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Abstract 

Defective pixels degrade the quality of the images produced by 

digital imagers. If those pixels are not corrected early in the image 

processing pipeline, demosaicing and filtering operations will cause 

them to spread and appear as colored clusters that are detrimental 

to image quality. This paper presents a robust defect pixel detection 

and correction solution for Bayer imaging systems. The detection 

mechanism is designed to robustly identify singlets and couplets of 

hot pixel, cold pixels or mixture of both types, and results in high 

defect detection rates. The correction mechanism is designed to be 

detail-preserving and robust to false positives, and results in high 

image quality. Both mechanisms are computationally cheap and 

easy to tune. Experimental results demonstrate the aforementioned 

merits as well as the solution outperformance of conventional 

correction methods. 

Introduction 
Digital imagers are widely used in everyday products, such as 

smart phones, tablets, phablets, notebooks, cameras, cars and 

wearables. Small form factor is the trend, and so the use of digital 

imaging systems having small sensors with small pixel sizes is 

inevitable. An important problem in the image processing pipeline 

[1] of those systems is the detection and correction of the defective 

pixels [2-12], which develop during and after the fabrication of the 

digital imager. The rates of those defects increase as the pixel size 

decreases [2-3]. If defect pixels are not corrected early in the image 

processing pipeline, demosaicing and filtering operations will cause 

them to spread and appear as colored clusters that degrade the image 

quality (IQ), as shown in figures (2), (3) and (6). 

Defect pixel identification can be performed at the factory 

during the digital imager manufacturing. Dark-frame calibration is 

typically performed to identify the hot pixels-Permanently saturated 

ones, or those that respond more strongly to illumination. Light-field 

calibration is performed to identify the cold pixels-Permanently 

black ones, or those that are less sensitive to illumination. However, 

such calibrations would require complex and expensive systems at 

the factory. In addition, the rates and visibility of the hot defects, the 

dominant defect type [2-7], increase as the ISO/exposure time 

increases [2-5] (as in low-light and ultra-low-light conditions), as 

illustrated in figure (1) for a certain low-cost 8 megapixel (MP) 

sensor. Furthermore, defect pixels develop over the imager lifetime 

[2-7], and, therefore, the static defect maps found by calibrations 

will not faithfully represent the sensor defective pixels over time. 

Hence, an algorithm that constantly identifies the defect locations 

and updates the sensor defect map is essential for high IQ. 

Defect pixel correction (DPC) is typically performed on the 

raw data coming from the sensor at an early stage in the image 

processing pipeline [1]. It is thus crucial that the correction 

mechanism does not introduce any artifacts that could later be 

amplified by the subsequent processing blocks, and hence degrade 

the IQ. Because the defect pixels are caused by a random process [4-

6], they can appear as singlets, couplets, triplets or even clusters, of 

hot pixels, cold pixels or mixture of both types. There is generally 

more interest in the correction of singlets and couplets of defects, 

since imagers with triplets/clusters of defects are typically rejected 

in the production line. In addition, singlet/couplet correction would 

have little or no impact on the IQ, whereas triplet/cluster correction 

could affect the IQ negatively, especially at small features in the 

image. From the IQ tuning perspective, it is highly desirable that the 

DPC solution in the image processing pipeline would require 

small/no tuning effort. This guarantees consistent performance and 

IQ and faster turnaround time in an IQ tuning project. 

 
 

Figure 1. Hot defect rates for an example low-cost 8MP sensor using dark-
frame analysis 

Several solutions for defect pixel detection and correction have 

been published in the literature [7-12] or patented. In [7] a hot defect 

pixel tracing algorithm was presented. It determines the 

presence/absence of defect pixels by accumulating Bayesian 

statistics collected from a sequence of images taken over days. In 

[8] a hot defect pixel correction algorithm was proposed. It exploits 

a hot defect model calculated from dark-frame calibration and 

performs linear interpolation for defect correction. Bounding min-

max filtering of different kernel sizes and median filtering were 

exploited for defect pixel correction in [9] and [10], respectively. In 

[11] a more complex, multi-step interpolation algorithm based on 

natural image properties was introduced for defect correction. In 

[12] a highly complex, sparsity-based iterative interpolation scheme 

was proposed for the correction of defects. However, to the current 

knowledge, there is no published work that explicitly addresses the 

problem of automatic defect pixel detection and correction in a 

unified framework, offering a robust and computationally-efficient 

solution for real-time and resource-constrained imaging systems.  

