of parts [29], where one part representation is split into
multiple part representations that depict the part in different artic-
ulations.

With the recent success of deep convolutional neural net-
works (DCNNs), hand-crafted features such as HOG [5] recently
have been replaced by features learned by a neural network. These
features have considerably improved the performance of DPMs in
the last years. Appearance features, hand-crafted or learned, are
used to assign a probability or score to every possible part posi-
tion in an image. A higher score usually indicates the presence
of a part. The matching procedure of DPMs involves optimiz-
ing some function that usually reasons over the appearance scores
of every part and a deformation term that assigns a deformation
score to relative positions of neighboring parts in the model. In
the context of pictorial structures, a deformation term describes
an allowed derivation of one part relative to its neighboring part.
If the derivation is too large, a penalty for a misplacement is in-
troduced to the optimization problem, lowering the overall score
of a part configuration.

While deformation terms have been modeled explicitly in the
past, they have recently been replaced by neural networks [27],
which - given a detected region of interest depicting a person -
densely apply a part detection network and then use a some ad-
ditional network structure to find the most probable configuration
of joints implicitly in the underlying ground truths. While these
networks tend to yield better scores on pose estimation bench-
marks, using DPMs can still be beneficial in some scenarios. For
example, DPMs make no prior assumption about the location of
a person in an image, meaning that they do not depend on an ini-
tial detection of the object in question. Thus it has no problems
detecting multiple instances with no prior information about their
location. By combining DPMs with learned appearance features
from a DCNN, we do not have to miss out on the superior appear-
ance detection performance of neural networks.

A second problem of modeling spatial deformability with
modern neural networks is that a model is usually trained for a
fixed number of joints. An inaccurate bounding box prior for the
initial position of a person usually confuses the detection system,
yielding a false positive estimate for the part locations of the per-
son. Additionally, pose estimation DCNNs are forced to detect
the number of joints they are initially conditioned to detect, while
one can simply extract a partial pose configuration from a DPM
detection by resetting the detection threshold. Furthermore, as
mentioned above, DPMs can be and have been extensively ex-
tended in the past with a wide variety of concepts, and are there-
fore frameworks which can easily be extended with application
specific optimizations.

Pictorial Structures as Neural Networks. In this paper,
we will focus on deriving a DCNN representation of DPMs. Ex-
pressing a pictorial structure as a neural network has has some
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advantages compared to classical DPM formulations.

Firstly, with recent advances in parallel computing technolo-
gies like GPU processing, DPMs can highly benefit from paral-
lelism, improving execution time for time critical applications.
With the emergence of field-programmable gate arrays (FPGAs)
in the machine learning community, the block-wise formulation
of DPMs as networks allows for transferring existing models
to specialized hardware, enabling a real-time execution even on
small devices.

Secondly, through the evolution of DPMs a lot of very well
performing detectors for specific applications have been build.
Our formulation allows for transferring well-tried models to new
hardware without having to train them explicitly on the new hard-
ware.

Thirdly, our formulation allows to eliminate one of the dis-
advantages of deformable parts, namely the restriction that classi-
cal DPMs can only learn deformation terms which approximate a
Gaussian with a diagonal covariance matrix. However, depending
on the application, it might be beneficial to learn arbitrary defor-
mation matrices.

Related Work

Within the last ten years of computer vision research, part
based models had a big impact in the fields of object detection
[11] and (human) pose estimation ([29],[17], [9]). Based on the
fundamental work Fischler and Elschlager [14], these models rep-
resent an object through multiple parts which are connected via
deformation terms, allowing for matching them in a flexible con-
figuration [13]. Different refinements have been proposed specif-
ically for human pose estimation, e.g. by enriching a model with
additional parts to compensate for the flexibility of the human
body [29] or by allowing rotation of parts [1].

Improving general part appearance features has been actively
researched in the context of DPMs in [20], [1] and [8]. With
the resounding success of deep convolutional neural networks
(DCNNSs), hand-crafted features have been replaced by features
learned by a neural network [26]. Chen and Yuille show in [4]
that local appearance of parts learned by a DCNN can also be
used to predict neighboring part locations and thereby improve
the prediction performance of the whole model.

