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Abstract 
 
We have developed a laser interferometer with the goal of 

precise measurement of the pixel MTF and pixel crosstalk in 
camera sensors. One of the advantages of our interferometric 
method for measuring sensor MTF is that the sinusoidal 
illumination pattern is formed directly on the sensor rather than 
beamed through a lens. This allows for a precise measurement of 
sensor MTF and crosstalk unaltered by the lens. Another 
advantage is that we measure MTF in a wide range of spatial 
frequencies reaching high above the Nyquist frequency.  We 
discuss the theory behind the expected and observed sensor 
performance, and show our experimental results. Our comparison 
with the Slanted Edge method shows that we have better precision 
and cover a wider range of frequencies.  
 

Introduction 
Sensor pixel size is getting smaller and smaller, approaching 

one micron. New sensors that are coming on the market need to be 
independently evaluated for their performance. This includes the 
need to measure reliably the photon transfer curve, noise, MTF [1], 
etc.  
 

The “slanted edge” method is the classic method for 
measuring sensor MTF  [2, 3]. The response of the sensor to the 
shadow of an edge is measured, and MTF is computed from the 
Fourier transform. This has worked well for large-pixel sensors. 
For small-pixel sensors in the one-micron range, the edge shadow 
is not sufficiently sharp to capture the high frequencies needed to 
measure the response of the micron- and submicron-size pixels.  

 
Alternatively, a lens image of a bar or sine-wave grating can 

be used [4]. However, in this method, measurement of the MTF of 
the sensor is confounded by the MTF of the lens itself, which is 
typically poor exactly at the high frequencies (at and above 
Nyquist) that we want to capture. In addition, the lens MTF varies 
widely from lens to lens and also depends strongly on focusing, 
which makes the lens-grating method unreliable for small pixels. 

 
By definition the MTF is the response of the sensor to a 

sinusoidal signal in a given range of frequencies [5]. It is expressed 
as contrast in the captured images. Light-wave interference 
naturally produces sinusoidal fringes that can reach very high 
frequencies, up to λ/2, where λ is the wavelength. It is for this 
reason that we are using interferometry as the natural and most 
appropriate method for measuring MTF. 
 

For measuring the MTF in small-pixel sensors, 
interferometric methods have been used [6] [7] [8]. The 
measurements produced by these methods typically have fixed-
pattern noise such as fringes due to imperfections and double 
reflections in glass surfaces, as well as speckle caused by the optics 
of the system, thus limiting their MTF-measuring usability. 

 
The goal of the present work is to provide new tools that are 

specifically designed for evaluating the new, micron-sized pixels, 
within the context of an interferometric system. The tools we are 
proposing are designed to be used for 

(1) Measuring sensor frequency response, its MTF 
(2) Quantifying pixel crosstalk.  
 
The experiments for this paper use a HeNe laser at λ= 633 nm 

to produce sinusoidal fringes that can reach deep into the 
submicron range. The optics are designed to avoid laser speckle 
and glass-surface artifacts. These fringes are formed directly on the 
sensor, without any lens, and make it possible to measure sensor 
MTF reaching high above Nyquist even for 1 µm pixels, and 
smaller. We show how measuring the sensor response to these 
fringes can be used to evaluate pixel crosstalk. 
 

In the present paper, contrast of a single-frequency signal is 
defined by the formula below, where 𝐼!"# and 𝐼!"# are 
respectively the maximum and minimum intensity. This is known 
as Michelson contrast, fringe visibility, or Michelson visibility. 
(Wikipedia reference [9]), 

𝑀𝑖𝑐ℎ𝑒𝑙𝑠𝑜𝑛 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =
𝐼!"# − 𝐼!"#
𝐼!"#  + 𝐼!"# 

 

Interferometer 
We have built a system that is a combination between Young 

[10] and Mach-Zehnder [11] interferometers. Our main 
contribution compared to prior works was to produce a reliable, 
clean signal. We use a spatial filter to clean the beam of higher 
frequency components coming from the laser, and then a pair of 
microscope objectives with pinholes at the output to generate a 
smooth interferogram clean of unwanted fringes and other optical 
artifacts. Since there are no external surfaces or lenses after the 
pinholes, we are also free of speckle, something quite unusual for 
laser imaging. See Figure 1 for our interferometer setup. 