In this paper, a robust defect pixel detection and correction 

solution for Bayer [13] imaging systems is presented. The detection 

mechanism is designed to robustly identify singlets and couplets of 

hot pixels, cold pixels or mixture of both types, and results in high 

defect detection rates. The correction mechanism is designed to be 

detail-preserving and robust to false positives, and results in high 

IQ. Both mechanisms are computationally cheap and easy to tune. 
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In addition, the proposed solution does not require multi-image 

processing, nor pre-knowledge of the sensor defect parameters nor 

pre-calibration to identify the defect positions. The aforementioned 

merits make the proposed solution attractive for diverse real-time 

Bayer imaging systems.  

The rest of the paper is organized as follows. First, the detection 

and correction mechanisms are described. The computational cost is 

then given for example design choices. Defect correction results are 

then demonstrated and discussed for images with simulated and real 

defects. Finally, conclusions are provided.  

Algorithm Description 

The Detection Mechanism 
The proposed solution operates on the raw data coming from 

the Bayer sensor. Let I(i,j) denote the pixel at the position (i,j) in the 

input raw Bayer image I, where i = [1, 2, …, H]; j = [1, 2, …, W]; 

H and W are the height and width of I, respectively. Let O(i,j) denote 

the pixel at the position (i,j) after DPC. Normalized intensities 

within the range [0.0,1.0] are assumed for both I and O. Let Iavg(i,j) 

denote the robust local average estimate of the same-color neighbors 

in an S×S window centered at (i,j). A pixel I(i,j) is identified as a 

defect if two conditions are met. 

 

Condition (A): The pixel is significantly different from its same-

color neighbors in the S×S Bayer window centered at that pixel. 

For hot pixels: I(i,j) > (1+M1)×Iavg(i,j)                                                 (1) 

For cold pixels: I(i,j) < (1-M1)×Iavg(i,j)                                              (2) 

 

Condition (A) is rather intuitive, since a defect pixel responds 

abnormally to illumination, and thus becomes visibly different from 

its neighbors. M1 is an algorithm parameter, which by design 

denotes the detection strength, and M1(0.0,1.0). The smaller M1 is, 

the stronger the detection is. Iavg should be insensitive to the presence 

of a hot/cold/mixed couplet in the same color channel, in order to 

enable the algorithm to robustly identify the defect, whether it is a 

singlet or belongs to a couplet in the same color channel. The 𝛼-

trimmed mean [14] is one example of how to calculate Iavg, because 

the highest and lowest 𝛼/2 values are discarded prior to computing 

the local average. For 𝛼 = 2 and S = 5, Iavg(i,j) could then be 

calculated as follows 

1. Sorting the eight same-color neighbors of I(i,j),  (i,j), where  

 (i,j) = {I(i-2,j-2), I(i-2,j), I(i-2,j+2), I(i,j-2),  

                        I(i,j+2), I(i+2,j-2), I(i+2,j), I(i+2,j+2)}                 (3) 

2. Discarding the maximum and minimum values  

3. Calculating Iavg(i,j) by averaging the remaining six values 

Condition (B): In the 3×3 Bayer window centered at the pixel, the 

local brightness difference at the pixel is significantly higher than the 

smallest local brightness difference for each color channel, for hot 

pixels. Conversely, for cold pixels, the local brightness difference at 

the pixel is significantly lower than the largest local brightness 

difference for each color channel. 

