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Abstract
Many computer vision tasks such as segmentation, stereo

matching can be presented as a pixel labeling problem, which
can be solved by optimizing a Markov Random Field modeling it.
Most methods using this formulation treat every pixel as a node
connected to its neighbors. Thus the compute requirements are di-
rectly proportional to the image size. For example a 720p image
with 4-connectivity leads to 1 million nodes and 2 million edges.
This is further scaled by the number of labels. With increasing
resolution of cameras the traditional scheme does not scale well
due to high compute and memory requirements, especially in mo-
bile devices. Though methods have been proposed to overcome
these problems, they still do not achieve high efficiency. In this
paper we propose a framework for MRF optimization that signif-
icantly reduces the number of nodes through adaptive and intelli-
gent grouping of pixels. This reduces the problem size in general
and adapts to the image content. In addition we also propose a
hierarchical grouping of labels, allowing for parallelization and
thus suitable for modern processing units. We demonstrate this
novel framework for the application of RGB-D scene segmenta-
tion and show up to 12X speed-up compared to the traditional
optimization algorithms.

Introduction
Markov Random Fields (MRFs) have been widely used in

low-level computer vision such as image segmentation [8], image
restoration [3], and stereo matching [9]. These tasks can be pre-
sented as a pixel-labeling problem, where each pixel p ∈ P must
be assigned a label from known set L. The goal is to find a la-
beling f that assigns each pixel p ∈ P a label fp ∈ L, where f is
both piecewise smooth and consistent with the observed data. It
can be solved by minimizing a Markov Random Field modeling
the specific problem [1]:

E( f ) = Esmooth( f )+Edata( f ) (1)

Where Esmooth (smoothness term) measures the extent to
which f is not piecewise smooth, Edata (data cost) measures the
disagreement between f and the observed data. For two neighbor-
ing pixels p,q, the forms of Esmooth and Edata are typically [1]:

Edata( f ) = ∑
p∈P

Dp( fp) (2)

Esmooth( f ) = ∑
{p,q}∈N

V{p,q}( fp, fq) (3)

Among the various optimization methods, Graph-Cuts based
approaches have become the mainstream in the last decade, since
[1, 2, 3] proposed two algorithms (α−β swap and α expansion)
to solve the multi-label assignment problems. The two algorithms

can achieve a local minimum which is less than a constant factor
times the global minimum.

Even though Graph-Cuts based methods are powerful in
solving MRF, it does not scale well with increasing image res-
olution. The complexity of the optimization procedure, hence the
runtime and memory usage, are determined by three main fac-
tors: the number of nodes in the graph, the connectivity or edges
between nodes, and the formulation of the energy function using
the costs. To the best of our knowledge, most currently known
methods in literature treat every pixel of an image to be a node
and the connectivity is 4 to 8 neighbors. Thus the computing re-
quired becomes directly proportional to the image size. For ex-
ample a 720p image with 4-connectivity leads to graph of near 1
million nodes and 2 million edges. For high resolution images,
the optimization procedure could occupy large amount of mem-
ory, which will lead to poor memory accessing performance. In
addition the algorithms’ complexity grows exponentially with the
scale of the problem. In this paper we propose a framework for
MRF optimization that significantly reduces the number of nodes
through adaptive and intelligent grouping of pixels. This reduces
the problem size in general and also adpats to the image content.
In addition, we also propose a hierarchical grouping of labels, al-
lowing for parallelization during the optimization and thus more
suitable for modern processing units.

