
A Canon Hack Development Kit implementation of
Time Domain Continuous Imaging
Katie Long, Henry Dietz, and Clark Demaree;
Department of Electrical and Computer Engineering, University of Kentucky; Lexington, KY

Abstract
Time Domain Continuous Imaging (TDCI) is a new model

for photography that allows exposure timing to be freely manip-
ulated after capture. This is done by creating, and operating
on, a continuous waveform representation of how the value of
each pixel changes over time. However, at this writing, there are
no sensors that directly implement TDCI capture. The FourSee
multi-camera prototype enables temporally-skewed exposures to
be captured using the four component cameras and then later
post-processed to create a TDCI representation, but the post-
processing is awkward and requires upload of image data to a
separate computer. In contrast, this paper reports on a method
whereby a single, conventional, Canon PowerShot camera can
be used as a stand-alone TDCI platform. The camera program-
ming is enhanced by custom code which is loaded into the cam-
era using the Canon Hack Development Kit (CHDK). Thus, using
code that should be portable to most camera models supported
by CHDK, an inexpensive Canon PowerShot camera is able to in-
ternally capture and manipulate TDCI streams in the new .tik

(Temporal Image Kontainer) file format.

Introduction
In the Time Domain Continuous Imaging (TDCI) model[1],

one might still press the shutter button to take a photo, but the
camera does a lot more than capture of a single image in re-
sponse to that button press. Ideally, the camera records a con-
tinuous waveform for how the value of each pixel varies over a
much longer period of time than the originally indicated shutter
speed. For example, requesting a 1/30s exposure might record
waveforms for a period of 1-2s. Using a conventional image sen-
sor, these per-pixel waveforms must be synthesized from what is
essentially a high-framerate video sequence. The TDCI wave-
forms are then saved as a .tik file[2].

From a .tik file, it is conceptually simple to extract the
originally-intended exposure as a still image. However, it is just
as easy to extract an exposure representing any interval one might
select after capture. The value of a pixel is simply the estimated
average value of that pixel’s waveform during the selected in-
terval. This allows freely changing the virtual exposure interval,
or even production of a video sequence at any desired framerate.
As the virtual exposure interval is changed, images do not get
darker or brighter, they report the average value for the pixel over
that time interval... and the more samples are averaged, the closer
to the pixel’s ”ideal” value the estimate will be. In fact, even if
the pixel was not sampled at all in the virtual exposure interval
selected, an average can still be computed by interpolating from
temporally neighboring samples (recall that the waveforms are
continuous functions). By further incorporating a noise model,

Figure 1. Canon PowerShot Elph 115 IS – a CHDK TDCI platform

it is even possible to obtain better pixel value estimates by aver-
aging over longer temporal intervals during which the value was
constant within the noise model – basically decreasing noise by
intelligently ”stacking”[3] over intervals where individual pixels
were apparently changing only due to noise.

The current work describes how both the TDCI capture and
computational extraction of virtual exposures can be implemented
entirely stand-alone inside a conventional Canon PowerShot cam-
era, such as that shown in Figure 1, using the Canon Hack Devel-
opment Kit (CHDK)[4].

CHDK and the TDCI camera platform
The Canon Hack Development Kit (CHDK) is a comprehen-

sive software package that allows users to modify the behavior
of their supported Canon camera in ways that would normally
be impossible using the standard camera hardware and software.
CHDK does not replace the Canon firmware, rather, it temporar-
ily extends it by loading alongside the original firmware, where
it intercepts various functions and can call firmware routines to
implement any desired camera operations. For example, cameras
previously incapable of behaving as an intervalometer need only
have CHDK installed, as it includes a script that can cause cap-
ture of images at regular intervals by using the camera’s internal
clock to determine when to fire the shutter and then invoking the
firmware routines to focus and fire the shutter.

Most of the CHDK software is written the C programming
language and compiled using a GCC cross-compiler to target the
ARM cores. This gives two benefits. First, modification of any
of the CHDK-internal modules and functions is within grasp of a
large number of developers and enthusiasts. Even basic low-level
properties of the camera control, user interface, etc., can be al-

66
IS&T International Symposium on Electronic Imaging 2017

Digital Photography and Mobile Imaging XIII

https://doi.org/10.2352/ISSN.2470-1173.2017.15.DPMI-075
This work is licensed under the Creative Commons Attribution 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Figure 2. Sample images captured using live-view-based CHDK TDCI as 720x240 UYVYYY, converted to 720x480 RGB

tered. Second, although the ARM processors in most PowerShots
are not particularly fast, carefully-written compiled C code can be
efficient enough to perform non-trivial processing in the camera.