For hot pixels:    

 dlb (i,j) > M2×min(dlb (i,j-1), dlb (i,j+1))                                        (4) 

dlb (i,j) > M2×min(dlb (i-1,j), dlb (i+1,j))                                          (5) 

dlb (i,j) > M2×min(dlb (i-1,j-1), dlb (i-1,j+1),  
                                      dlb (i+1,j-1), dlb (i+1,j+1))                                 (6) 

For cold pixels: 

dlb (i,j) < M2×max(dlb (i,j-1), dlb (i,j+1))                                      (7) 

dlb (i,j) < M2×max(dlb (i-1,j), dlb (i+1,j))                                   (8) 

dlb (i,j) < M2×max(dlb (i-1,j-1), dlb (i-1,j+1),  

                              dlb (i+1,j-1), dlb (i+1,j+1))                             (9) 

 All the conditions in (4)-(6) must hold for condition (B) to be true 

for hot pixels. Similarly, all the conditions in (7)-(9) must hold for 

condition (B) to be true for cold pixels. dlb(k,l) is the local brightness 

difference at (k,l), which is calculated as dlb(k,l) = I(k,l)-Iavg(k,l).  

 Because a defect pixel is visibly different from its neighbors, it is 

expected that the local brightness difference measured at the defect 

location will be considerably different from that at the other pixel 

locations in a very small neighborhood of the defect. Condition (B) 

is imposed, therefore, to differentiate between a defect and a small 

image feature/detail, thus enabling the algorithm to be robust against 

false positives. The use of the min operation in (4)-(6), for hot pixels, 

and the max operation in (7)-(9), for cold pixels, enables the 

algorithm to robustly identify the defect, whether it is a singlet or 

belongs to a hot/cold/mixed couplet in different color channels. M2 is 

an algorithm parameter, which by design denotes false positives 

control, and M2[1.0, U], where U is an upper bound. The larger M2 

is, the weaker the detection is and the less the false positives are. 

The Correction Mechanism 
Defect pixel correction is performed on the raw data at an early 

stage in the image processing pipeline. Hence, it is essential that 

defect correction does not introduce artifacts that could later be 

amplified by subsequent processing. Conventional correction based 

on linear interpolation of the defect pixel same-color neighbors [8] 

is not a robust approach, since one or more of the neighboring pixels 

might be defective too. Figure (2) depicts an example defect 

correction based on averaging of the same-color neighbors of the 

identified defects. As shown, the hot couplets were not corrected 

cleanly, and subsequent demosaicing and filtering in the pipeline 

caused the correction artifacts to spread and degrade the IQ.  

Correction using the median of the same-color neighbors [10] 

of the defect pixel would be robust to the presence of couplets, but 

it could result in noticeable artifacts when the defects or false 

positives fall on the high-contrast edges or corners [12]. An example 

defect correction using the median of the same-color neighbors of 

the identified defects is depicted in figure (3). As shown, the mixed 

couplet was corrected cleanly. The false positives at the high-

contrast edges, however, were corrected, leaving noticeable artifacts 

that were later amplified by subsequent processing in the pipeline, 

resulting in an unacceptable IQ.  

 In the proposed solution, the correction mechanism aims to 

replace the detected defect pixel with a robust, detail-preserving 

estimate. To achieve this goal, the responses of the identified defect 

to a set of directional filters are first calculated to find the image 

feature direction at the pixel location. A directional estimate along 

the feature direction is then used to correct the pixel. If the directional 

estimate does not result in a clean correction, for example because 

the detected defect pixel belongs to a couplet along the feature 
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direction, a robust non-directional estimate is used instead. This 

strategy preserves the image details, and enables the algorithm to 

correct couplets properly and to be robust against false positives.  

 Figure (4) depicts an example set of directional filters. The 

selection of the weights of those filters is motivated by line detection 

[14]. The responses of the identified defect pixel I(i,j) to the filters 

can be calculated via 2D convolution. 

Rh(i,j) = I(i,j)Fh                                                                                                       (10) 

Rv(i,j) = I(i,j)Fv                                                                                                       (11) 

R45(i,j) = I(i,j)F45                                                                                                    (12) 

R135(i,j) = I(i,j)F135                                                                                                (13) 

 Rh, Rv, R45 and R135 are the filter responses. The feature direction 

at the identified defect pixel I(i,j) can be restricted to one of the 

directions indicated by the filters, or can be computed as a function 

of all directions. If only the directions in figure (4) are allowed, and 

if Rmax(i,j) denotes the maximum of the responses in (10)-(13), and 

Rmin(i,j) denotes the minimum of them, then the image feature 

direction at the identified defect pixel I(i,j) is found as the one whose 

filter response is the maximum for hot pixels (or the minimum for 

cold pixels.) This procedure is described below.  
 