 

 
Figure 1. Our interferometer setup 
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A beam splitter and first-surface mirrors arranged as in a 

Mach-Zehnder interferometer split the laser beam 50-50. Because 
of the high spatial coherence of the laser, the fringes have close to 
100% Michelson contrast. A microscope objective / pinhole pair is 
used at the end of the optical path to create fringes as in a Young 
interferometer.  
 

In Figure 2, we zoom in on Figure 1, first to the pinhole and 
sensor region, and then further to the region immediately before 
the sensor. The distance d between the fringes can be computed 
from 2𝑑 sin𝛼 = 𝜆 as can be seen from the geometry shown in the 
right-hand portion. 

       
Figure 2. Computing the distance d between fringes (see the right-hand, 
zoomed-in drawing, where the diagonal lines represent wave crests) 

 

Measuring the MTF 
Sensor MTF is the response of the sensor to a sinusoidal 

signal in a given range of frequencies. It is measured by the 
contrast in the response signal assuming the input signal is at 100% 
contrast. The measured contrast function is based on a 
discretization that is not shift invariant (as it is with lens MTF).  
 

For our experiments we are using a grayscale CMOS sensor 
MQ013RG-E2 purchased from XIMEA. Pixel pitch is 5.3µm. 
Figure 3 is a typical captured image from our interferometer. This 
particular image is captured at frequency slightly below twice the 
Nyquist, and strongly aliased. 

 

Figure 3. A crop from a typical aliased image above the Nyquist frequency 
 

A column mean in this image reduces noise and is a function 
of one variable, x. Figure 4 is a plot of column means.  

 
Figure 4. A graph of the pixel value variation across the whole image (a crop 
of which was shown in Figure 3). 

 
In the quantized signal, at Nyquist and its odd multiples, no 

measure can reliably recover signal contrast, because the integrated 
signal varies based on the sensor alignment with the fringes. It is 
not shift-invariant. 
 

In an image, Michelson contrast can be computed locally in 
each pixel neighborhood where a signal is present. Or, we could 
define overall maximum contrast with the same formula, only 
applied to the whole captured image. In a real captured image, 
overall contrast can overestimate the true contrast, and both local 
and overall contrast measures are susceptible to aliasing at integer-
ratio harmonics of the Nyquist frequency.  

 
A second definition of contrast, analogous to RMS contrast 

[12] in the spatial-domain, is derived from the 2-D Fourier 
transform of the image.  

 
The Fourier contrast formula is defined as the ratio of the AC 

component of the signal to the DC component of the signal. See 
Fig.5. However, we want to use power spectral density values in 
the Fourier domain to evaluate the frequency components of the 
signal. In case of the discrete Fourier transform, power is 
distributed to other frequencies, as spectral leakage occurs. In this 
case power of a particular fundamental frequency can be calculated 
as the sum of all spectral leakage power around the discretized 
frequencies. 

 

 
Figure 5. Single-frequency signal representation in Fourier domain. 

IS&T International Symposium on Electronic Imaging 2017
Digital Photography and Mobile Imaging XIII 53



 

 

The Fourier contrast calculated this way is proportional to 
Michelson contrast. Fourier contrast needs a multiplication of 
factor of 2  for normalized comparison with Michelson contrast. 
In the ideal case where we have positive and negative components 
for a single frequency, we can derive contrast as  

𝐼 = 𝐷 + 𝐴(𝑒!"# + 𝑒!!"# ) 

𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =
2𝐴 
𝐷  

= 2
 𝐴!  + 𝐴! 
𝐷! 

 

 
In an analog signal, Fourier contrast evaluated this way equals 
Michelson contrast.  
 