In order to make MRF or Graph-Cuts feasible for large scale
problems, many approaches have been proposed to reduce the
memory usage and speed up the optimization procedure. Mul-
tiresolution techniques [4, 5, 6] have been explored to reduce the
graph size for interactive segmentation algorithms. The “banded
graph-cuts” approach [5, 6] work on image pyramids where finer
level graphs are only contructed around a narrow band between
the binary label segmentation. The approach though effective for
specific binary image segmentation is not a general framework
for reducing the compute complexity. Lerme et.al [10] proposed
a strategy for reducing graphs by testing each node during its cre-
ation if it is really useful to the max-flow computation. Although
it reduced memory usage significantly, the speedup is only 1.7X
on the given example. Delong and Boykov [7] developed a par-
allelized max-flow algorithm yielding near-linear speedup with
the number of processor, however it’s speedup depends on the
number of cores on the device and it cannot reduce the memory
usage of constructed graphs. Methods such as those proposed
by Li et.al [11] uses super-pixels as nodes of the graphs, where
the super-pixels are generated using the color information in the
image. In our method nodes are non-uniform and are typically
much larger than super-pixels, making the method adapt to the
image complexity thus providing larger reductions for instance in
images with large portions of similar regions (in color, depth, tex-
ture, etc). Towards our second contribution of hierachical label
space for parallization, the closest work in literature is that pro-
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Figure 1: Overview of segmentation pipeline. The colors in the segmentation maps indicate the different labels/segments.

posed by Rastogi et.al [12]. However their formulation is still
over the pixels in the image. The hierarchy in [12] is essentially
a sub-sampling of the image resolution, while in our case it is in
the label space as detailed later.

In this work we propose a novel way to formulate the graph
structure for MRF optimization. It significantly reduces the num-
ber of nodes in MRF through adaptive and intelligent grouping
of pixels. In addition, a hierarchical label space is constructed to
allow for parallelization during the optimization. Our main con-
tributions include:

• Using the constructed data cost in eq(2) and neighborhood
costs in eq(3), we adaptively merge pixels into blocks, each
block becomes a node in the graph. This step is detailed in
section Adaptive Pixel Merging.

• Applying a hierarchical optimization strategy. In our current
implementation we employ a 2-stage optimization. This re-
duces the label search space for each stage, and allow for
parallelism. It is detailed in section Hierarchical Expansion.

We applied the proposed framework to RGBD image seg-
mentation pipeline (modeled by MRF and solved by Graph-Cuts).
We achieved up to 11X speedup for the optimization procedure,
with no change in result quality. In section Traditional Pipeline,
we will briefly introduce the traditional pipe line of Graph Cuts
based RGBD image segmentation. And in section Adaptive Pixel
Merging and section Hierarchical Expansion, we will introduce
our two strategies to speed up the MRF optimization respectively.
We provide quantitative comparisions in the Results section.

Traditional Pipeline
A common pipeline for segmentation using RGBD informa-

tion is shown in Fig.1. The input to the algorithm includes the
RGB color image, a disparity or depth map, and camera param-
eters of focal length and baseline from which the disparity was

Figure 2: Overview of the proposed MRF optimization frame-
work.

estimated. In the first stage, the input RGB image is filtered by
Gaussian blur filter and pyramid based mean shift filtering. The
operation helps to reduce noise and quantizes the color channel.
The world X, Y, Z coordinate maps are also calculated from dis-
parity map and calibration during this stage. In the next stage,
pre-segmentation is performed to generate a rough segmentation
(labeling) based on the depth distribution of the scene. We used
adaptive clustering to generate bins of depth with various ranges,
and these bins represent the labels which will be assigned to pix-
els. At the last stage, we set up the MRF and solve it using Graph
Cuts to obtain an optimal segmentation.

In further discussions we denote P as the set of pixels in
the image, L = {L1,L2, ...,LK} the set of labels corresponding to
the depth bins, and f is the labeling/mapping that assigns a label
fp ∈ L to each pixel p ∈ P. The term Edata is calculated based on
the world X, Y, Z coordinates, position and color of each pixel. In-
tuitively it measures the cost of assigning a given label to a given
pixel. The term Esmooth is calculated based on the differences
of world X, Y, Z coordinates, and colors between two neighbor
pixels. This term maintains smoothness (same label) over two
neighboring pixels which have similar color and/or depth.