CHDK also provides two interpreted scripting languages:
BASIC and Lua[5]. These easy to use languages provide a rich
interface for writing simple scripts – such as the intervalometer
mentioned above – and do not need to be compiled-into CHDK.
A BASIC or Lua script can be changed and run immediately;
there is even provision for editing scripts inside a camera run-
ning CHDK. These scripting languages also provide an easy way
to pass parameters into the C code inside CHDK itself. Thus,
they provide easily user-customizable interfaces to any functions
compiled-into CHDK.

Perhaps most importantly, CHDK is maintained by an ac-
tive community that continues to improve and support CHDK on
every camera that ever has been supported. Currently, over 130
camera models and firmware versions can run the latest CHDK
build. This means that CHDK provides an unusually stable and
portable environment. Well-written CHDK C code, as well as Lua
or BASIC scripts, can be executed on most of those 130 camera
models without any changes.

Although any of those many supported models could be
an excellent candidate for TDCI capture, the work reported in
this paper originally centered on using the very modestly priced
Canon PowerShot Elph 115 IS and currently is using the Canon
PowerShot Elph 160. In fact, our Elph 115 cameras cost just $80
each new from a respectable vendor. The Elph 160 costs about
$100 directly from Canon as a factory refurb.

Sensor
Although there are many PowerShot models, most models

available new at any given time use the same sensor. The Elph
160 is typical of the current generation, using a 20MP CCD sen-
sor. The Elph 115 is typical of the previous generation, using a
16MP CCD sensor. It is somewhat surprising to find a CCD rather
than CMOS sensor in a modern camera, especially one support-
ing live view. Canon actually does use CMOS sensors in their
”HS” (high speed) PowerShot models, but the ones using CCD
sensors have higher resolution and arguably produce better image
quality. In earlier work[6], it was found that these CCD sensors
are also remarkably ”ISO-less” – delivering about the same image
quality digitally boosting an underexposed base-ISO exposure as
using analog gain to implement a higher ISO capture. This is also
a highly desirable trait for implementing TDCI because it means
that there is no disadvantage to using low-ISO exposures that can
record a larger dynamic range without reaching saturation and los-
ing image data.

Of course, the catch with using CCD sensors is that they are
not capable of as fast readout as the ”HS” CMOS sensors can de-
liver. These CCDs are not intended to handle high speed capture,
and in video modes, they are not capable of more than 30 FPS
(frames per second) at a modest resolution. However, using the
live-view feed produces acceptable image quality (as shown in
Figure 2) while providing three key benefits:

• Intercepting the live-view feed allows the code to be easily
portable between different PowerShot models

• Under the right conditions, the live-view feed can sustain a
fairly high framerate – with disturbingly large jitter. Fortu-

IS&T International Symposium on Electronic Imaging 2017
Digital Photography and Mobile Imaging XIII 67

nately, it can be fairly precisely known when acquisition of
each sample completed.

• The live-view data bypasses the still-capture frame buffer, so
that raw image buffer becomes available as working space
for buffering TDCI data. The frame buffer is actually most
of the main memory of the camera; the Elph 115 and Elph
160 both use 12 bits per pixel in their raw image buffer – so
their raw buffers respectively provide 24MB and 30MB of
working space.