In the discretized signal, theoretically-simulated Fourier contrast 
shows a "jump" in value by a factor of 2 at Nyquist frequencies. 
This can be explained by aliasing. At Nyquist frequency, the 
fundamental window and the folding window overlap. The signal 
value at Nyquist frequency is sum of the value at the positive 
frequency of the fundamental window and the negative frequency 
of the folded window. Similar overlap happens at negative Nyquist 
frequency. This results in aliased signal that is  2  times the 
original value. Thus, Fourier contrast defined this way differs from 
Michelson contrast. Fourier contrast can be thought of as a global 
measure of average contrast. In the presence of sensor noise, 
Fourier contrast will be a more robust measure compared to 
Michelson contrast. 

 
Below, we compare our experimental MTF results to 

"theoretical" results that are derived through computational 
simulations. In each simulation, noise-free, artifact-free simulated 
images are generated and measured in the same manner as real 
images. This theoretical/real comparison will be the information 
ultimately used to derive the measure of crosstalk; the greater the 
crosstalk, the greater the reduction in the real measured contrast 
compared to the theoretical.  

 

 
Figure 5(a). Fourier transform of the image. Amplitude squared represented 
(yellow) in 2D frequency space. 
 

The Figure 6 below shows the "theoretical" simulated results 
and the experimental measurements of our sensor MTF. Active 
pixel size used in the theoretical calculations has been estimated 
from the measured curve. Interferometric images were captured, 
and contrast measured by two different methods: 

(1) Michelson contrast 

(2) Fourier contrast  
 
The measured result shown in the plot is that the experimental 

contrast is similar in form to the theoretical, but scaled down. The 
reduction in contrast will be related to the effects of crosstalk, but 
other factors such as the presence of dark noise or unequal beam 
intensities produce similar results, and their influence needs to be 
evaluated and eliminated as much as possible through experimental 
or computational techniques.  
 

In addition, the effects of discretization need to be obviated; 
for example, at Nyquist frequency, when the optical signal is 
aligned with pixel grid, a shift of fringes by half pixel size will take 
the contrast from the maximum possible value of  2 𝜋 down to 
minimum 0. Our solution to this has been to maintain consistent 
measurements with proper phase for all frequencies.  
 

 
Figure 6. Sensor MTF computed from Michelson contrast and Fourier contrast 
compared with theoretical MTF (assuming sinc signal, with estimated active 
pixel width < pixel pitch) 

Contrast at the Nyquist Frequency 
One goal in this paper is to provide a method to measure the 

level of crosstalk in a camera sensor without the confounding 
effects of the lens MTF that is found, for instance, in knife-edge 
measurements. Contrast measured at the Nyquist frequency can be 
used to estimate pixel crosstalk. 
 

In the current method, interference fringes are produced by 
splitting a laser beam into two channels that are projected directly 
onto the sensor; the overlapping beams will produce the sine-wave 
fringes at the sensor. The two-beam interference equation for 
monochromatic light is: 
 
𝐼 𝑥, 𝑦 = 𝐼! + 𝐼! + 2 𝐼!𝐼!cos (𝜙! − 𝜙!), 
 
Where  𝐼! and 𝐼!  are the two beam irradiances, φ1 and φ2 are the 
phases of the two beams, and I is the resulting irradiance over 
position (x, y). If it is assumed that 𝐼! and 𝐼! are equal, the 
equation becomes: 𝐼 = 2𝐼!(1 + cos Δ𝜙 ). 
 

At the sensor, the fringe signal is integrated (spatially 
discretized) by the pixels, and windowed by the sensor size. We 
consider an optical signal that is formed on the sensor at the 

54
IS&T International Symposium on Electronic Imaging 2017

Digital Photography and Mobile Imaging XIII



 

 

Nyquist frequency. The photon integration produces a sensor 
signal of reduced amplitude, as shown here in Figure 7. The 
integration and discretization process means that the resulting 
sensor signal is not shift invariant. 
 

 
Figure 7a. Fringe signal as it will be integrated. Contrast = 1. 
 

 
Figure 7b. Sensor signal, [0.8183, 0.1817], for the integrated fringe signal in 
(7a). Contrast = 2/p. 
 