A joint training for pictorial structures and DCNNSs has been
picked up by Tompson et al in [24] who combine a DCNN with a
Markov Random Field and successfully show that their model can
successfully exploit geometric relationships between body joint
locations. Yang et al [28] formulated DPMs in the context of a
DCNN by introducing a message passing layer which recurrently
performs inference on part detection maps. Compared to our sys-
tem, their formulation only covers a basic DPM formulation ex-
cluding image dependent pairwise relations.

Most work researching the tracking of people in aquatic en-
vironments has focused on drowning detection [10], localization
of athletes in swimming competitions [22], the automatic analysis
of large databases of swimming videos [23] and motion analysis
for video based swimming style recognition [25]. A Kalman filter
framework is presented in [16] to explicitly model the kinematics
of cyclic motions of humans in order to estimate the joint tra-
jectories of backstroke swimmers. Ries et al [21] use Gaussian
features for detecting a specific pose of a swimmer in a pool with
the intention of initializing his/her pose.
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The concept of key poses has been researched for differ-
ent sport applications. Given perfectly detected poses, Dios et
al [7] automatically determine key poses in cyclic human motion
by performing a principal component analysis on pose estimates,
followed by a supervised cluster analysis, which allows for clas-
sifying the quality of stretch motions with a high precision. Like-
wise, Vicente et al [6] automatically pick key poses from a query
video with pose annotations obtained through motion capture in
order to classify motion sequences for Tackwondo videos using
a latent-dynamic conditional random field. Both approaches pre-
sume an almost perfect annotation of the human pose. Carson
et al [3] includes a selection process for action specific postures
by matching shape information from individual frames in order to
recognize specific tennis strokes in game footage. In a previous
publication [31] which builds on the findings of [30], we detected
key frames in the same scenario as presented in this paper using
armlet and leglet [15] classifiers for predicting cyclic swimming
motion. Compared to [7] and [6], no external pose prior was used
for inferring key poses. Instead, we showed that key poses can be
detected from noisy and vague pose estimates.

Human Pose Model

We will introduce a deformable part model for human pose
estimation in the following. The specified description will serve
as the underlying model for our DCNN formulation in the next
Section. Compared to the standard formulation of a DPM which
usually only includes a term for part appearance and one for de-
formation scoring, we include two additional terms that model
image dependent pairwise relations (IDPR terms, [4]). These vi-
sual terms model the basic concept that the visual context of a
part can be used to make a prediction for the location of neigh-
boring parts and therefore improve part location estimates in the
framework. For example, if we look at a cropped part of a human
wrist, it is quite simple to roughly extrapolate the position of the
elbow and thereby restrict the search radius. We will show that an
extension like IDPR terms can also easily be expressed as a deep
convolutional network.

Model Description. We represent the human pose by means
of a tree graph G = (V,E), where vertices V specify the posi-
tions of body parts and edges E C V x V indicate which vertices
are spatially related. The pixel locations of the parts are denoted
1= {3 = {(oy) Y, where i = {1,...,[V|} is the i-th part.
We denote the part i = 1 the root part of G. Each vertex j relative
to the root has a depth d; which is the number of edges between
it and the root node. While the edges in our model are not di-
rected, we will say that 7 is a child of j and j is a parent of 7 iff
(i,j) € E and d; < d;. The children € (i) of vertex i are the ver-
tices connected to i with a depth of d; + 1. Every vertex i other
than the root has exactly one parent Z(i) with depth d; — 1. The
neighboring vertices of vertex i are denoted .4 (i) = 2 (i) UF (i).
Furthermore, a subtree .7; of G contains all vertices j that are di-
rectly or indirectly connected to a vertex i while d; > d; as well
as vertice i itself.

Part Appearance Detectors. Parts usually cover the region
around joints of the human body, although a model might explic-
itly include parts that lie between two joints. In the context of
human pose estimation, the term spatial relationship translates to
the offset vector between two neighboring parts.