For hot pixels:  

If Rh(i,j) = Rmax(i,j)  Feature direction is horizontal  

If Rv(i,j) = Rmax(i,j)  Feature direction is vertical  

If R45(i,j) = Rmax(i,j)  Feature direction is 45 diagonal   

If R135(i,j) = Rmax(i,j)  Feature direction is 135 diagonal   
 

For cold pixels:     

If Rh(i,j) = Rmin(i,j)  Feature direction is horizontal  

If Rv(i,j) = Rmin(i,j)  Feature direction is vertical  

If R45(i,j) = Rmin(i,j)  Feature direction is 45 diagonal   

If R135(i,j) = Rmin(i,j)  Feature direction is 135 diagonal   

 
 
 

Figure 4. Example set of directional filters 

 If the responses to two/more of the filters are the same as the 

maximum value for hot pixels (or the minimum value for cold 

pixels), the robust non-directional estimate is used in the correction.   

 The directional estimate, ID(i,j), along the image feature direction 

can be calculated as follows    

Horizontal:  ID(i,j) = Ih(i,j) = 0.5×(I(i,j-2)+ I(i,j+2))               (14) 

Vertical: ID(i,j) = Iv(i,j) = 0.5×(I(i-2,j)+ I(i+2,j))                       (15) 

45 : ID(i,j) = I45(i,j) = 0.5×(I(i-2,j+2)+ I(i+2,j-2))                   (16) 

135 : ID(i,j) = I135(i,j) = 0.5×(I(i-2,j-2)+ I(i+2,j+2))              (17) 

where Ih(i,j), Iv(i,j), I45(i,j) and I135(i,j) are directional averages. It is 

essential that the non-directional estimate, IND(i,j), does not result in 

artifacts, which could later be amplified by subsequent processing in 

the pipeline. IND(i,j) can be calculated as follows  

For hot pixels: IND(i,j) = I2max(i,j)                                                   (18) 

   
                         

Figure 3. The result of different defect correction mechanisms for an image with simulated defects at (M1, M2) = (0.4, 10.0) 
Left: No correction, middle: median-based correction, right: proposed correction (M3 = 0.4) 
 

   
                          
Figure 2. The result of different defect correction mechanisms for an image with simulated defects at (M1, M2) = (0.4, 10.0) 

Left: No correction, middle: averaging-based correction, right: proposed correction (M3 = 0.4) 
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For cold pixels: IND(i,j) = I2min(i,j)                                                  (19) 

where I2max (i,j) and I2min (i,j) denote the second maximum and second 

minimum of  (i,j), respectively. The non-directional estimate in 

(18)-(19) results in a robust correction, especially if the pixel belongs 

to a hot/cold/mixed couplet along the identified direction. 
 As mentioned earlier, the algorithm checks if the directional 
estimate would result in a clean correction; i.e., it is an estimate that 
is not visibly different from its same-color neighbors. If it does not 
result in a clean correction, the robust non-directional estimate is used 
instead. This procedure is described below.  

For hot pixels:  

If       ID(i,j) > (1+M3)×Iavg(i,j), then O(i,j) = IND(i,j) 
Else   O(i,j) = ID(i,j)                                                            (20)   

For cold pixels:  

If       ID(i,j) < (1-M3)×Iavg(i,j), then O(i,j) = IND(i,j) 
Else   O(i,j) = ID(i,j)                                                            (21) 

 M3 is an algorithm parameter, which by design balances the 

selection between the directional and non-directional corrections, and 

M3(0.0,1.0). Defect correction is performed sequentially, in a 

raster-scan order. Hence, the corrected pixel is used as input for the 

next detection. If a pixel I(i,j) is not identified as a defect, then no 

correction is performed on that pixel; i.e. O(i,j) = I(i,j).  

Computational Cost 
The computational cost of the proposed solution varies with the 

choices made about S, the robust local average estimate, the 

directional filters, and the directional and non-directional estimates. 

However, the cost is generally small, due to the algorithm simplicity. 