In the following example, the fringe signal will be 
characterized as sin 𝜔𝑥 , where 𝜔 = 2𝜋 𝑐𝑦𝑐𝑙𝑒𝑠 𝑝𝑖𝑥𝑒𝑙  for the 
Nyquist frequency. For this initial consideration our sensor is 
assumed noise-free, crosstalk-free and pixel active area has width 
equal to pitch.  The contrast in the sensor signal in the interval is 
related to contrast in the fringe signal at 0 phase (sine phase) by a 
factor of 2/π, as will be shown.  
 

The x values are pixel boundaries, e.g., 0-1, 1-2, 2-3, etc.:  
 

sin 𝜔𝑥 𝑑𝑥 = −
1
𝜔
cos 𝜔𝑥 + 𝑘 

𝜔 = 2𝜋 𝑐𝑦𝑐𝑙𝑒𝑠 𝑝𝑖𝑥𝑒𝑙  
𝑎𝑡 𝑁𝑦𝑞𝑢𝑖𝑠𝑡 𝜔 =  2𝜋 . 5 = 𝜋 

𝑓𝑟𝑖𝑛𝑔𝑒𝑆𝑖𝑔𝑛𝑎𝑙 =
sin (𝜔𝑥)

2
+ .5 

 
sin 𝜋𝑥

2
+ .5  𝑑𝑥 =

1
2

!

!
−
1
𝜋
cos 𝜋 ∙ 1 +

1
𝜋
cos 𝜋 ∙ 0 + .5

=
1
𝜋
+ .5 =  0.8183 

And 
sin 𝜋𝑥

2
+ .5 𝑑𝑥 =

1
2
−
1
𝜋
cos 𝜋 ∙ 2 +

1
𝜋
cos 𝜋 ∙ 1 + .5

!

!

= −
1
𝜋
+ .5 = 0.1817 

 
 

That is, the amplitude of the sensor signal is 1/π, and where 
maximum contrast in the fringe signal equals 1, maximum contrast 

in the integrated sensor signal equals (1/π) / .5 = 2/π = 0.6366 for a 
noise-free, crosstalk-free sensor with 𝐼! = 𝐼!. 
 

Unequal-intensity beams: fringe signal contrast 
 

Unequal-intensity beams affect the contrast of the fringe 
signal, as shown in the following derivation. 
 

Maximum and minimum of the fringe signal are: 
 

𝐼!"# = 𝐼! + 𝐼! + 2 𝐼!𝐼!𝑐𝑜𝑠 0 = 𝐼! + 𝐼! + 2 𝐼!𝐼! 
𝐼!"# = 𝐼! + 𝐼! + 2 𝐼!𝐼!𝑐𝑜𝑠 𝜋 = 𝐼! + 𝐼! − 2 𝐼!𝐼! 

𝐶 =
𝐼!"# − 𝐼!"#
𝐼!"# + 𝐼!"#

=
4 𝐼!𝐼!
2 𝐼! + 𝐼!

=
2 𝐼!𝐼!
𝐼! + 𝐼!

 

 
Clearly, the contrast C will equal 1 only when 𝐼! = 𝐼! ; the 

greater the inequality the smaller C will be. 

Unequal-intensity beams: sensor signal contrast 
 

Spatially discretized signal at Nyquist with zero sine phase: 
 

𝐼 𝑑𝑥 
!

!
= 𝐼! 𝑑𝑥 +   𝐼! 𝑑𝑥 

!

!
+ 2 𝐼!𝐼!𝑠𝑖𝑛 𝜋𝑥  𝑑𝑥 

!

!

!

!
 

𝐼 𝑑𝑥 
!

!
= 𝐼! 𝑑𝑥 +   𝐼! 𝑑𝑥 

!

!
+ 2 𝐼!𝐼!𝑠𝑖𝑛 𝜋𝑥  𝑑𝑥 

!

!

!

!
 

 
I1 and I2 are constants, so  

𝐼 𝑑𝑥 
!

!
= 𝐼! + 𝐼! + 2 𝐼!𝐼!

1
𝜋

−cos 𝜋 + cos (0)

= 𝐼! + 𝐼! + 2 𝐼!𝐼!
2
𝜋

 

𝐼 𝑑𝑥 
!

!
= 𝐼! + 𝐼! + 2 𝐼!𝐼!