As the depiction of the human pose in an image can be highly
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deformable, we allow for more than just one offset between two
parts and model a set of spatial relationships t; j = {k}k , and

rij= {r" }+, where the offsets between two neighboring parts i
and j are clustered into K clusters with identifiers t; ; and cluster

centers I; fi

leen a dataset of swimmer images with a ground truth joint
annotations l;, we extract image patches (l;) centered around
each joint i. A class label out of a set of labels . is assigned
to each patch I(l;), consisting of its joint class ¢ =i and identi-
fiers t; y(;) obtained from clustering each offset between a joint
i and its neighbor j € .4(i) in the training data. Intuitively, all
part patches sharing a part label depict the same joint while all the
neighboring joints have the same spatial configuration. We train
an AlexNet [18] with soft-max loss on all extracted patches and
their respective class labels.

This leads to a rather large set of | 2| =}y e v [t: ;| +
1 specialized classes for detecting very specific configurations of
joints and one class for background detection. After training, we
modify the last two fully connected layers to behave like convo-
lutional layers. This allows for feeding an image of arbitrary size
into the network instead of single image patches, while retrieving
a score map covering each patch sized input window in the orig-
inal image. From the rather specific output of our part detection
network, we retrieve general joint detectors for joint i by sum-
ming over all network outputs where the class label incorporated
the joint class ¢ = i. We denote the appearance detector for joint i
at location I; with ®(c = i,1;).

Image Dependent Pairwise Relation Terms. Our model
incorporates image dependent pairwise relations (IDPR) terms,
originally introduced in [4]. The key idea behind idpr-terms is
that an image region around a joint often gives strong evidence
of the positions of neighboring joints and can therefore be used
to improve said neighbor joint locations. We define an idpr-term
['(c =i,t; ; = k,1;) by summing over all class outputs for joint i
where the class label includes a specific cluster id t; j = k for the
edge (i, j) €E.

Deformation Terms. The model description is completed
by a second stage, connecting different visual estimates form the
detectors and providing a holistic pose estimate. The classical
deformation term assesses the fit of two detections for neighbor-
ing parts and allows for some flexibility in the relative position
between both. It is defined by

(b)) o
Jst

where S(Al = (Ax,Ay)) = [Ax,Ax?, Ay, Ay?]" is a deformation fea-
ture and w'”. are learned deformation weights penalizing larger
magnitudes of Al. The notion behind deformation terms is to al-
low for a part j to deviate slightly from its ideal placement r(k)
relative to part i. While small deviations from the ideal offset of
two parts lower the score only by a small margin a part that is
located further away from the ideal offset also leads to a larger
score decay. The steepness of this decay is defined by the defor-
mation weights w' i :, where smaller deformation weights allow for
a larger deviation from the optimal displacement.

Model Energy. The goal of articulated human pose estima-
tion is to find a placement for all joints so that the model energy
is maximized. The goodness of a placement 1 = {/1, ..., l\V\} of all

1ji Lji
‘P(livlj:tjﬁiij!_"i) = <W/,i78 (li _
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model parts ¢ for an image I can be evaluated by the following
energy function:

FLLLOw) =Y wid(c=il)+ Y ‘I’(liJij‘i,W;ff)

eV (i,j)€eE

+ Y wiT(c=in k) )
(i))eE

+ Y wiil(c=j.tji)
(i,j)€EE

where ® are the parameters of the DCNN and w are learned
weights. The energy function is composed of three semantically
distinguishable terms. The first sum in equation 2 evaluates the
appearance of a specific placement of the parts. The second sum
rates the goodness of placements of neighboring parts. Both terms
describe the traditional energy formulation for matching a tradi-
tional deformable part model. The last two sums assess the local
belief that a neighboring part is placed at a certain location based
on image evidence.

Weight Parameter Training. The energy formulation in
equation 2 includes weight terms for appearance and image de-
pendent pairwise relations as well as weights influencing the al-
lowed deformation between two neighboring parts. We learn all
weight parameters by defining ¢ (I",1",t") as sparse feature vec-
tors representing the concatenation of image dependent terms,
idpr terms, deformation features and a constant 1 representing
a bias term for a positive pose example in image I" with anno-
tated part locations 1™ and derived type labels t*. Note that all
dimension in this feature that do not correspond to type labels and
deformation terms included in t" are set to zero. Negative exam-
ples are obtained by hard-negative mining detections on images
depicting no athletes.

