
TIK: a time domain continuous imaging testbed using
conventional still images and video
Henry Dietz, Paul Eberhart, John Fike, Katie Long, Clark Demaree, and Jong Wu;
Department of Electrical and Computer Engineering, University of Kentucky; Lexington, Kentucky

Abstract
Time domain continuous imaging (TDCI) centers on the

capture and representation of time-varying image data not as
a series of frames, but as a compressed continuous waveform
per pixel. A high-dynamic-range (HDR) image can be compu-
tationally synthesized from TDCI data to represent any virtual
exposure interval covered by the waveforms, thus allowing both
exposure start time and shutter speed to be selected arbitrarily af-
ter capture. This also enables extraction of video with arbitrary
framerate and shutter angle. This paper presents the design, and
discusses performance, of the first complete, fully open source,
infrastructure supporting experimental use of TDCI: TIK (Tem-
poral Imaging from Kentucky or Temporal Image Kontainer). The
system not only provides for processing TDCI .tik files, but also
allows conventional video files and still image sequences to be
converted into TDCI .tik files.

Introduction
For as long as there have been cameras, there has been the

notion that the unit of capture is an image. The shutter is opened,
light energy is collected, the shutter is closed, and the energy col-
lected is processed to create an image. Even movies and video are
nothing more than a sequence of images. Time Domain Continu-
ous Imaging (TDCI)[1] offers an alternative model in which time
is a fully-formed dimension. The value of each pixel is treated as
a continuous function varying over time, and an image is nothing
more than the integral of each pixel’s waveform over a designated
exposure interval.

The philosophy of TDCI
Fundamentally, TDCI is based on the assumption that scene

appearance usually changes as a continuous function. Further,
the scene usually changes slower than sources of sampling noise,
such a photon arrival rate – and if it doesn’t, it is impossible to
know that it didn’t. This is fundamentally different from how the
photographic and image-processing communities normally think
about image capture, which is as recording light levels rather than
constructing a model of time-varying scene appearance. Two
simple thought experiments help to illustrate the difference.

Suppose that you wish to create an image representing the
appearance of a scene in the time interval 1..2. In a relatively dark
region of the image, there is a particular pixel that receives not a
single photon during that period. However, imagine that the time
period for which the camera was active was actually 0..3, and
that two photons were sensed by that pixel during that interval.
One photon arrived at time 0.999 and the second at time 2.001.

What is the best estimate of the value of that pixel worth of scene
content for the time interval 1..2? Classically, one would say 0
because no photons arrived during that interval. However, TDCI
would say that the best estimate is 2/3 of a photon. Superficially,
the concept of having 2/3 of a photon seems a violation of quan-
tum mechanics, but what it is really saying is that the portion of
the scene sampled by the pixel probably had the same appear-
ance throughout the 0..3 interval, with an expected value of 2/3.
In essence, noting arrival of a single photon at a particular time is
measuring photon shot noise at least as much as it is measuring
scene appearance. If the scene content isn’t changing, then aver-
aging over more samples (i.e., a longer time interval) provides a
statistically more accurate estimate of scene appearance.

For the second thought experiment, imagine that you have
a blue sheet of paper. The paper appears blue in a wide range
of lighting conditions. However, you decide to take that sheet of
paper into the darkest cave and turn off all lights. What color is
the paper then? Classical photography and image processing say
it is black, because there is no light observed from it. However,
we suggest that it is probably still blue – it just cannot be proven
that it is still blue without using light to sample it. Lacking evi-
dence that the sheet’s color has changed, we argue that it is most
reasonable to assume that the sheet is still blue, but very dark
because it is so poorly lit.

Put simply, the goal of TDCI is construction of a model of
the inherent, persistent, material properties of scene appearance
over time as revealed by a lighting model, but free of sampling
noise. Thus, TDCI not only allows after-capture specification of
the time interval represented by a rendered image, but also can
produce a result with low noise – often less noise than the photon
shot noise that was present during the actual interval.