To give an idea about the low complexity of the proposed solution, 

the cost will be presented here given some assumptions about the 

detection and correction mechanisms.  

For the detection, let us assume that S = 5 and that 𝛼-trimmed 

mean with 𝛼 = 2 is used for calculating Iavg. For the correction, let 

us assume that the filter set in figure (4) is used and that only four 

directions are allowed. Also, let the directional and non-directional 

estimates be defined as in (14)-(19). Examining the coefficients of 

the filters in figure (4), comparing the responses in (10)-(13) is in 

fact equivalent to comparing the directional averages, Ih(i,j), Iv(i,j), 

I45(i,j) and I135(i,j). This simple optimization reduces the complexity 

of finding the image feature direction.  

Given the above assumptions and optimization, the maximum 

per-pixel cost for defect detection and correction is depicted in table 

(1). In the cost estimate presented, it is assumed that a min or a max 

operation is implemented using 1 CMP and 2 MUXs. Also, one-time 

per-image calculations are not counted. 

Table 1: The per-pixel cost for example design choices  

Operation Detection Correction Total 

ADD 5 4 9 

SUB 1 0 1 

MUL 4 1 5 

CMP 34 8 42 

MUX 50 6 56 

SHIFT 1 4 5 

AND 6 0 6 

The Tunable Parameters and Tuning Strategy 
The algorithm has three tunable parameters. By design, M1 

controls the detection strength, M2 controls the amount of false 

positives, and M3 balances the selection between the directional and 

non-directional corrections. The IQ tuner would need to select the 

M1 and M2 values that result in the best tradeoff between defect 

correction and false positives. M3 should be tuned to be the same as 

(or close to) the value selected for M1. Tuning M3 is especially 

important in the presence of couplets, as the directional estimate 

might be biased toward the couplet direction. It is also possible to 

reduce the tunable parameters to only two, by setting M3 = M1.  

At high ISO/exposure time settings, as in low-light and ultra-

low-light conditions, the visibility/rate of the defects increase, and 

thus a small M1 value and a big M2 value should be used. Conversely, 

at low ISO/exposure time settings, as in bright scenes, the 

visibility/rate of the defects decrease, and thus a high M1 value and 

a small M2 value should be selected. M3 should be tuned in the same 

manner as M1. Linear interpolation of the three tunable parameters 

is performed to calculate their values at the capture conditions 

between the high and low ISO/exposure time settings. For a given 

sensor, it is also possible that the IQ tuner finds a universal 

parameter set that achieves the best IQ and balance between defect 

correction and false positives across different capture settings.  

Experimental Results 
For quantitative analysis and comparison purposes, the 

detection and correction results for a set of 10 test images with 

simulated defects are first presented and discussed. The images 

cover different scene contents and capture conditions, and each has 

a resolution of 3122(H)×4208(W); 13MP. Two of the images are 

partially depicted in figures (2) and (3). Using a defect pixel 

simulation model, hot and cold pixels were randomly generated and 

injected in each raw image. The simulated defects range from mild 

to strong ones, as depicted in figures (2) and (3). The percentage of 

the injected defects is approximately 0.1% of the image size, to 

increase the likelihood of creating hot/cold/mixed couplets. The 

design choices mentioned previously were used in generating the 

results presented.  

Let Nd and Ni denote the number of the defects injected in the 

image, and the number of the defects correctly identified by the 

algorithm, respectively. The detection rate (DR) is then defined as 

Ni/Nd. Let Nt and Nf denote the total number of pixels in the image, 

and the number of the false positives, respectively. The false 

positive rate (FPR) is then defined as Nf/Nt. Let Ec and Ef denote the 

average absolute correction error, and average absolute false 

positive error, respectively, which are defined as follows  

Ec = (1/Ni) |Io(k,l)- Ic(k,l)|  (k,l)                                           (22) 

Ef = (1/Nf) | Io(k,l)- Ic(k,l)|  (k,l)                                     (23) 