We learn all weights w by training a support vector classifier
by optimizing

o1 =
miny > (whw) + Ci; & 3)

subject to

yi(wT¢(Invlnvtn))Z 1751‘ (4)
E>0,i=1,..,n

Here, y; € {1,—1} denotes the label of example i, where y; = 1
for positive examples and y; = —1 for a negative feature. Note
that the bias term for this optimization problem is omitted as we
already included it in the feature vector.

Inference and Backtracking. Inference aims at maximizing
equation 2, i.e., we wish to find the best placements 1 of the parts
and their pairwise relations t , respectively:

I",t* = argmax, F (1,t,1;0,w) 5)

Optimizing this joint distribution function over a tree-shaped
graph is usually done by means of dynamic programming using
the max-sum algorithm, which allows for recursively splitting the
problem into subproblems. Let S;(1;) denote the score of a model
for a subtree .7; of G. We can recursively compute the score of
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each subtree of G by computing m; , for each child n of node i
through

tni .
m; = max(W(li,In, i, W3 ) +wi j0(c = i,ti 0, ]j)
Instn,i J ©)
+wjil(c=n,tyi,ln) + Sy (In)).

Note that the deformation term in 6 can be efficiently imple-
mented by means of a generalized distance transform [12]. All
partial subtree scores are summed up for the parent node by

Si) =wi@(c=ik)+ Y, min, (7
nec (i)

yielding a partial score for subtree .%;.

Given the set of all partial scores, we can infer the joints
locations of a high scoring detection through backtracking. In
order to perform backtracking efficiently, it is beneficial to trace
certain variables of the optimization procedure. For each location
I; of part i, the generalized distance transform gives us the location
of the highest score from nearby locations.

We save these locations in an array L; of the same size as S;.
If a score at a location I; was produced by a nearby high score, we
can look up the location of this high score through L;(};). Addi-
tionally, as we like to track more than one person in an image, we
also have different variables ¢#; ; for different locations. We save
these in an array 7; of the same size as S;. For a certain position l;
of a parent part i, the respective value for 7j(l;) = 1; ; tells us the

offset rif'"l of the child part j relative to i.

Once all part solutions S; are computed, we can find the op-
timal solution }; through backtracking. A global maximum of the
energy function is found by picking the root location Iy =15 =
argmax, (S;(I) > 7) given a detection threshold 7. The location
of all other parts are traced back in order of increasing depth in
our pose tree by a two step process. Firstly, starting from the po-
sition of the parent l;, we invert the translation performed during
inference by the deformation term equation 1 by computing

=1+ <7r§‘f§lj.i)) =} +l_iT’,'j(t,-./). (8)

Note that we perform a lookup of the child offset in 7;. This
allows for tracking multiple persons in one image for different
local root part maxims. Secondly, we need to invert the score
spreading performed by the generalized distance transform. This
is simply done by a lookup:

L =Li(I)) )

Note that our system has no prior information about the position
of a person, but instead is able to find all high scoring pose con-
figurations in one image. We perform non-maximum suppression
on bounding rectangles of part locations on order to filter multiple
detections of a pose configuration for one person.

Pictorial Structures as a Neural Network

In this section, we will show that the model described in the
previous can be expressed as a computational graph and therefore
implemented as a deep neural network. Firstly, we will focus on
a single pairwise optimization step of a subtree as described by
Equations 6 and 7 and explicitly characterize all used calculations.
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Figure 2. One step of the dynamic program. Partial solutions of all children in (a) are added to the weighted appearance of the current vertex in (b). The
sum is furthermore added to c) weighted image dependent pairwise relations for the child node in (c). Different distance transformations are performed in (d) for
different pairwise relations. In (e), the transformed results are added to parent idpr term maps. The final partial optimal solution for S; is obtained in (g) by taking
the element-wise maximum over all partial results in (f). A high scoring joint configuration can be obtained by backtracking the optimal path in this trellis.

Then, we will present a network structure for detecting an athlete
in an image.