The primary disadvantage in using the live-view frames is
that they do not encode the full raw data. Each group of four
pixels is represented by six bytes, which still averages-out to 12
bits/pixel, but the live-view image encodes color in the YUV
space that JPEGs use rather than as linear gamma samples with
color determined by position within the RGB Bayer color filter
array. The Y channel values are 8-bit unsigned values, one per
pixel. However, there are single 8-bit signed values for the U and
V channels; thus, a block of four pixels can have a different lu-
minance for each pixel, but all four pixels share the same color.
To recover the RGB (Red, Green, and Blue) color channel values,
CHDK uses the following formulas:

clip(n) = ((n<0)?0:((n>255)?255:n))

R = clip(((Y<<12)+(V*5743)+2048)>>12)

G = clip(((Y<<12)+(U*1411)+(V*2925)+2048)>>12)

B = clip(((Y<<12)+(U*7258)+2048)>>12)

Decoding is further complicated by the fact that the bytes
for each six-pixel block are in the sequence UYVYYY. It would
have been preferable to intercept the live-view feed before it was
converted from its raw 12-bit form, but that is not an interface that
CHDK currently exposes. Even if that interface was exposed,
extracting pixel values to operate upon would require awkward
shifting and masking to assemble pixel values – the 12-bit raw
format packs data into bytes using a different endian than the main
processor, presumably because the JPEG compression hardware
hardware prefers that byte order.

Processor and memory
Like most recent Canon cameras, both the Elph 115 and Elph

160 use ARM946 main processors. The ARMv5TE architecture
supports the basic ARM instruction set and both Thumb and DSP
extensions. According to CHDK’s built-in benchmarks, the CPU
executes about 83 MIPS (million instructions per second), which
is a sufficiently low number to make code efficiency a major issue.

The memory system bandwidth is about 59 Mb/s for writes
and 21 Mb/s for reads. Those somewhat disappointing numbers
can be roughly doubled by using the small cache that the sys-
tem provides. Using cache, the bandwidth improves to about 109
Mb/s for writes and 59 Mb/s for reads, but with only 8 KB of data
cache, cache pollution is a potentially serious problem. The way
around this is that caching can be explicitly controlled at the level
of individual references: each memory address is double-mapped
so that the function ADR TO UNCACHED() converts a cacheable ad-
dress into one that will bypass the cache. Bypass is typically used
to keep block I/O operations from polluting the cache, but can be
more generally used to avoid any type of single-access address
reference from accidentally bumping more useful items from the
cache.

Unfortunately, aside from the raw still frame buffer, there
isn’t much main memory available to hold data. On the Elph 160
it’s only about 3 MB. With just a small amount of main mem-
ory available, it is significant that the Flash memory card can be
used as both file storage space and a scratch space. Bandwidth of
Flash memories is highly dependent on the particular card being
used. For this work, we have been using Toshiba FlashAir cards,
which provide bidirectional 802.11 wireless file transfer as well
as 16 GB of Class 10 SDHC storage. Measured read and write
bandwidth varies between about 6 and 9 Mb/s – slow, but not re-
ally as slow compared to main memory speeds as one might have
expected. Of course, Flash memory wears out quickly with many
writes (around 10K writes/cell), but we have not yet encountered
wear errors on any of our FlashAir cards.

Overall, using these PowerShots with CHDK provides a very
flexible programmable camera platform, but obtaining good per-
formance for TDCI capture and rendering requires careful perfor-
mance tuning.

Considerations and limitations
A fundamental problem in TDCI capture is the potentially

huge size of the streams produced. A TDCI stream is constructed
from the pixel data extracted from a long sequence of frames.
The obvious approach would involve buffering the sequence in
memory – but there is barely enough memory to buffer a single
frame at full resolution! Writing full-resolution images to the SD
card as fast as possible yields a framerate of about 1 FPS. In fact,
the simple act of filling the still raw frame buffer with the digitized
sensor data takes about 1 second – it isn’t just one aspect, but
many, that limit the framerate. Fortunately, using the live-view
frame stream can work much faster, but there is still the issue of
where to put all that data in real time.

In a 2016 Electronic Imaging paper[7], we showed that it is
possible to compress a TDCI stream very effectively in the tem-
poral dimension – if you can do so guided by an accurate model
of the noise in the images. However, the 83 MIPS processor limits
how sophisticated compression can be.

Thus, the primary technical issue is how to balance resolu-
tion, capture framerate, storage use, and processing overhead to
achieve the maximum possible TDCI quality. There is also the
more philosophical question of how to best control the process –
what should the user interface be and which CHDK mechanisms
should be used to implement the control?