The images in Figure 1 clearly demonstrate this improve-
ment. These four images all start one second into a four-second
960FPS high-speed video of a static scene captured using a Sony
RX100 IV. More precisely, the camera was set to 1/1000s shutter
speed and ISO 6400, and the capture was made at 959.04FPS us-
ing 1136x384 resolution, which it then upscaled and compressed
as a 1920x1080 MP4 video. The first image is a single video
frame extracted using ffmpeg. The next three images are all
virtual exposures computationally rendered using tik. tik was
used to create a noise model, then that noise model was applied
to create a TDCI stream in tik format from the MP4 video, and
finally tik was used to computationally render images for time
intervals starting at the same time as the frame grab. The three
rendered images represent virtual shutter speeds of 1/960s, 1/24s,
and 1s (the last two are shown smaller here to save space).

58
IS&T International Symposium on Electronic Imaging 2017

Digital Photography and Mobile Imaging XIII

https://doi.org/10.2352/ISSN.2470-1173.2017.15.DPMI-081
This work is licensed under the Creative Commons Attribution 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Figure 1. 960FPS frame grab from Sony RX100 IV video and TDCI virtual exposures with shutter 1/960s, 1/24s, and 1s

IS&T International Symposium on Electronic Imaging 2017
Digital Photography and Mobile Imaging XIII 59

Although no spatial noise reduction nor post-processing has
been applied to the tik-rendered images, the improvement in
image quality over the video frame is obvious. Very conserva-
tively using the tik-generated error model (i.e., requiring high
confidence to treat a slightly unexpected value as noise), the av-
erage pixel’s value in this video was found to be stable for ap-
proximately 7 frames. Thus, although the analysis is done on
a per-pixel basis, the 1/960s virtual exposure is obtaining ben-
efits very similar to those that would be obtained by averaging
over 7 stacked[2, 4] frames. Of course, if there were significant
changes in appearance of any portions of the scene, the pixel val-
ues in those portions were not stacked by tik. The quality of the
longer virtual exposures is even higher because they are in effect
stacking respectively about 47 and 967 frames each.

To approximately quantify the improvement, a simple
signal-to-noise ratio (SNR) can be computed taking the 1s vir-
tual exposure as the reference signal. Computing directly on the
pixel values encoded in the JPEG images, the average pixel SNR
is roughly 13 for the frame grab, 20 for the 1/960s virtual expo-
sure, and 26 for the 1/24s virtual exposure. However, converting
the JPEG pixel values to a roughly linear gamma, the average
pixel SNR more than doubles going from the frame grab to the
1/960s virtual exposure and nearly doubles again going to the
1/24s virtual exposure. These improvements are less than one
might expect if conventional stacking were used, but that is a di-
rect consequence of the probability threshold having been set to
very conservatively treat much of the sampling noise as actual
changes in the scene appearance. In other words, unlike conven-
tional stacking, even scene appearance changes that were well
below the average noise level predicted by the noise model can
be preserved.

Implementation of TDCI
There are many benefits to TDCI capture and one giant dis-

advantage: no TDCI cameras yet exist. Construction of a true
TDCI capture camera requires new sensor technology. However,
as was suggested earlier[3], many of the benefits of TDCI come
from the representation of, and computation on, image data in a
TDCI format. These benefits can be realized without the need to
construct a new type of imaging sensor:

• Because the waveform is a smooth curve, it essentially in-
terpolates higher-precision values between and across pho-
tonic samples; thus, it could provide lower noise and a
higher usable dynamic range

• The virtual exposure interval to be represented by an image
can be arbitrarily selected after capture as any portion of the
waveform, without concern for the usual APEX exposure
constraints[5]

• Movies can be rendered at any framerate without stuttering
artifacts by simply selecting an appropriate virtual exposure
interval for each frame

• The shutter angle can be set arbitrarily; the choice of shutter
speed is decoupled from the choice of framerate

Having laid that theoretical groundwork, the remaining big
question about use of TDCI with conventional cameras was sim-
ply: do all the details fit? Is it really practical to implement TDCI

using data from conventional cameras? Thus, the goal of this pa-
per is completely pragmatic: to explore the details of a complete
software environment for TDCI.