Pairwise Optimization in a DCNN. We propose the com-
putational graph depicted in Figure 2 to solve Equations 6 and
7. In this figure, rectangles correspond to probability maps f
appearance and idpr terms, circles denote an operation on said
maps and arrows visualize the data flow of maps and scalars
through the optimization procedure. The whole problem can be
broken down into four basic operations: element-wise addition
between two maps, multiplication of a map with a scalar, a max-
convolution between a deformation kernel and a probability map
and an element-wise maximization for different probability maps
of the same size. All these operation can simply be expressed as a
DCNN. For clarity, we assume that the edge between a part i and
its parent j has been clustered K times. As a result, there are K
different idpr maps describing the belief for the position of parent
J seen from part i and another K idpr maps describing the belief
for the position of child i seen from parent part j. Also, K clus-
ters implicitly define K different deformation terms together with
their offsets r; ; between part j and i.

The computational graph depicted in Figure 2 performs pair-
wise optimization for a vertex i, yielding a solution for the subtree
.7 in G as follows. The appearance of part i is weighted with its
respective weight in (a) and added to all subtree scores obtained
from children of part i in (b). If i itself is a leaf vertex in G,
then this sum is omitted. The sum of appearance and partial so-
lutions is then added to the weighted image dependent terms (c)
of vertex i with respect to its parent node j. This step is executed
K times for all idpr maps. For each sum of appearance, partial
subtree solutions and idpr terms, a max-convolution is performed
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in (d). The number of max-convolutions to be computed corre-
sponds to K, yielding overall K? differently transformed terms in
stage (d). Each set of differently transformed probability maps
obtained from just one child-to-parent idpr map is now added to
all parent-to-child idpr terms in (e). Note that stages (c) to (e) sim-
ply compute the Cartesian combinations of all idpr terms between
two parts. Also, the last element-wise sum in step (e) does not
alter the number of K2 maps from stage (d) as every map in that
step get added to exactly one of the K idpr terms. In step (f), the
element wise maximum of all intermediate results are computed,
finally yielding the subtree-score .%;.

A DCNN Layer for Max-Convolutions. While the oper-
ations of addition, multiplication and element-wise maximiza-
tion are straight forward to implement, the formulation of a max-
convolution has to be defined more precisely. Felzenszwalb et al.
proposed in [12] a general distance transform algorithm for com-
puting the deformation cost efficiently on 2D grids. While their
algorithm in its proposed form is not suited for a direct implemen-
tation on a GPU, we can find an equivalent formulation that can
easily be implemented for parallelization on a GPU.

Let F be a regular grid and f : F — R be a function defined
on that grid. The generalized distance transform at a point p is
defined over neighboring points q given a convolution mask A(.)
as

Dy(p) = (f@h)(p) = max(f(q) —h(p—q)) (10)
Note that this formulation somewhat resembles a discrete con-
volution where the sum is replaced by the max operator and the
product is replaced by a summation. In contrast to the standard
convolution a max convolution is highly non-linear. Classical
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Figure 3. A DCNN structure for pose estimation. The output maps of the AlexNet are summed up to form a representation for appearance and image dependent
pairwise relation terms. After resizing all terms to the original image size, both are passed to a network (black and grey arrows) of part-to-part layers (circles,
see also Figure 2) representing the structure of the human pose graph G. The part to part layers compute partial solutions for each joint (<, green arrows).

graph-based pose estimation approaches often assume that the de-
formation costs are modeled by quadratic terms, i.e., A(p — q) =
(w,(p—q) ©(p—q)), where ® denotes the Hadamard product.
The parameter w controls the width of a 2D parabola centered at
p, penalizing scores f(q) while taking into account the distance
between p and q. The greater the distance between p and q, the
greater the penalty on f(q). We can interpret Equation 10 as a
filtering operation, where f(.) is a function defined on a 2D-grid
and h(p — q) is a max-convolution filter. The filter kernel has a
side length of 25 + 1 and is initialized to the function

h(x) = <w7 <xf (s,s)T> o (xf (s,s)T>>7 (11)

which is a weighted parabola rooted at the center of the kernel.
Note that the weights w are initialized with the weights learned
from our original SVM formulation. Using this kernel, the dis-
tance transform at any point p can then be obtained by placing the
filter at position p, performing an element-wise subtraction from
the function f(.) and maximizing over all resulting values.