CHDK has a C-coded module that detects movement or other
changes in the scene by measuring how the values of blocks of
pixels change over time. Although it works at a greatly reduced
resolution sampling the live-view feed, it is famously fast enough
to trigger to catch lightning strikes. It does that by directly using
the live-view feed. By modifying the motion detector module,
motion detector.c, to perform conversion to a TDCI repre-
sentation of the frames over a time interval instead of triggering
the shutter and shooting an image, a stream of TDCI data can be
captured and processed at potentially faster than video rates.

How is this motion detection routine accessed? The mod-
ule is invoked by a Lua script calling the built-in function
md detect motion(). With such a script loaded and en-
abled (see Figure 3), simply pressing the shutter button initi-
ates the script and hence causes TDCI capture. Of course, the
bulk of the TDCI capture operation occurs inside the compiled

68
IS&T International Symposium on Electronic Imaging 2017

Digital Photography and Mobile Imaging XIII

Figure 3. CHDK display with Lua script for TIK Capture loaded

motion detector.c module; the Lua interpreter is far too slow
to directly process the pixel data in real time.

Some arguments can be made for using the video function-
ality on the camera and just averaging the values over several
frames. Certainly, this would be much easier to implement as
it is after capture and would involve little to no modification of
the camera software itself. However, the motion detection mod-
ule is, as mentioned earlier, capable of providing reasonably high
frame rates in a form that is much more amenable to customized
in-camera processing than the standard video encoding. Perhaps
the biggest disadvantage to using a video mode for TDCI capture
is that it does not seem to be feasible to implement the computa-
tional extraction of virtual exposures from a video using the cam-
era’s ARM processor – and CHDK has not yet provided a way to
use Canon’s built-in video decoding logic.

Data compression
By directly processing the image data as it is captured, the

size of the frames can be dramatically reduced, thus lowering the
resource requirements in both writing delay and storage capac-
ity. As suggested in the 2016 paper[7], this can be achieved en-
tirely by compressing in the time domain – using a single ”pixel
value change record” to represent that pixel value over a period
of potentially many frames. If the value at a particular location
changes, it’s recorded. If it remains the same, then there is no
need to record anything.

Of course, that begs the question: how do we know the value
has changed? The answer is that we will use a precomputed noise
model to determine if two temporally-consecutive values for that
pixel are the same. They might not be identical, yet still be the
same within noise, in which case the compression can still com-
bine their values. For example, a pixel with value 6 and then
8, where both 6 and 8 are judged to differ only by noise, could
be recorded without emitting a new value-change record (perhaps
updating the 6 value to 7 to reduce noise).

Thus, for example, one might take a several second capture
of a scene where only a few items change (e.g., leaves on a tree
moving in the wind). With the data compression, instead of sev-
eral seconds of frames at the full 720x240 resolution of the Pow-
erShot Elph 115 or Elph 160 live-view feed, one full resolution
initial frame is captured and new value-change records are cre-
ated only for the pixels changing value more than the noise model
predicts. A value-change record is actually very simple: it records

the spatio-temporal distance from the previous change record and
the new value. In other words, these .tik change records use a
variation on run-length encoding.

The CHDK TIK implementation
The motion detector.c module is an excellent starting

point for extending CHDK to record TDCI streams. It works on
the 720x240 live-view frame sequence to detect when pixel val-
ues have changed, and is able to return a Lua array of the relevant
pixel values. Initially, we tried implementing TDCI capture using
a Lua script to process pixel data provided by the motion detect
function – but this proved impractical for many reasons. Most
significantly, the motion detection module limits the number of
cells that the user can choose. A typical resolution might be just
12 by 12 cells, and the absolute maximum allowed is just 1024
cells. However, it was too slow to be useful for TDCI even at
such low resolutions. Examining the C code for the motion detec-
tor, it quickly becomes apparent that there are a variety of speed
issues, and the resolution limit was set to ensure reasonably fast
operation. However, much of the speed problem is not from the
resolution, but from inefficiencies involving handling of the many
options provided by the motion detector interface. For example,
one can select to detect motion based on various colors: not only
the Y, U, and V directly provided in the live-view frames, but also
R, G, or B computed using the (relatively expensive) formulas
given earlier in this article.