TIK is an open-source environment and file format specifi-
cation intended to support not only use by the research group de-
veloping TIK, but also real experiments with TDCI by both other
researchers and ordinary users of video and still images. The
name TIK is a somewhat strained mnemonic referencing Tempo-
ral Imaging from Kentucky or Temporal Image Kontainer (with
container deliberately misspelled). The name also suggests pas-
sage of time in small units, which is precisely how this system
organizes time-varying image data. As suggested above, TIK is
both the name of a tool suite and of set of a file formats, which
would normally be stored in files ending with the .tik suffix.

TIK, the file format(s)
One might ask why there should be a new file format as-

sociated with TDCI data; can’t one of the multitude of existing
file formats be used? The answer is that the new .tik file for-
mats are precisely that: simple extensions of existing image file
formats. There are two different sets of file formats proposed for
TIK data. Work on specifying an "advanced" TIK format, extend-
ing the DNG file format[6] to represent raw TDCI data, is not yet
completed. The "basic" TIK format is geared toward representa-
tion of data that has already been processed into a conventional
colorspace, and it is used for all the work reported in this article.

A basic .tik file is essentially an extension of the widely-
supported formats associated with the Netpbm[7] family of tools.
For example, those formats are the preferred output of the
dcraw[8] raw image converter.

In particular, the Portable Gray Map (PGM) and Portable
Pixel Map (PPM) formats are extended for TDCI using TIK. Bi-
nary PGM files begin with a magic number which is the ASCII
character sequence P5, and PPM files begin with P6. The header
structure is very simple and also formatted as ASCII characters,
allowing simple one-line comments starting with the # charac-
ter. Hiding the necessary additional fields in comments that begin
with # TIK provides the obvious benefit that these the extra fields
are harmlessly ignored (yet faithfully preserved) by most exist-
ing tools. However, unlike nearly all other image file formats,
because the header is completely expressed as ASCII characters,
an ordinary text editor can be used to create and edit headers.
In contrast, DNG files extend the TIFF standard, which directly
provides mechanisms for adding arbitrarily complex fields – but
it does not provide any simple way to manage encoding and de-
coding the fields that are not normally processed by the particular
tool being used to operate on the file.

Why is textual encoding of the header so important for TIK?
Sometimes, the header is the entire .tik file. For example, when
processing a conventional video file as input, it is still necessary
for TIK tools to know information including the framerate, shut-
ter speed, and even time sequencing of a rolling shutter. Rather
than devising ways to modify every existing video file format to
embed that information, our approach is to simply allow a purely
textual .tik file to provide the needed additional information
about the contents of one or more files in standard video or still
image formats.

60
IS&T International Symposium on Electronic Imaging 2017

Digital Photography and Mobile Imaging XIII

For .tik files that directly contain any image data, the data
immediately following the header is always formatted so that it
begins with an image that will be recognized by any tool that un-
derstands conventional PGM/PPM files. In this way, loading a
.tik file as a PGM/PPM will always provide a preview image.
Some tools, such as ffmpeg and ImageMagick display, allow
multiple PGM/PPM files (including their textual headers) to sim-
ply be catenated into a single file; our .tik file format allows
such data to be handled directly. The TDCI compressed formats
stored in .tik files all start immediately after any such conven-
tional image data, using a single 0-valued byte as a separator
to render the TDCI data invisible to tools expecting catenated
PGM/PPM data.