DCNN inference. The network depicted in Figure 2 presents
only one element in the matching pipeline of a DPM, namely the
optimization step for finding the optimal placement of one part
relative to its parent part. For convenience, we will denote the
whole step a part-to-part-layer. This very high level of abstraction
allows for describing the pose estimation optimization procedure
as a neural network. This is depicted in Figure 3 discussed in the
following.

As described in the previous section, we train an AlexNet to
classify all parts in their different configurations to neighboring
parts. We then reconfigure the last two fully connected layers in
the detection network such that the connections are interpreted as
convolution kernels. This modification allows for inherently ef-
ficient processing of a complete image in one pass through the
network by sharing network weights for different input windows.
For each part, we obtain a set ob probability maps representing the
belief that the part is present in different configurations of neigh-
boring parts.

From this rather large collection of specific belief maps, we
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extract two stacks of probability maps, one for the appearance of
the parts and one for image dependent terms. Both collections
are obtained by summing over distinct sets of output maps which
we memorized during clustering. In the context of deep neural
networks, this element-wise sum can easily be expressed by a
1 x 1 convolution, one for each appearance/idpr map. We found
that reasoning over the network output, which is much smaller
than the input image due to the pooing operations in the AlexNet
is disadvantageous because we loose valuable spatial resolution.
Therefore, we resize all appearance and idpr maps to the size of
the original image using a deconvolution layer that implements a
bilinear deconvolution kernel.

Both resized stacks then are fed into a tree-shaped network of
part-to-part layers (black and grey arrows in Figure 3, each circle
corresponds to one part-to-part layer), which are connected in a
tree-shaped graph so that the partial solution .7,;;; serves as an
input for optimizing the next parent node (green arrows in Figure
3). Note that each of the part-to-part elements represents exactly
the tree graph G.

Training Pose Classifiers for Kinematic Pa-
rameter Extraction

Given the pose estimates of our DCNN, we finally aim at
predicting key-frames in the motion sequence of an athlete. We
implement the following training procedure. Given a database of
training videos of athletes swimming in a swimming channel with
additional expert annotations of key-frames, we use the DCNN
described in previous section and extract the top scoring pose es-
timate in each video frame.

We transform the absolute joint locations to relative coor-
dinates by passing all pose estimates through a centering layer,
which centers the joint locations around the x-coordinate of the
head and the y-coordinate of the water surface. For each key pose,
the centered pose configuration is passed into a small, pose spe-
cific fully connected neural network with one hidden layer of size
128 with rectified linear activations and one output neuron. While
keeping all parameters of the part detection and the DPM network
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keypose :han Ieaes water keypose 3: upper arm vertical above water keypose 4: hand touches water
Figure 4. Key poses for freestyle swimmers. Due to the anti-symmetric nature of freestyle swimmers, a key pose occurs two times within one cycle, once on
the right body side and once on the left. Note: The image for key pose 4 (left side) actually also depicts a key pose 1 for the right arm. In our system, this is not

a problem as we always detect a key pose independently from all all key poses.

fixed, we train these small networks using a cross-entropy loss.

Naturally, the number of occurrences of a key pose is limited
to one frame per complete swimming cycle, while all other frames
in the cycle do not depict a key-pose and are therefore considered
negative training examples. To counteract this rather imbalanced
set of positive versus negative training examples, we increase the
number of positive training examples by labeling the poses in the
adjacent frames of a key pose frame also as key poses. We de-
crease the number of negative non-key-poses by randomly sam-
pling from the set of all negatives so that we have approximately
5 times more negatives than positives.

Given a test video, we apply the whole pose detection
pipeline to each frame and build pose features for all frames. The
features are then fed into all key-pose networks, yielding one key
pose time series for each key pose. We aggregate all predictions
into a time-series, which is filtered with a low pass filter to account
for outliers. Finally, local peaks in the time series correspond to
key-frames in the video.

Experiments

We evaluate the performance of our system on a set of 30
swimmer videos depicting the athletes from a side view through
a glass wall. Each video frame is fed into the network at full res-
olution of 720 x 576 at 50 frames per second. The videos cover
different freestyle swimmers (ages 15-25, 8 female, 6 male, dif-
ferent body size and posture) swimming in a swimming channel at
different velocities between 1ms~! and 1.75ms~" with a maximal
increasing flow velocity of 0.3ms ™! in one video. A human ex-
pert annotated all frames that depict one of four key-poses which
are visualized in Figure 4.