Given these issues, it was clearly necessary to write custom
C code for TDCI capture. However, because motion detection
is conceptually so similar to TDCI, we found that it was appro-
priate to implement TDCI as an extension of the motion detect
module – which already had interfaces to the appropriate inter-
nal functions and data structures. In particular, the motion detec-
tor module already included a scheduling mechanism that handles
repeatedly invoking the motion detection logic (e.g., when a new
live-view frame becomes available). Thus, our TDCI capture is
implemented inside the motion detector logic, but essentially dis-
ables the other logic when TDCI capture is enabled.

The live-view data feed appears to provide new frame data
at a rate that varies significantly, causing some jitter. Perhaps the
variation is due to lighting conditions, but it also could be due
to real-time scheduling constraints being processed by the op-
erating system inside these Canon PowerShots. The unit time
for scheduling is 1/1000s, so finer time measurements are un-
reliable. However, the time since power up, in 1/1000s units,
can be read by calling get tick count(). Thus, it is possible
to track when events happened to nearly 1/1000s intervals – the
sampling of frames may jitter, but at least the time at which a sam-
ple is processed can be known with good accuracy and precision.
Normally, TIK accounts for time in nanoseconds, so CHDK TIK
times in 1/1000s units are generally output with six additional ze-
ros in .tik files.

TDCI stream capture
Despite the complexity of the concept and the process of

converting the stream to TIK images, the camera implementation
is relatively concise. It must be in order to maximize real-time
performance. In essence, the process of creating a file represent-
ing a TDCI stream can be expressed in three phases: initial frame
capture, pixel updates, and a stream write-out.

IS&T International Symposium on Electronic Imaging 2017
Digital Photography and Mobile Imaging XIII 69

Figure 4. Rendering of CHDK TDCI TIK file using 720x240 UYVYYY encoding as a 1080x240 monochrome P5 PGM

Figure 5. Sample single frame captured using live-view-based CHDK TDCI and virtual exposure combining approx. 62 frames

Initial frame capture
The first frame’s uncompressed UYVYYY data is written

immediately after the following TIK header in the buffer:

P5

TIK V 20161130 UYVYYY

TIK X 180

TIK Y 240

TIK F 1000000

TIK G 2200000

1080 240

255

Although the TDCI data in the file is not, this header is fully
compatible with the NETPBM[8] PGM (Portable Gray Map) file
format and so is the initial frame content. This allows a graphics
display or editing program that does not understand TDCI files
to still show some representation of the image data contained.
The 1080x240 resolution is really describing a 180x240 array of
six-byte UYVYYY pixel data, but allows a sensible monochrome
rendering. As seen in Figure 4 (which is the P5 rendering of the
same TIK TDCI file used to generate the images in Figure 5), the
Y channels are essentially a monochrome image, so it is only the
vertical lines from the U and V fields that disrupt the image dis-
play with a vertical bar pattern. We find these crude monochrome
”preview” images most useful for file managers, which otherwise
could not render any representation of the TIK file contents.

The TIK structured comments describe the TDCI contents of
the file. Most importantly, the first structured comment identi-
fies which file format this uses. F specifies the default framerate,
which is really the change timestamp increment, as being 1/1000s
(i.e., 1000000ns). G specifies that the file data is encoded with

an approximate gamma of 2.2, although how, or even if, gamma
correction is performed is unspecified. In-camera, our software
currently does not correct the gamma, nor do the CHDK formulas
for conversion to RGB.

Pixel change records
Once the initial image is stored in the raw buffer, the whole

point of TDCI is to only record pixel value changes that exceed
the predicted noise level – thus obtaining significant compres-
sion in the time domain. This compression has the happy side-
effects of increasing framerate by reducing the delay in writing to
memory and increasing the length of the TDCI stream that can be
buffered in the raw buffer memory space.

Unfortunately, the live-view frame data’s UYVYYY encod-
ing convolves samples for four pixels and is quite awkward to
process with a noise model. Although each pixel has its own Y
value, the U and V values are shared by each group of four pix-
els – so changes tend to be highly correlated within a four-pixel
block. Processing an error model seems simple enough; just com-
pute the absolute value of the difference between old and new byte
values and compare that to an allowable error threshold. Treating
the data one byte at a time is slow, but treating the bytes four-at-
a-time (in 32-bit words) is complicated by the fact that the U and
V fields are signed while Y values are unsigned.

