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Abstract
Understanding complex events from unstructured video, like

scoring a goal in a football game, is an extremely challenging
task due to the dynamics, complexity and variation of video se-
quences. In this work, we attack this problem exploiting the ca-
pabilities of the recently developed framework of deep learning.
We consider independently encoding spatial and temporal infor-
mation via convolutional neural networks and fusion of features
via regularized Autoencoders. To demonstrate the capacities of
the proposed scheme, a new dataset is compiled, compose of goal
and no-goal sequences. Experimental results demonstrate that ex-
tremely high classification accuracy can be achieved, from a dra-
matically limited number of examples, by leveraging pre-trained
models with fine-tuned fusion of spatio-temporal features.

Introduction
Analyzing unstructured video streams is a challenging task

for multiple reasons [10]. A first challenge is associated with the
complexity of real world dynamics that are manifested in such
video streams, including changes in viewpoint, illumination and
quality. In addition, while annotated image dataset are prevalent, a
smaller number of labeled datasets are available for video analyt-
ics. Last, the analysis of massive, high dimensional video streams
is extremely demanding, requiring significantly higher computa-
tional resources compared to still imagery [11].

In this work, we focus on the analysis of a particular type
of videos showing multi-person sport actives and more specifi-
cally football (soccer) games. Sport videos in general are acquired
from different vantage points and the decision of selecting a single
stream for broadcasting is taken by the director. As a result, the
broadcasted video stream is characterized by varying acquisition
conditions like zooming-in near the goalpost during a goal and
zooming-out to cover the full field. In this complex situation, we
consider the high level objective of detecting specific and seman-
tically meaningful events like an opponent team scoring a goal.
Succeeding in this task will allow the automatic transcription of
games, video summarization and automatic statistical analysis.

Despite the many challenges associated with video analytics,
the human brain is able to extract meaning and provide contextual
information in a limited amount of time and from a limited set of
training examples. From a computational perspective, the process
of event detection in a video sequence amounts to two founda-
mental steps, (i) spatio-temporal feature extraction and (ii) exam-
ple classification. Typically, feature extraction approaches rely
on highly engineered handcrafted features like the SIFT, which
however are not able to generalize to more challenging cases. To
achieve this objective, we consider the state-of-the-art framework
of deep learning [18] and more speciically the case of Convolu-

tional Neural Networks (CNNs) [16], which has taken by storm
almost all problems related to computer vision, ranging from im-
age classification [15, 16], to object detection [17], and multi-
modal learning [6]. At the same time, the concept of Autoen-
coders, a type of neural network which tries to appropriate the
input at the output via regularization with various constrains, is
also attracting attention due to its learning capacity in cases of
unsupervised learning [21].

While significant effort has been applied in design and eval-
uating deep learning architectures for image analysis, leading to
highly optimized architectures, the problem of video analysis is
at the forefront of research, where multiple avenues are explored.
The urgent need for video analytics is driven by both the wealth of
unstructured videos available online, as well as the complexities
associated with adding the temporal dimension. In this work we
consider the problem of goal detection in broadcasted low quality
football videos. The problem is formulated as a binary classifica-
tion of short video sequences which are encoded though a spatio-
temporal deep feature learning network. The key novelties of this
work are:

• Develop a novel dataset for event detection in sports video
and more specifically, for goal detection is football games.

• Investigate deep learning architectures, such as CNN and
Autoencoders, for achieving efficient event detection.

• Demonstrate that learning, and thus accurate event detec-
tion can be achieved by leveraging information from a few
labeled examples, exploiting pre-trained models.

State-of-the-art
For video analytics, two major lines of research have been

proposed, namely frame-based and motion-based, where in the
former case, features are extracted from individual frames, while
in the latter case, additional information regarding the inter-frame
motion like optical flow [3] is also introduced.