TIK file formats
All of the information about the encoded data in a basic

.tik-format file is specified using structured comments that each
begin with "#", one or more spaces or tabs, the word "TIK", one
or more spaces or tabs, and then a series of space or tab separated
words. Each word is either a decimal integer ASCII number or a
keyword that does not start with a digit nor negative sign. There
may be a variable number of words in a structured comment, but
the first word defines how the other words will be treated, and the
sequence ends at the the end of the line.

The very first structured comment in a .tik file, normally
the second line of the file, must be a version comment of the
form:

TIK V version format ...
The version is an 8-digit number specifying the standard compli-
ance date of the TIK encoding. For example, 20160712 would
mean that the file is formatted as specified by the TIK standard
that was in effect on July 12, 2016. The format specifies which of
different types of encoding is used in the file, and some of those
types require additional parameters. At this writing, there are five
different formats.

The first two formats do not actually contain any image data,
but are simple textual headers describing ordinary files contain-
ing stills or videos:

• 20160721 CONVERT pattern numBegin numEnd – this file
specifies a pattern for naming one or more files, each of
which holds image pixel data in any still image format that
the ImageMagick convert tool can transform into a P6
PPM file. The pattern is taken as a format string which
is used with sprintf and one integer parameter to pro-
duce each file name. The integer parameter first has the
value numBegin, and is incremented by 1 each time a file
is processed, ending with the last value not greater than
numEnd. For example, "IMG%05u.JPG 1 4" would at-
tempt to process the sequence of images IMG00001.JPG,
IMG00002.JPG, IMG00003.JPG, and IMG00004.JPG; if
any image cannot be opened, it will be skipped, but still
counted against the framerate. For example, if there was no
IMG00002.JPG, but the framerate was set as 1FPS, then the
three other frames would be interpreted as spanning time in-
tervals from 0..1s, 2..3s, and 3..4s (this behavior can be use-
ful for processing timestamped surveillance still captures).

• 20160721 FFMPEG filename – this file specifies the file-
name of a video file from which frames can be extracted
using ffmpeg. If filename is omitted, the video filename
is assumed to be the next argument on the tik command
line. In this way, information about a video can be speci-
fied without needing to incorporate the information in each
video file. The output from ffmpeg is a stream of P6 PPM
files, one per frame.

The next two formats are representations of TDCI streams:

• 20160712 RGB – the header and initial image are processed
like a normal P6 PPM file. However, after a single 0 byte,
the rest of the file consists of a stream of records. Each
record encodes the number of pixels whose values are un-
changed (within the noise model) from their previously-
recorded values as a spatio-temporal span distance and a
tuple of red, green, and blue (RGB) color channel values for
the unexpected pixel value. The pixels within a frame are
scanned either in the usual nest of increasing Y wrapping
increasing X coordinates, or in a sequence determined by
the timing of a rolling shutter. A span distance greater than
the number of pixels in an image represents entire frames in
which all pixels had expected values. If the span is 0-127, it
is output as a single byte; otherwise, the 7 least-significant
bits of span are output in a byte ORed with 0x80, the re-
maining span is shifted right by 7 bits, and the process re-
peated until no 1 bits remain in span. For example, a span
of 257 pixels followed by an RGB value of 0x11, 0x22,
0x33 would be encoded as the five bytes: 0x02, 0x01, 0x11,
0x22, 0x33.

• 20160712 UYVYYY – most Canon PowerShot cameras are
not capable of high-framerate video capture, but using the
Canon Hack Development Kit (CHDK)[9] to reprogram the
camera, it is possible to record live view data at a relatively
high framerate. To minimize in-camera processing, the im-
age data is treated as a sequence of P5 PGMs with 6/4 the
actual X resolution, thus allowing the native UYVYYY rep-
resentation of four pixels to be used directly. This encoding
is further complicated by the fact that the YUVYYY val-
ues used inside CHDK are unsigned for Y, but signed for
U and V, and this is maintained in the TIK file. The U and
V color component values are shared by a group of four
pixels; RGB color is computed as:
R = min(max(((Y«12)+(V*5743)+2048)»12),0),255)

G = min(max(((Y«12)+(U*1411)+(V*2925)+2048)»12),0),255)

B = min(max(((Y«12)+(U*7258)+2048)»12),0),255)

Finally, the fifth format encodes a statistical model of "error" in
pixel values:

• 20160804 NOISE – an ordinary P6 PPM file in which the
image encodes a noise model (see below).