Our initial CHDK TDCI TIK implementation was version
20160629 UYVYYY. After a single 0 byte, it used an variable
number of bytes to specify a spatio-temporal ”run length” be-
tween six-byte UYVYYY tuples in the same X,Y position that
had significant value changes. A run could span multiple com-
plete frames, adding 64800 per frame skipped. However, all the
byte-level processing made this approach too slow.

70
IS&T International Symposium on Electronic Imaging 2017

Digital Photography and Mobile Imaging XIII

Thinking in terms of the ”KISS” principle, our second ver-
sion, 20160712 UYVYYY, made no attempt to compress. In fact,
it even included a P5 header (including a timestamp) for each
frame copied into the buffer. This required copying more data,
but avoided the slow and awkward byte-level operations – both
for encoding data and for comparisons against the noise model.
It obtained notably higher framerates than the first version, some-
times apparently exceeding 50 FPS.

Our current version is 20161130 UYVYYY. It uses very
heavily optimized C code to process a 32-bit word at a time under
all circumstances – in fact, the textual header is even optimized to
be a multiple of four bytes long so that all 32-bit word accesses
are aligned. The compression is still based on spatio-temporal
run length encoding, but a run is encoded by a single 32-bit word
with 1 in the least-significant bit position and a 31-bit run length
in the higher bits. A block of four bytes containing at least some
changed pixel data is copied intact except that the least-significant
bit is cleared to 0. The loss of one bit of precision for a Y chan-
nel value is generally not significant (noise is far more), but this
marking means the data size per frame cannot be increased by the
compression algorithm. The comparison logic for the noise model
is a branchless SWAR (SIMD Within A Register) algorithm that
tests all four fields in a 32-bit word at once; the algorithm works
for both signed and unsigned fields without needing to distinguish
them. Typical compression within a frame reduces the pixel data
to between 20% and 30% of its original size; any size gap between
frames encodes as a single word.

File saving
Once the specified capture interval has ended, or the raw

buffer has been detected as filled, the raw buffer contents are writ-
ten to a file on the SD card in the camera. The file name is remem-
bered so that it can be reloaded to extract virtual exposures as P6
PPM files – with all processing done in camera.

Extraction of virtual exposures
Before version 20161130 UYVYYY, we did not provide any

mechanism for rendering virtual exposures in-camera. Although
most of the stand-alone tik tools attempt to intelligently inter-
polate between temporally-adjacent pixel samples, that process
seems a little too complex for the modest computational resources
available within a CHDK PowerShot. Thus, the new virtual ex-
posure rendering is kept very simple – and it too is invoked from
the motion detector interface in Lua. An exposure interval is de-
scribed as a start time, in 1/1000s units, from the beginning of the
TDCI stream and an exposure integration time (shutter speed).
Note that the requested exposure interval need not correspond to
frame times in any particular way.

The last TDCI TIK file is loaded into the raw buffer, and
the initial frame UYVYYY data is copied into a reference buffer.
As each 32-bit word is read in the buffer, it is either interpreted
as a span (run length) or a block of four data values. The data
values are used to update the reference buffer. The span is used
to determine the X,Y coordinates of the next datum. However, if
the last block in a frame is written or the span passes the end of
the reference buffer, then the reference buffer contents are added
to the value buffer. The value buffer contains a 32-bit value for
each datum, and carefully treats U and V values as signed; it acts
to sum all the frame contributions.

Once all the frames in the interval have been processed, the
value buffer entries are divided by the number of 1/1000s intervals
over which they summed. These average values are then used to
produce RGB data for a PPM (Portable Pixel Map) file by the
formulas given earlier. The file data is constructed in the raw
buffer and then written – examples are shown in Figures 5 and 6.

Figure 5 shows the first frame of a TDCI sequence and then
a virtually exposed frame spanning a longer period. Note that
the background isn’t blurred, but the tree leaves fluttered in the
wind, causing them to blur in the second image. Figure 6 is a
more representative example of how we expect TDCI to be used.
Virtual images were rendered for several time intervals, allowing
a user to find/create a frame in which the train is centered. Then
the same was done to obtain a pleasing look in a longer (motion
blurred) exposure.