In terms of single frame spatial feature extraction, CNNs
have had a profound impact in image recognition, scene classifi-
cation, and object detection among others [16]. To account to the
dynamic nature of video, a recently proposed concept involves
extenting the two-dimensional convolution to three dimensions,
leading to 3D CNNs, where temporal information is included
as a distinct input [12, 13]. An alternative approach for encod-
ing the temporal informarion is through the use of Long-Short
Term Memory (LSTM) networks [1, 13], while another concept
involves the generation of dynamic images through the collapse
of multiple video frame and the use of 2D deep feature exac-
tion on such representations [7]. In [2], temporal information is
encoded through average pooling of frame-based descriptors and
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Figure 1: Block diagram of the proposed Goal detection framework. A 20-frame moving window initially selects part of the sequence
of interest, and the selected frames undergo motion estimation. Raw pixel values and optical flows are first independently encoded using
the pre-trained deep CNN for extracting spatial and temporal features. The extracted features can either be introduced into a higher
level network for fusion which is fine-tuned for the classification problem, or concatenated and used as extended input features for the
classification.

the subsequent encoding in Fisher and VLAD vectors. In [4], the
authors investigated deep video representation for action recogni-
tion, where temporal information was introduced in the frame-diff
layer of the deep network architecture, through different temporal
pooling strategies applied in patch-level, frame-level and tempo-
ral window-level.

One of the most sucessfull framework for encoding both spa-
tial and temploral information is the two-stream CNN [8]. Two-
streams networks consider two source of information, raw frames
and optical flow, which are independently encoded by a CNN and
fused into an SVM classifier. Further studies on this framework
demonstrated that using pre-trained models can have a dramatic
impact on training time, for the spatial and temporal features [22],
while convolutional two-stream network fusion was recently ap-
plied in video action recognition [23]. The combination of 3D
convolutions and the two-stream approach was also recently re-
ported for video classification, achieving state-of-the-art perfor-
mance at significantly lower processing times [24]. The perfor-
mance demonstrated by the two-streams approach for video anal-
ysis led to the choice of this paradigm in this work.

Event Detection Network
The proposed temporal event detection network is modeled

as a two-stream deep network, coupled with a sparsity regularized
Autoencoder for fusion of spatial and temporal data. We inves-
tigate Convolutional and Autoencoder Neural Networks for the
extraction of spatial, temporal and fused spatio-temporal features
and the subsequent application of kernel based Support Vector
Machines for the binary detection of goal events. A high level
overview of the processing pipeline is shown in Figure 1.

While in fully-connected networks each hidden activation is
computed by multiplying the entire input by the corresponding
weights in that layer, in CNNs each hidden activation is computed
by multiplying a small local input against the weights. The typical

structure of a CNN consists of a number of convolution and pool-
ing/subsampling layers, optionally followed by fully connected
layers. At each convolution layer, the outputs of the previous
layer are convolved with learnable kernels and passed through the
activation function to form this layer’s output feature map.

Let n× n be a square region extracted from a training input
image X ∈ RN×M , and w be a filter of kernel size (m×m). The
output of the convolutional layer h ∈ R(n−m+1)×(n−m+1) is given
by:

h`
i j = σ

(m−1

∑
a=0

m−1

∑
b=0

wabx`−1
(i+a)( j+b)+b`

i j

)
, (1)

where b is the additive bias term, and σ(·) stands for the neu-
ron’s activation unit. Specifically, the activation function σ , is a
standard way to model a neurons output, as a function of its in-
put. Convenient choices for the activation function include the
logistic sigmoid, the hyperbolic tangent, and the Rectified Lin-
ear Unit. Taking into consideration the training time required for
the gradient descent process, the saturating (i.e tanh, and logistic
sigmoid) non-linearities are much slower than the non-saturating
ReLU function.

The output of the convolutional layer is directly utilized as
input to a sub-sampling layer that produces downsampled ver-
sions of the input maps. There are several types of pooling, two
common types of which are max-pooling and average-pooling
which partition the input image into a set of non-overlapping or
overlapping patches and output the maximum or average value for
each such sub-region. For the 2D feature extraction networks, we
consider the VGG-16 CNN architecture, which is composed of 13
convolutional layers, while five of them are followed by a max-
pooling layers, leading to the three fully connected layers [9].

Unlike image detection problems, feature extraction in video
must address the challenges associated with the variation of the
duration of events, in addition to the challenges related to illumi-
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nation and viewpoint variability. We fuse the two representations
using a sparsity regularized Autoencoder and more specifically,
we consider all available training data from all classes as input
to the unsupervised Autoencoder to extracting features encoding
both spatial and temporal information.