Once we solve the above optimization, we obtain the final
segmentation or labeling as shown in Fig.1. In this approach: P,
the set of nodes, is the same as the set of pixels in an image. Thus
for a 1280x720 pixel image, it will contain nearly 1 million nodes.
And as the neighborhood N is defined as edge between the pix-
els, with 4-Neighbor connecting, the graph will contain nearly 2
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(a) the original image

(b) Merged blocks
Figure 3: Merging results

million edges. The alpha-expansion is iteratively applied until the
convergence of Eq.1 (that is, change in total energy between two
iterations is below a set threshold). Each iteration is a binary cut
for a given label Li and all other labels from set L, thus K expan-
sions are done for K labels. This large formulation (K iterations
for graph of millions of nodes and edges) contributes to the long
runtime and memory consumption.

To handle the above problems, we designed and imple-
mented two optimizing strategies (gray-background boxes in
Fig.2), which will be introduced in the following sections.

Adaptive Pixel Merging
For a given application, data and smoothness cost are tuned

to provide meaningful output without under or over segmentation.
Thus to reduce the graphs to be constructed, we merge pixels
with similar distribution of data cost Dp(·) and large neighbor-
hood cost V(p,q)(·) into blocks that become nodes for the graph.
In our implementation the labels are generated through the pre-
segmentation using RGB and disparity/depth data. Fig.3 shows
an example of the merging result. Fig.3a is the input RGB image,
Fig.3b shows the blocks generated from the merging process de-
tailed further. Each colored block is a single node in MRF and the
black pixels indicate the ones that haven’t been merged. Note that
these are of irregular shapes and sizes in contrast to other known
methods in literature such as super-pixels[11]. Since super-pixels
are typically generated by using a fixed desired number for all
images, they cannot take advantage of larger homogenous regions
that our scheme is able to do.

We use the following merging criteria:

a. Pixels to be merged should have similar Dp and large

Figure 4: Label hierarchy.

neighborhood cost, that is, pixels p1 and p2 can be
merged only if there exists one label l such that Dp1(l) =
min(Dp1(·)) and Dp2(l) = min(Dp2(·)). At the same time,
V(p1,p2)( fp1, fp2)≥ threshold for fp1 6= fp2. This threshold
is calculated based on neighborhood cost histogram over all
pixels. In our implementation we choose the threshold to be
the one which is larger than 70% of all neighboring pixels
V(p,q)( fp, fq) values. This criteria is tuned to ensure we do
not suffer from over-segmentation (that is, many nodes each
of very few pixels).

b. Each block’s size cannot exceed a maximum value to avoid
under-segmentation. In our implementation, this value is set
to 10000 for 720p images.

After pixel merging, the resultant number of nodes in the
constructed graphs is only about 25% of the original approach
for the example in Fig.3. As the blocks now become the nodes
in graphs, we need to update the original data term and smooth-
ness term in eq(2) and eq(3): for each block the data terms of
the included pixels will be summed to form the data term of the
block. For each pair of neighboring blocks, the updated smooth-
ness term is calculated by summing over the smoothness terms on
the boundary of the two blocks.

Hierarchical Expansion
In the traditional MRF and Graph Cuts scheme, the optimiza-

tion is run for all labels in each iteration. We propose a hierarchi-
cal expansion where the labels are grouped and the optimization
is run first to determine the group and then at the lower levels till
the final label set L is done. The number of levels in this hierar-
chy can be adapted for each application. In our implementation
we use a 2 level hierarchy of the label space as shown in Fig.4.

In Fig.4, we have 7 labels shown at the lowest level and 3
groups. A label can belong to one or more groups as indicated by
the non-colored labels (label 3,4 and 6 for example). The 2-level
alpha-expansion is applied as following:

a. Apply global expansion: Segment the nodes into groups
(groups 1-3 in our example)

b. Apply local expansion in parallel: Within each group, seg-
ment the nodes into individual labels.