1
𝜋

−cos 2𝜋 + cos (𝜋)

= 𝐼! + 𝐼! + 2 𝐼!𝐼! −
2
𝜋

 

 

𝐶 =
𝐼!"# − 𝐼!"#
𝐼!"# + 𝐼!"#

=
4 𝐼!𝐼!

2
𝜋

2 𝐼! + 𝐼!
=

2 𝐼!𝐼!
𝐼! + 𝐼!

2
𝜋

 

 
Again, C will be largest when 𝐼! = 𝐼!, although in this case the 
maximum is 2/π. 

A numerical example of the effect of unequal beam strength is: 

𝐼! = .5𝐼!   →    
2 𝐼!𝐼!
𝐼! + 𝐼!

=
2 . 5
1.5

= 0.94 

 
That is, when one beam is half the strength of the other, the 
maximum contrast has been reduced by 6%.  
 

Generally, if the ratio of unequal beam intensities 𝐼!: 𝐼! = 𝑅, 
choosing for simplicity the version of the ratio that is < 1, then the 
maximum contrast will be reduced by a factor of 
𝐾 =  2 𝑅 1 + 𝑅 . It’s easy to see that 0 < K < 1. The function   
K (R) is shown in Figure 9. Notice that above R = 0.5 the amount 
of contrast reduction is very little, for example when R=.753 the 
contrast is reduced by less than 1%. 
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Figure 9. The function 𝐾 (𝑅) =  2 𝑅 1 + 𝑅 . 
 

When the phase is not zero for a signal at Nyquist, the 
amplitude and the contrast will be less, as in this example where 
phase is -1/4 pixel: 
 

sin 𝜋𝑥
2

+ .5 𝑑𝑥
!!!/!

!/!

=
1
2
−
1
𝜋
cos 𝜋 ∙ (1 +

1
4
) +

1
𝜋
cos 𝜋 ∙

1
4

+  .5 =
2
2

𝜋
+ .5 

and 

sin 𝜋𝑥
2

+ .5 𝑑𝑥 =
!!!/!

!!!/!
 
− 2

2
𝜋

+ .5 

Amplitude = 
!
!

!
= 0.2251 , contrast = 0.2251/.5 = 0.4502, or !

!
, 

compared to !
!
  for the 0-phase fringes. 

For phase = ½ pixel, the integral for pixel 1 will equal .5, for 
pixel 2 will also equal .5, so amplitude will be 0; dc will be .5; that 
is, contrast will equal 0. The sensor sees a uniform gray with no 
contrast. This non-shift-invariance of the signal is an important 
confounding factor that must be dealt with. 
 

Contrast at Nyquist 
 

The contrast at Nyquist frequency can be computed reliably if 
we shift slightly away from that frequency in both directions, and 
average. This avoids the phase (shift) dependence. The signal can 
also be corrected for the unequal beam intensities using the 
coefficient K derived from sensor outputs for single-beam 
illumination. We can also apply a method that directly computes 
average contrast instead of maximum contrast. 
 

One of the two captured "near-Nyquist" images is shown in 
Fig 10 for illustration: 
 

Figure 10. Image captured close to Nyquist 
 

To directly compute average contrast, we first compute 
𝐶 = 𝐼! − 𝐼!!! 𝐼! + 𝐼!!!  for every pixel, where the increment is 
in the horizontal direction. This gives us per pixel contrast for the 
whole image. Then we compute the average contrast for the first 
image, say the one slightly below Nyquist. The same is computed 
for the image at slightly above Nyquist. 

 
The two average contrasts are 0.5018 and 0.4786. 

 
Next we compute the correction factor 𝐾 =  2 𝑅 1 + 𝑅 , 

where R is computed from the two beam intensities. The correction 
factors are 0.92 and 0.91. The corrected contrasts are 0.5454 and 
0.5259, and their average is 0.5356, which is our final result for 
contrast at Nyquist. 
 

The Fourier contrast at Nyquist using the nearest 
measurements above and below the Nyquist frequencies are 
0.5382and 0.5122, averaging to 0.5252. 
 