TIK file metadata
The V structured comment is generally followed by a se-

quence of other structured comments that describe important at-
tributes of the image data. All number attributes are expressed as
integers to avoid roundoff issues. These include:

IS&T International Symposium on Electronic Imaging 2017
Digital Photography and Mobile Imaging XIII 61

• B number – the time delay, in nanoseconds, to when the first
image capture began. This is used to correct for synchro-
nization delays between multiple cameras or captures.

• E number – an exposure value (EV) that can be used for ap-
proximately scaling to known luminances. This is intended
to be used to find mappings of equivalent pixel values be-
tween images taken by different cameras, but is not cur-
rently precise enough to be useful for that purpose.

• F number – the frame time in nanoseconds;
1,000,000,000/FPS. Note that this is not necessarily
the same as the shutter open time, but is often a somewhat
longer interval.

• G number – the 1000000 * gamma by which the pixel values
should be decoded. The intent is to approximately linearize
values, but in practice tonal non-linearities are often more
complex than can be described by a single gamma value, so
this mapping may change in the future.

• R number numberXdiv numberYdiv – a method for specify-
ing the scan order and timing of a rolling shutter. The num-
ber is the number of microseconds it takes for the rolling
shutter to traverse the sensor, while the other values specify
the order. The pixel at coordinates X,Y is sampled at a time
that is X*number/numberXdiv + Y*number/numberYdiv. If
either of numberXdiv or numberYdiv is zero, it means that
dimension suffers no delays; if negative, it means the cor-
responding axis is scanned in reverse order (large to small).

• T number – the shutter open time in nanoseconds. The
sum of this time and the last pixel’s rolling shutter delay
is assumed to always be no longer than the time per frame.
However, the shutter open time is commonly less than the
time per frame.

• X number – the X dimension (width) of the images. The
units are those of pixel data blocks. For RGB data, each
tuple counts as one unit; for UYVYYY data, each tuple of six
values counts as one unit.

• Y number – the Y dimension (height) of the images.
• Z number – the maximum value of a color channel; the

white point.

Although it would be easy to add other structured comments
to provide additional metadata, our goal is to keep the basic .tik
format as simple as possible to encourage experimentation with
it. There are literally hundreds of different (and potentially use-
ful) metadata attributes used by various cameras, but we feel that
complexity is best left to definition of the "advanced" TIK format,
which we anticipate being a extension of DNG.

TIK, the program
There are three fundamentally distinct operations that the

tik program can perform:

• Creation of a .tik file representing the the noise model for
a TDCI stream. The combination of all input files is as-
sumed to represent a completely static scene, from which
a model describing capture noise is created. The TDCI
stream input may be given as any combination of movies
in conventional video file formats, sequences of individual
still image files, and even .tik files.

• Creation of a .tik file representing a TDCI stream. The
combination of all input files is encoded in a way that al-
lows efficient processing, but also provides significant data
compression in the time domain. The TDCI stream input
may be given as any combination of movies in conventional
video file formats, sequences of individual still image files,
and even .tik files.

• Rendering of virtual exposures as images or movie frames.
The TDCI stream input may be given in the form of one
or more .tik files, but the tool also will accept movies in
conventional video file formats and sequences of individual
still image files.

Although these functions are currently integrated into a sin-
gle application because they share the code infrastructure for han-
dling PPM files, it is easier to consider them as separate pro-
grams. They may in fact become separate programs when sup-
port for an advanced file format is added. Thus, each of these
three functions is considered separately in the subsections which
follow.