Io is the original (ground-truth) raw image without the injected 

defects, and Ic is the result of DPC of the image with the injected 

defects.  and  denote the collections of the positions of the Ni 

correctly identified defect pixels, and the Nf false positives, 

respectively. Table (2) depicts the DR and FPR values for the test 

images at different algorithm parameter values. The receiver 

operating characteristic (ROC) curves, averaged over the 10 test 

images, are depicted in figure (5). Tables (3) and (4) depict the Ec 

and Ef values, respectively, for the proposed solution for two M3 

values, 1.0 and 0.4, at (M1, M2) = (0.4, 10.0), and for the averaging-

based and median-based corrections at M3 = 0.4.  
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Figure 5. The average ROC curves for the proposed solution 

Table 3: The average absolute correction error (Ec) for the 

proposed, averaging-based and median-based corrections 

Image 
Index 

(0.4,10.0,1.0) (0.4,10.0,0.4) 

Proposed Proposed Averaging Median 

1 0.3793 0.3796 0.3852 0.3854 

2 0.3689 0.3691 0.3741 0.3741 

3 0.4258 0.4259 0.4319 0.4321 

4 0.3675 0.3677 0.3729 0.3731 

5 0.3676 0.3678 0.3747 0.3749 

6 0.3644 0.3647 0.3690 0.3691 

7 0.3924 0.3928 0.4009 0.4014 

8 0.3651 0.3654 0.3744 0.3749 

9 0.3822 0.3823 0.3885 0.3888 

10 0.3767 0.3769 0.3873 0.3875 

Table 4: The average absolute false positive error (Ef) for the 

proposed, averaging-based and median-based corrections 

Image 
Index 

(0.4,10.0,1.0)  (0.4,10.0,0.4) 

Proposed Proposed Averaging Median 

1 0.0498 0.0547 0.1145 0.1125 

2 0.0197 0.0268 0.0828 0.0596 

3 0.0329 0.0334 0.0518 0.0423 

4 0.0592 0.0645 0.1087 0.1215 

5 0.0480 0.0511 0.0891 0.0971 

6 0.0256 0.0306 0.0966 0.0658 

7 0.0224 0.0255 0.1011 0.1071 

8 0.0186 0.0214 0.1025 0.0472 

9 0.0454 0.0494 0.1076 0.0976 

10 0.0417 0.0423 0.0672 0.0639 

 

From the presented experimental results, a few observations are 

worth mentioning. Generally, the detection rate is high and the false 

positive rate is low. Most of the defects that were missed by the 

detection mechanism were of the mild type. The DR for image #7 

was the lowest among the test images. That image contained high-

frequency textured regions in which the defects were trapped. Since 

the detection mechanism strives not to detect very small features as 

defects, those trapped defects were not picked up.  

As designed, decreasing M1 results in stronger detection, and 

hence higher DR and higher FPR, since more pixels (both defects 

and false positives) are picked up to be corrected. At the same M1 

value, and as designed, increasing M2 provides more protection 

against false positives, and thus generally results in smaller DR and 

smaller FPR. As expected, decreasing M3 has a small impact on the 

Ec and Ef values, since it only affects the pixels at which a decision 

to use the non-directional correction was made. The proposed 

solution results in less Ec and Ef values compared to the averaging-

based and median-based corrections, due to its robust, detail-

preserving correction strategy.  

The predictable behavior associated with increasing/decreasing 

the parameters M1, M2 and M3 is one important feature of the 

proposed solution–Linear interpolation of the parameters, to derive 

their values between the high and low ISO/exposure time settings, 

would yield consistent DPC performance and IQ, as well as fast 

turnaround time in an IQ tuning project.  

The defect correction results for the proposed solution for two 

of the test images at (M1, M2, M3) = (0.4, 10.0, 0.4) were depicted in 

figures (2) and (3). This parameter set was selected via IQ tuning so 

as to achieve the best tradeoff between defect correction and detail 

preservation for the sensor used in capturing the test images. From 

the results depicted in figures (2) and (3), it is worth noting how the 

proposed detection mechanism was capable of picking up the 

hot/cold singlets and the hot/cold/mixed couplets. In addition, the 

proposed correction mechanism replaced the picked-up defect 

pixels by a clean, detail-preserving estimate, resulting in higher IQ 

compared to the averaging-based and median-based corrections.   