If there were no crosstalk or other factors, the contrast would 
have to be 2/π = 0.637, assuming fill factor equal to 1. Knowledge 
of pixel shape or other methods can be used to estimate fill factor 
and theoretical MTF at Nyquist.   
 

As a final result, the pixel crosstalk results in a contrast 
between 0.536 and 0.523 according to our two different methods, 
while the theoretical no-crosstalk contrast would be 0.637. 

Comparison with Slanted Edge Method  
 
In order to validate our results in relation to established prior work 
[2, 3, 4], we performed a lens-free slanted edge experiment with 
our sensor. A razor blade, carefully cut as a short piece, was placed 
on the sensor such that the sharp edge touches the silicon die. As in 
the previous sections, a XIMEA CMOS sensor MQ013RG-E2 was 
used. The sensor was illuminated using a parallel beam produced 
with the same 633 nm HeNe laser. We have captured 6 images of 
the shadow of the sharp edge rotated to different angles relative to 
the vertical axis of the sensor (0.8º, 2º, 10º, 92º, -8º, and -101º).  
 
We used Imatest Software [4] following ISO 12233 standard [3] to 
compute the sensor MTF. The software produced 6 different MTF 
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plots covering spatial frequencies from zero to 2*Nyquist 
frequency. Figure 11 summarizes the results, where the bars on the 
Slanted Edge plot indicate standard deviation error computed from 
those 6 measurements. The bars on our interferometric Michelson 
contrast plot indicate the errors of our method.  
 

We see that the error in our interferometric method was 
similar to or smaller than the error in the Slanted Edge method, 
especially at high frequencies. We actually cover frequencies much 
above Nyquist, which are not computed by the Imatest software. In 
general, the Slanted edge method has noise and interpolates the 
results at high frequencies. We do not measure very low 
frequencies in our current experimental setup.  
 
At low and high frequencies we observe a match between the two 
methods within the error. However, around Nyquist our method 
tends to have higher contrast values than the Slanted Edge method. 
We can suggest two reasons for this discrepancy. (1) The slanted 
Edge method underestimates contrast when working with signal 
with high signal to noise ratio. The drop in MTF could be up to 
10% [2]. (2) A dust particle or some curvature of the razor blade 
could bring it a few microns above the silicon die and produce soft 
shadow which would be interpreted as lower MTF. 
 

 
Figure 11. Comparison of the MTF measured with Michelson contrast and 
Slanted Edge methods.  

Conclusion 
 

We have built an interferometer for measuring sensor MTF. 
The interferometer creates fringes projecting light from pinholes 
directly on the sensor without passing through any optics. In this 
way we remove speckle and ghost fringes occurring from multiple 
reflections in glass elements.  

The slanted edge method uses a razor edge that is projected 
by a lens system onto the sensor. With this approach, the lens 
influences the MTF. Our interferometric method is lens free, and in 
this way it is much more precise, not involving any lens MTF or 
issues of focusing. Also, we cover much wider range of 
frequencies, reaching several times the Nyquist.  

Alternatively, the slanted edge method may use an edge 
physically touching the surface of the sensor (as above) or 
depositing metal mask on the surface of the sensor. This runs the 

risk of destroying or rendering the sensor not useful for capturing 
images. In comparison, our interferometric setup is non-
destructive, as we do not use physical edges and do not touch the 
surface of the silicon.  

Two computational methods of measuring MTF were 
proposed: Michelson contrast and Fourier contrast. Independently, 
we have developed a computational method for contrast at the 
Nyquist that will be most useful for evaluating crosstalk. Our 
results for a CMOS sensor suggest substantial crosstalk that 
reduces the contrast at Nyquist from the ideal 0.637 to 0.536.  

Sensor MTF is affected by both optical crosstalk and 
electrical crosstalk, each of which we want to quantify 
independently. For future work we are planning measurement of 
contrast based on radioactive sources which would single out the 
electrical crosstalk. Preliminary results with two radioactive 
sources suggest little or no electrical crosstalk, which would 
indicate that for our sensor crosstalk is mainly optical. Separation 
between electrical and optical crosstalk can also be achieved with 
measurements using lasers at different wavelengths, since 
penetration of light into silicon depends on the wavelength. 
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