The one necessary postprocessing step is rescaling to cor-
rect the 1:2 pixel aspect ratio. The 720x240 images are kept at
that resolution throughout the in-camera processing, but should
be treated as being 720x480 using a system with square pixels.
This doubling of the Y dimension should be done using interpo-
lation, not just doubling of each line, but doing this in-camera
would result in a longer processing time and a larger PPM file.

Noise Model
Underestimating noise leads to a greater number of pixel

value change records being produced, less temporal smoothing,
and a poorer signal-to-noise ratio for virtual exposures. Overes-
timating noise is worse; it tends to miss some temporal events.
Although a noise model is used for TDCI encoding, we do not yet
have code implemented in-camera to create a customized noise
model. The fixed noise model used conservatively underestimates
noise at base ISO, so it grossly underestimates the noise in high-
ISO TDCI captures like the one used for Figure 6. Despite that,
TDCI normally reduces noise, and it still did. Only the 1/1000s
@0s virtual exposure in Figure 6 had no data from other frames
available, and thus it has the most visible noise.

Conclusion
CCD-based Canon PowerShot cameras are certainly not in-

tended to support high-framerate imaging and extensive repro-
gramability. Further, the images obtained from their live-view
stream are not of the highest quality. There is also the minimal
pool of computational resources with which to implement the pro-
cessing. However, using CHDK, these cameras do make a surpris-
ingly effective testbed for TDCI TIK[2] imaging.

The capture of TDCI TIK files directly in-camera clearly
works at an acceptable level, crippled only by modest framerate
and resolution. With the latest version, it is also possible to render
virtual exposures in camera... but, at this writing, there is not yet a
GUI to show you what you are getting. There is also currently no
provision for computing a better noise model in-camera, but that
also is planned. Our intent is to make all of this freely available
from our website, http://aggregate.org/DIT/TIK/.

Acknowledgments
This work is supported in part under NSF Award #1422811,

CSR: Small: Computational Support for Time Domain Continu-
ous Imaging.

IS&T International Symposium on Electronic Imaging 2017
Digital Photography and Mobile Imaging XIII 71

Figure 6. Virtual exposures of an HO-scale train: 1/1000s @0s, 1/1000s @2.5s, 1/1000s @2.8s, 5s @0s, 1s @2.5s, 1s @ 2s

References
[1] Henry Gordon Dietz, Frameless, time domain continuous image cap-

ture, Proc. SPIE 9022, Image Sensors and Imaging Systems 2014,
902207 (March 4, 2014); doi:10.1117/12.2040016. (2014).

[2] Henry Dietz, Paul Eberhart, John Fike, Katie Long, Clark Demaree,
and Jong Wu, TIK: a time domain continuous imaging testbed using
conventional still images and video, to appear in Electronic Imaging,
Digital Photography and Mobile Imaging. (2017).

[3] Richard L. White1, David J. Helfand2, Robert H. Becker, Eilat Glik-
man, and Wim de Vries, Signals from the Noise: Image Stacking
for Quasars in the FIRST Survey, The Astrophysical Journal, Vol-
ume 654, Number 1; http://stacks.iop.org/0004-637X/654/i=1/a=99
(2007).

[4] Canon Hack Development Kit (CHDK),
http://chdk.wikia.com/wiki/CHDK (accessed November 26, 2016).

[5] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar

Celes Filho, Reference manual of the programming language Lua,
(Monografias em Cincia da Computaao 3. (1994).

[6] Henry Gordon Dietz and Paul Selegue Eberhart, ISO-less?, Proc.
SPIE 9404, Digital Photography XI, 94040L (February 27, 2015);
doi:10.1117/12.2080168. (2015).

[7] Henry Gordon Dietz, Zachary Snyder, John Fike, and Pablo Quevedo,
Scene appearance change as framerate approaches infinity, Elec-
tronic Imaging, Digital Photography and Mobile Imaging XII, pp.
1-7 (February 14, 2016); (2016).

[8] Jef Poskanzer, NETPBM: Extended portable bitmap toolkit, (1993).

Author Biography
Katie Long is pursuing a BS in Computer Engineering from the Uni-

versity of Kentucky (graduating 2018). Clark Demaree is also an under-
graduate student, and Henry Dietz is the faculty member supervising this
research.

72
IS&T International Symposium on Electronic Imaging 2017

Digital Photography and Mobile Imaging XIII