Figure (6) depicts example correction results for the proposed 

solution at M3 = 0.4, and the averaging-based and median-based 

corrections for an image with real defects captured by the same 

13MP sensor mentioned previously. The image was taken under 20 

lux, unity analog gain and 690 msec exposure time, to increase the 

likelihood of defect visibility. The same algorithm design choices 

mentioned perviously were used in generating the results. The defect 

pixel locations were identified by the proposed detection mechanism 

with (M1, M2) = (0.4, 10.0). From the depicted results in figure (6), 

it is observed that the proposed solution picked up and corrected the 

mild hot defect located on the left side of the “+” sign in the image. 

In addition, the solution resulted in better detail preservation and 

better robustness to false positives, in comparison to the averaging-

based and median-based corrections, which can be seen by 

examining the “C” and “O” letters. 

Table 2: The detection and false positive rates for example algorithm parameter values (M1, M2, M3)   

Image 
Index 

(0.8, 1.0, 1.0) (0.6, 1.0, 1.0) (0.4, 1.0, 1.0) (0.4, 5.0, 1.0) (0.4, 10.0, 1.0) (0.4, 15.0, 1.0) 

DR% FPR% DR% FPR% DR% FPR% DR% FPR% DR% FPR% DR% FPR% 

 1 92.9306 0.0036 96.0345 0.0110 98.4876 0.0615 98.1359 0.0097 97.4853 0.0047 96.5796 0.0034 

2 89.5727 0.0049 94.4963 0.0092 98.7299 0.0502 98.6985 0.0037 98.5809 0.0019 98.2360 0.0015 

3 99.2108 0.0024 99.5768 0.0084 99.7712 0.0431 99.7712 0.0159 99.2909 0.0118 97.9641 0.0105 

4 96.3141 0.0122 98.4598 0.0295 99.3412 0.1125 99.1720 0.0250 98.4420 0.0102 97.4359 0.0072 

5 96.7236 0.0121 98.4152 0.0362 99.4124 0.2006 99.0474 0.0439 97.9256 0.0165 96.6257 0.0111 

6 94.4199 0.0019 97.4727 0.0070 99.4495 0.0361 99.3160 0.0031 99.0742 0.0020 98.5153 0.0017 

7 82.6592 0.0144 89.6824 0.1003 95.8603 0.7006 94.6358 0.0191 93.1980 0.0080 91.9577 0.0060 

8 95.7929 0.0001 98.2227 0.0054 99.6136 0.1314 99.0899 0.0041 96.6601 0.0013 94.2474 0.0011 

9 91.0690 0.0015 94.9382 0.0080 97.8552 0.0612 97.5549 0.0055 96.8342 0.0027 95.6932 0.0021 

10 94.3148 0.0014 97.3210 0.0107 99.0363 0.0895 98.7003 0.0250 97.1176 0.0145 94.3678 0.0117 
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Conclusions  
In this paper, a robust defect pixel detection and correction 

solution was presented. The algorithm enjoys several features, 

which recommend it for diverse, real-time imaging systems that 

exploit Bayer sensors in the camera pipeline. The detection 

mechanism robustly identifies singlets and couplets of hot pixels, 

cold pixels or mixture of both types, and results in high detection 

rates. The correction mechanism is detail-preserving and robust to 

false positives, and results in high IQ. Both mechanisms are 

computationally cheap and do not require any pre-calibration or pre-

knowledge of the sensor defect positions or defect model 

parameters. The algorithm parameters are designed to have a 

predictable behavior. That makes them easy to tune, and guarantees 

consistent performance and IQ, and fast turnaround time in an IQ 

tuning project. Experimental results for images with simulated and 

real defects demonstrated the aforementioned merits of the solution, 

as well as its outperformance of conventional averaging-based and 

median-based corrections. The proposed solution will be improved 

to achieve close-to-perfect defect detection, especially in high-

frequency textured regions, and to also achieve higher correction 

accuracy.  
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Figure 6. The result of different defect correction mechanisms for an image with real defects at (M1, M2) = (0.4, 10.0) 
Left to right: No correction, averaging-based correction, median-based correction and proposed correction (M3 = 0.4) 
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