Creation of an error model (noise map)
In a paper at Electronic Imaging 2016[10], it was observed

that increasing framerate results in a decreasing amount of addi-
tional scene appearance data when an appropriate noise model is
applied to the images. However, a poor model of noise-induced
value errors does not have this happy effect. Overestimating
noise removes subtle shading gradations and causes temporal er-
rors by delaying recognition of scene changes. Underestimating
noise provides little compression and also fails to enhance the
signal to noise ratio (a secondary benefit which comes from aver-
aging over more samples). Unfortunately, obtaining an accurate
noise model is difficult because there are many interacting fac-
tors.

The method used by tik to create an error model is remark-
ably straightforward, but can account for even relatively subtle
error sources and interactions. A set of time-sequenced images,
and/or video(s), is captured of a completely static scene under
as similar as possible conditions to those that will be used for
capture of the TDCI source material. This static scene data is es-
sentially histogrammed to produce a set of transition probabilities
for each value in each color channel.

Figure 2 is the error model that tik created for the same
960FPS Sony RX100 IV video that was sampled in Figure 1. In
a noise map image, the X axis position is the previous pixel value
and the Y axis position is the current value. Each pixel in the
error model image is given RGB coloring that reflects the prob-
ability of that value transition in each color channel. The pixel
value ranges and probabilities are scaled to the range 0..255, so
the complete noise map is a single 256x256 P6 PPM-formatted
image with three bytes per pixel. In any noise map, there gener-
ally should be a bright line from the upper left to the lower right;
this simply represents the previous and current pixel values being
the same. However, the noise model is made monotonically non-
decreasing as the difference between values approaches zero, es-
sentially thickening that line, although different noise in different
color channels can impose color tints in the map and "smearing"
of the line is not always symmetric. In the example in Figure 2,

62
IS&T International Symposium on Electronic Imaging 2017

Digital Photography and Mobile Imaging XIII

Figure 2. Noise map computed from 960FPS Sony RX100 IV video

we also see that the scene never actually made use of the brightest
possible pixel values... in other words, the video was significantly
underexposed.

It is useful to note that, although the tik-constructed noise
model is marked as a 20160804 NOISE file, it is actually an or-
dinary P6 PPM file that may be manipulated using conventional
image editing software. It is even easy to construct a noise model
directly if the capture noise characteristics are well understood.
This simplicity and flexibility was judged to outweigh the fact
that various types of correlated noise, such as an increase in one
color channel’s noise when another color channel has a higher
value, cannot be directly represented in this type of map.

Creation of a TIK TDCI representation
Given input that is not already a TDCI format (e.g., not a

RGB nor UYVYYY .tik file), the synthesis of a continuous wave-
form for the value of each pixel over time is relatively straight-
forward. However, if there are multiple image data sources, all
sources are assumed to be spatially aligned. For example, two
videos can only be merged by tik if there is a direct correspon-
dence between the area covered by every pixel X,Y from each
source. All images and video must be made to share the same
point of view and pixel resolution before they can be processed
by tik.

It should be noted that the images and/or video sequences
being used to generate a single TDCI .tik compressed file need
not have regular timing nor any other particular temporal prop-
erties. The timing-annotated pixel values extracted from still im-
ages and video frames form time intervals during which the aver-
age pixel value is known. Gaps between these sampled intervals
must be interpolated in the temporal domain, but the interpolation
need not be directly encoded in the .tik file, because it will be
performed at the time that virtual exposures are extracted. How-
ever, sample overlaps (i.e., from multiple cameras sampling the

same pixel worth of scene content) must be resolved into the ap-
propriate number of pixel change records.

When tik must determine if a pixel’s value has changed
enough to warrant creation of a new value change record, it uses
the specified noise model file (or a built-in generic one) to look
up the conditional probability that the apparent change that oc-
curred does not reflect anything more than the variation due to
noise. The user may specify the lowest probability that should
be considered noise. Only lower-probability combinations cre-
ate change records. The analogy is somewhat imprecise, but the
usual approximate standard deviation threshold values of 32%,
5%, and 0.3% can be applied with similar meaning.