We train the part detection network on a separate training
dataset of 1200 images. Each edge in the model is clustered with
k-means setting k=11. We crop patches from overall 13 joints
(head, shoulders, hips, knees, ankles, elbows, wrists) with a patch-
size of 100 x 100. The training set is extended by adding ran-
dom variations where we rescale images with a factor of [0.8, 1.2]
and random rotations within 4/ — 15 degrees. We add negative
patches from images showing empty swimming channels with
different water flow velocities to adapt to noise due to water bub-
bles. Overall, we collect 44.500 training patches, which are re-
sized to a net input size of 256 x 256. We train the network for
40.000 eiterations with an initial learning rate of 0.001, which is
reduced by a factor of 0.1 each 10.000 iterations. The weight pa-
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Keypose | no.1 no.2 no.3 no.4 mean
[31]@0.02 | 0.76 0.62 059 052 0.62
ours@0.02 | 0.81 0.81 0.79 0.62 0.75
[31]@0.03 | 0.89 0.71 0.72 066 0.75
ours@0.03 | 0.93 095 0.93 0.88 0.92

Table 1. Percentage of correct key-frames at deviation thresh-
olds 0.02 and 0.03 for all poses compared to the system pre-
sented in [31].

rameters of the deformable part model are optimized on the train-
ing images using three bootstrapping rounds, holding the weights
of the DCNN fixed. We hold all model parameters fixed and apply
it to all training videos in a 30-fold leave-one-out cross-validation,
where we train a neural network model on 29 videos and evaluate
the performance on the remaining video.

Key-Pose performance measures. As an error measure, we
use a percentage of correct key-frames (PCKF) measure, which
compares the stokelength-normalized deviation of a predicted
key-frame to its ground truth annotation on the x-axis versus the
percentage of correctly detected key-frames on the y-axis and
is conceptually similar to the percentage of correct joints (PCJ)
measure widely used in the field of human pose estimation. We
will evaluate the PCKF measure at a threshold deviation of 3%,
which we empirically found to be the error threshold at which
human experts usually operate. A deviation of 3% reflects a dis-
crepancy of 4/ — 2 frames.

Joint localization. To get a feeling for the performance of
the joint detection capabilities of the first part of our network, we
evaluate the joint localization performance of our part detection
network in Figure 6. The percentage of correct joints metric was
used, where the distance between a ground truth joint annotation
and a detected joint instance is normalized with the upper body
size, defined by the distance between left shoulder and right hip,
to take different body sizes into account.

Figure 6 (top right) shows that we achieve a pose estimation
performance mean of 93.3% at the common threshold of 0.2. For
the same threshold, Chen and Yuille [4] report a PDJ value for
elbows and wrists, which in their implementation equals 94.9%
and 92.0% respectively. Our implementation achieves scores of
0.943% and 0.911% respectively, which is slightly below their
best scoring system trained for poses in non-aquatic environ-
ments. We assume that the difference between detection scores
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Figure 5. Three different swimmer poses estimated by our system. The left and the right image are also classified as key poses 2 and 3, respectively.
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Figure 6. Top-left: Percentage of correct joints for our part detection network. Top-middle: Mean percentage of correct key-poses, for all four keyposes. Rest:

Percentage of correct key-poses for each keypose.

are causes by the large amount of self occlusion of a swimmer’s
extremities. Figure 5 depicts three swimmer poses estimated by
our system.

Key-Frame localization error. We evaluate the PCKF of
our system against the best performance reported in [31] in Figure
6 (middle and right) and summarize the results in Table 1. On
average, our system outperforms [31] by 17%. Note that [31]
uses two cameras to predict a key pose while our approach only
uses one camera perspective.

For a deviation threshold of 0.03 we can find 93% of all key-
frames correctly while our worst detection rate is only 88%. We
observe a significant key-frame identification improvement for all
single key poses over all thresholds, although we find that the
improvements for smaller thresholds are likewise smaller. If a
key pose was difficult to detect in [31], we also achieve smaller
score improvements.
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