Formally, the Autoencoder is a deterministic feed-forward
artificial neural network comprised of an input and an output layer
of the same size with a hidden layer in between, which is trained
with backpropagation in a fully unsupervised manner, aiming to
learn an approximation ẑ of the input which would be ideally
more descriptive of the the raw input. The feature mapping that
transforms an input pattern z ∈ Rn into a hidden representation
h′ (called code) of k neurons (units), is defined by the encoder
function:

f (z) = h′ = α f (W1z+b1), (2)

where α f : R 7→ R is the activation function applied component-
wise to the input vector. The activation function is usually chosen
to be nonlinear; examples include the logistic sigmoid and the
hyperbolic tangent.

The activation function is parametrized by a weight matrix
W1 ∈ Rk×n with models the connections between the input and
the hidden layer and a bias vector b1 ∈Rk×1. The network output
is then computed by mapping the resulting hidden representation
h′ back into a reconstructed vector ẑ ∈ Rn×1 using a separate de-
coder function of the form:

g( f (z)) = ẑ = αg(W2h′+b2), (3)

where αg is the activation function, W2 ∈ Rn×k is the decoding
matrix and b2 ∈Rn a vector of bias parameters which are learned
from the hidden to the output layer.

The estimation of the parameters set θ = {W1,b1,W2,b2}
of an Autoencoder, is achieved through the minimization of the
reconstruction error between the input and the output according
to a specific loss function. Given the training set Z, a typical loss
function seeks to minimize the normalized sum of squares error,
defining the following optimization objective:

JAE(θ) =
1
m

m

∑
i=1
‖1

2
z(i)− ẑ(i)‖2 +R(z) (4)

where x̂ is implicitly dependent on the parameter set θ , ‖ · ‖ is
the Euclidean distance and R(z) is a regularization term. Sparse
Autoencoders are a special case of the traditional Autoencoders,
where the code is constrained to be sparse, i.e. only a small frac-
tion of hidden units are activated by the inputs. Signal and model
sparsity have had a profound impact on signal processing and ma-
chine learning due to their numerous advantages, such as robust-
ness, model complexity, generative and discriminative capabili-
ties among others, e.g., [20].

Dataset
To evaluate the performance of the proposed sports event

detection framework, a novel dataset was compiled using video
sequences downloaded from a public repository (YouTube.com).
For the ”Goal” class, 200 sequences of 2-3 seconds videos where
extracted, depicting the event of interest under a large number of

viewing conditions including camera location, ego-motion, dras-
tic illumination changes, low quality encoding, motion artifacts
and cluttering among others. Similarly, for the ”NoGoal” class,
200 sequences were also extracted from different games, showing
different examples of confusing activities like near-miss shots and
fouls. Representative examples of sequences from the dataset are
shown in Figure 2.

Figure 2: Example of frames extracted from the Goals (left col-
umn) and No Goals (right column) sequences. One can easily ob-
serve that typically, sequences where a goal is scored are captured
with a greater zoom factor compared to generic scenes, introduc-
ing artifacts like motion blurring.

Experimental Evaluation
For generating the reported experimental results, we con-

sider spatial and temporal features from 20 color frames per se-
quences, extracted using the VGG-16 network. To introduce the
temporal aspects, we employ the Lukas-Kanade optical flow esti-
mation with threshold for noise reduction set to 0.009. To make
the optical flow compatible with the pixel values, a linear nor-
malization to the [1,256] range is performed. In the last stage,
coupling of the spatial and the temporal sources of information
is achieved via a sparsity regularized Autoencoder, where the pa-
rameter for probability of neuron activation was set to 0.1, leading
to sparse activations.

The features extracted by the VGG-16 network were sub-
sequently introduced for training with three kernel-based SVM
classifiers, namely, linear, Gaussian (with σ = 1) and 2nd order
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polynomial kernel SVMs. To generate the experimental results in
the section subsection, we utilized the MatConvNet [25] platform
and the available pre-trained models including the VGG-16, while
for the fusion we employed the Matlab Neural Network toolbox
which allowed the execution of the training process on an NVidia
K2200 GPU. Performance is reported in term of classification er-
ror, i.e., percentage of mis-classified sequences.

Detection using spatial features

In the first section of the experimental results, we investigate
the case where 1000-dimensional spatial feature vectors are ex-
tracted for each frame. For each sequence, we perform temporal
subsampling to 10 and 20 frames and as a result, each sequence is
represented using either a 10000 or a 20000 dimensional feature
vector. These spatial feature vectors are subsequently introduced
to the SVM classifier for training or testing. The key drive for the
experiment is to evaluate the impact of number of frames on the
classification accuracy and we report the average of 10 realiza-
tions.