However, tik also computes a type of confidence metric for
each pixel value. Some devices have worse noise than others, so
their noise models will lead tik to trust their values less than
those of temporally-overlapping less-noisy sources for the same
pixel value. Beyond that, even within a single video or still se-
quence, some pixel values represent stable averages over a large
temporal sequence of samples, and those values are trusted more
than ones computed from single samples. At this writing, we are
still tuning the confidence metric computation.

At this writing, the current version of tik is 20160804, so
the TDCI stream output is a 20160804 RGB file (which is com-
patible with the 20160712 RGB standard still in effect at that
time). Despite that file format having been optimized for fast pro-
cessing rather than maximum compression, significant compres-
sion is usually obtained. For example, the original four-second
960FPS video from the Sony RX100 IV is a 1,071,963,827 byte
MP4 file. However, the .tik file is just 155,511,438 bytes, just
14.5% of the MP4 size – for a compression factor of nearly 6.9X.
Of course, increasing the noise probability threshold generally
will increase compression significantly, but with the potential
side-effect of averaging-out small changes in scene appearance.

Rendering of virtual exposures
The rendering of images by tik from a TDCI stream (e.g.,

one or possibly more .tik files) is simply controlled by speci-
fying the period each virtual exposure should span. This can be
specified most straightforwardly as a time offset for when the ex-
posures should begin, a frame rate, a number of frames, and a
shutter speed (or shutter angle).

From that simple specification, the noise model, a model of
value confidence (if there is more than one TDCI stream input),
one of several possible interpolation schemes, etc. are applied
to compute each image. Note that there is no need for the vir-
tual exposures to align temporally with change records in a TDCI
stream. For example, consider the images of a fast-moving pink
dragon in Figures 3, 4, and 5. Despite the pink dragon moving
faster than any human is likely to, these virtual exposures appear
fairly natural, with credibly smooth motion blur when the ren-
dered framerate dropped below the speed of the puppet’s motion.
All these images are extracted by tik from the same .tik RGB
file created by tik from a 240FPS video capture, yet different
framerates and virtual exposure intervals produced good quality
even when the timing did not line-up with the 1/240s frame inter-
vals. In fact, the 240FPS captures used a shutter speed of 1/251s,
so interpolation is required even for 1/240s frames.

IS&T International Symposium on Electronic Imaging 2017
Digital Photography and Mobile Imaging XIII 63

Figure 3. Five sequential frames at 240FPS as captured with shutter 1/251s

Figure 4. Five sequential virtual exposures rendered at 24FPS, 25FPS, and 30FPS (approximately 360 degree shutter)

Figure 5. Five sequential virtual exposures rendered at 25FPS with shutter 1/50s, 1/100s, and 1/500s

64
IS&T International Symposium on Electronic Imaging 2017

Digital Photography and Mobile Imaging XIII

In general, if a TDCI stream is to be created from a sin-
gle conventional video, there will be temporal gaps between the
frames. These gaps might even be large; for example, a 24FPS
video shot in bright daylight might use a shutter speed of 1/500s
(i.e., a shutter angle of 17 degrees), meaning that less than 5% of
the video’s elapsed time is sensed at all. These gaps, if present
in the TDCI stream, are currently interpolated by assuming that
the value of a pixel linearly changes between adjacent temporal
samples. Although better interpolation schemes are being inves-
tigated, linear interpolation in the time domain produces surpris-
ingly good results when the sampling frequency is relatively high
(i.e., when the original video capture was made at a framerate
that is fast compared to the rate of scene change). For tempo-
ral sampling far below a Nyquist sampling of the scene change,
such as the 24FPS 1/500s example mentioned earlier is likely to
be, linear temporal interpolation is not sufficient to produce good
quality; more sophisticated spatio-temporal interpolation would
be necessary, and even that might prove insufficient.

The computation of the virtual exposure pixel values is done
in an approximately linear gamma space using double-precision
floating-point values. Because many pixel values are often av-
eraged over many samples or otherwise smoothly interpolated
(as constrained by a noise model), signal to noise ratio and ef-
fective dynamic range can both be much better than the original
captures would suggest. Thus, the resulting virtual exposure is
really a high dynamic range (HDR) image. Although we may
later output virtual exposures as HDR images, currently, they are
straightforwardly mapped into the dynamic range of the output
file format.

Despite the various approximations made by tik, perhaps
the most surprising aspect of TDCI virtual exposure rendering is
that a virtual exposure will generally have better signal-to-noise
ratio than the actual exposure representing the same time inter-
val. This is the effect discussed earlier in the paper and shown in
Figure 1.

Conclusion
This paper is intended to serve both to report preliminary

experimental test results for how well TDCI concepts can be ap-
plied to conventionally-captured images and to invite to others
to use, experiment with, and contribute improvements to the tik
tool and .tik file format. The full source code for the system
will be openly available from aggregate.org.

There are some examples and performance analysis in this
paper, but we also intended to give live demonstrations of tik at
Electronic Imaging 2017.

Acknowledgments
This work is supported in part under NSF Award #1422811,

CSR: Small: Computational Support for Time Domain Continu-
ous Imaging.

References
[1] Henry Gordon Dietz, Frameless, time domain continuous image cap-

ture, Proc. SPIE 9022, Image Sensors and Imaging Systems 2014,
902207 (March 4, 2014); doi:10.1117/12.2040016. (2014).

[2] Richard L. White1, David J. Helfand2, Robert H. Becker, Eilat Glik-
man, and Wim de Vries, Signals from the Noise: Image Stacking
for Quasars in the FIRST Survey, The Astrophysical Journal, Vol-
ume 654, Number 1; http://stacks.iop.org/0004-637X/654/i=1/a=99
(2007).

[3] Henry Gordon Dietz, Frameless representation and manipula-
tion of image data, Proc. SPIE 9410, Visual Information Pro-
cessing and Communication VI, 94100R (March 4, 2015);
doi:10.1117/12.2083468. (2015).

[4] Deep Sky Stacker, http://deepskystacker.free.fr/ (accessed November
26, 2016).

[5] Doug Kerr, APEX - The Additive System of Pho-
tographic Exposure, Issue 7 (August 4, 2007);
http://dougkerr.net/Pumpkin/index.htm#APEX (accessed November
26, 2016).

[6] Adobe Systems Incorporated, Digital Negative (DNG) Specification,
Version 1.4.0.0; http://www.adobe.com/ (June 2012).

[7] Jef Poskanzer, NETPBM: Extended portable bitmap toolkit, (1993).
[8] Dave Coffin, Decoding raw digital photos in Linux,

http://www.cybercom.net/d̃coffin/dcraw/ (2016).
[9] Canon Hack Development Kit (CHDK),

http://chdk.wikia.com/wiki/CHDK (accessed November 26, 2016).
[10] Henry Gordon Dietz, Zachary Snyder, John Fike, and Pablo

Quevedo, Scene appearance change as framerate approaches infin-
ity, Electronic Imaging, Digital Photography and Mobile Imaging
XII, pp. 1-7 (February 14, 2016); (2016).

Author Biography
Henry (Hank) Dietz is a Professor in the Electrical and Com-

puter Engineering Department of the University of Kentucky. He and
the student co-authors of this paper, Paul Eberhart, John Fike, Katie
Long, Clark Demaree, and Jong Wu, have been working to make
Time Domain Continuous Image capture and processing practical. See
Aggregate.Org for more information about their research on TDCI
and a wide range of computer engineering topics.

IS&T International Symposium on Electronic Imaging 2017
Digital Photography and Mobile Imaging XIII 65