Figure 3 presents the classification error as a function of
training examples using features extracted from 10 frames per se-
quence, while Figure 4 considers 20 frames per sequence. Re-
garding the impact of the number of frames, the results clearly
indicate that using larger number of frames leads to significantly
better and more stable performance. For the linear kernel SVM,
we observe that using all the available training examples results
in 22% error using 10 frames, as opposed to 16% when using
20 frames. As a far as the performance of each classifier is con-
cerned, results also indicate that the Gaussian and the Polynomial
kernel SVMs achieve the best performance, significantly better
compared to the linear kernel case. Based on these finding, we fix
the number of frames that are used for feature extraction to 20 in
the rest of the reported experiments.
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Figure 3: Classification error as a function of training examples
using 10 frames per sequence, where only spatial features ex-
tracted by the VGG-16 network for three types of SVM kernels.
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Figure 4: Classification error as a function of training examples
using 20 frames per sequence and spatial features extracted by
the VGG-16 network for three SVM kernels.

Detection using spatial and temporal features
We examine next the impact of temporal information when it

is encoded through optical flow. Results are shown in Figure 5 for
the case of independently introducing spatial and temporal fea-
tures in the SVM classifier. Comparing the performance between
the two case of inputs, spatial and spatio-temporal, experimen-
tal results suggest that temporal information can have a positive
impact on detection accuracy. In terms of classifiers, we observe
that non-linear kernels like the Gaussian and the Polynomial at-
tain significantly lower classification error, albeit at the cost of
extract computational requirements.
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Figure 5: Classification error as a function of training examples,
using spatial and temporal features extracted by the VGG-16
network for three types of SVM kernels.

Detection using spatio-temporal features
In the last section of the experimental validation we present

the performance of event detection using fused spatio-temporal
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features. Specifically, the outputs of the independently applied
CNNs are concatenated and introduced to a regularized Autoen-
coder for feature fusion. The Autoencoder is tasked with gener-
ating compact representations, encoding both sources of informa-
tion, and specifically, reducing the 40000-dimensional input vec-
tors to 400-dimensional ones, two orders of magnitude smaller
compared to the ambient dimensionality of the spatial and tempo-
ral feature.

Table 1: Classification error for different combination of classifi-
cation kernel and features.

Method Linear Gaussian Polynomial
Spatial 0.16 0.12 0.11
Spat. & Temp. 0.14 0.10 0.09
Fused 0.45 0.02 0.03

The results shown in Table 1 report the classification error
achieved by all methods, including the case of spatio-temporal
features, using all available (100) training examples per class.
These results clearly demonstrate the huge potential which can
be capitalized by fusion of different sources of information. Par-
ticularly, the two most powerful classifiers, the Gaussian and the
Polynomial kernel SVM, are able to reduce their classification
error almost an order to magnitude, even though the same infor-
mation is used as input. The Gaussian Kernel especially is able to
achieve an impressive 98% classification accuracy using only 100
training examples per class. An additional benefit of the fusion
process is the dramatically smaller dimensionality of features ex-
tracted per sequences, reducing the requirements and facilitating
subsequent analysis like classification.

To illustrate the potential of feature fusion for video analyt-
ics, Figure 6 presents the evolution of the value of the Autoen-
coder cost function during the iterative training process. We ob-
serve that that value is monotonically decreasing suggesting that
better modeling of the data is achieved with more epochs. In this
paper, we limited the maximum number of epochs to 1000 for
reason of computational complexity, although better performance
could potential be achieved with larger number of epochs.
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Figure 6: Evolution of the value of the cost function as a function
of epoch number.

Conclusions
In this work, we focused our efforts in the design of a learn-

ing based architecture for the detection of events (goals) in sports
(football) videos. We employ pre-trained convolutional neural
networks for extracting both spatial and temporal features and we
investigate Autoencoders for fusion of the different information
sources. To validate the capabilities of the proposed architectures,
a new dataset is compiled while experimental results suggest that
very low classification error can be achieved, even from a limited
number of training examples. In terms of computational com-
plexity, when pre-trained CNN are utilized, the most demanding
operation is the extraction of the optical flow information. Future
work will examine the impact of deep stacked Autoencoders for
achieving even higher classification performance.
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