Compared to flat label space this approach allows for par-
allelization. Thus our implementation can take advantage of the
multiple threads available in most modern multi-core processors,
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(a) input RGB data (b) input disparity data (c) pre-segmentation

(d) result of pixel-
merging

(e) result from traditional
pipeline

(f) result from the pro-
posed framework

Image resolution 1280×720
Number of labels (label groups) 124 (67)
Number of nodes after merging 315,260 (34%)
Optimization time - traditional 200.434 s
Optimization time - proposed 16.81 s
Speedup 11.92×

Figure 5: Results from case 1. Runtimes measured on Intel Core
i5 PC.

as the local expansions can be done in parallel. A simple way to
group the labels would be to group them randomly (and evenly)
into a specified number of groups. In this work, we employed a
more robust strategy: First, a rough segmentation is estimated by
a fast greedy approach, in which each node is assigned to the label
with minimum data cost Dp(·). Then based on the rough segmen-
tation, we build the label hierarchy using the following criteria: In
the rough segmentation, each label will occupy one or more areas
in the image. Assume that there two areas in the rough segmenta-
tion – A1 and A2, where label L1 is assigned to A1, and label L2
to A2. Whether L1 and L2 will be grouped is determined by the
following procedure: we calculate the sum of neighborhood term
between two labels (L1,L2) as:

Vsum = ∑
fp=L1, fq=L2,(p,q)∈N

V(p,q)( fp, fq) (4)

where N is the set of all neighboring pixel pairs, fp and fp are the
labels of pixels p and q in the rough segmentation. Then the two
labels (L1 and L2) can be combined in one group only when the

(a) input RGB data (b) input disparity data

(c) pre-segmentation (d) result of pixel-merging

(e) result from traditional pipeline(f) result from the proposed frame-
work

Image resolution 1280×720
Number of labels (label groups) 76 (61)
Number of nodes after merging 189,080 (21%)
Optimization time - traditional 54.92 s
Optimization time - proposed 10.43 s
Speedup 5.5×

Figure 6: Results from sample case 2. Runtimes measured on
Intel Core i5 PC.

following equation holds:

Vsum

A1+A2
≥ threshold (5)

The threshold is calculated according to the histogram of neigh-
borhood cost between all the labels (in the rough segmentation),
in our implementation, we choose it to be the 75% to 90% quan-
tile in the histogram. Initially, we create a new group for each la-
bel, and then add labels to groups when the above criteria meets.
Groups with large intersections are combined. The intuition be-
hind this procedure is that spatially non-interacting labels can be
part of non-overlapping groups as they are unlikely to have effect
on the alpha-expansion iterations. In addition, labels of pixels are
likely to interact in the iterations with neighboring pixels and their
labels, thus allowing for labels to belong to more than one group
ensures that it doesnt cut that interaction.

Both data term and smooth term need to be updated after la-
bel grouping. For each node, its data term to one group is defined
as the minimum data term of the included low-level labels. The
smoothness term in eq(3) related to label groups G1 and G2 is
defined as follows:

V(p,q)(G1,G2) = max
fp∈G1, fq∈G2

V(p,q)( fp, fq) (6)

Once all the levels in the hierarchy are optimized, we obtain
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(a) RGB with segmentation (b) result of pixel merging
Image resolution 1280×720
Number of labels (label groups) 54 (27)
Number of nodes after merging 98,659 (10.7%)
Optimization time – traditional (PC) 26.02 seconds
Optimization time – proposed (PC) 3.73 seconds
Speedup on PC 6.9×
Optimization time - traditional ( tablet) 40.62 s
Optimization time - proposed ( tablet) 6.84 s
Speedup on tablet 5.9×

Figure 7: Results from sample case 3. Runtimes measured on
Intel Core i5 PC and tablet with Intel Atom.

the final labeling for the input which determines the final seg-
mentation. As will be shown in the results, it offers significant
speedup compared to traditional formulation.

Results
We made quantitative comparison for a representative

dataset containing over 30 images with 1280 x 720 resolutions,
and average of about 105 labels. The tests were taken on two
platforms: (i) A PC with Intel core i5 Haswell processor (1.3GHz
X 4), 16G RAM; (ii) a tablet with Intel Atom processor (Dell
Venue 8). A sample set of cases are detailed in Figures 5 - 8.
The reported numbers were avergaged over multiple runs and the
cost function used for traditional and our pipelines were the same.
Overall for our datasets containing a wide variety of indoor and
outdoor scenes with varying number of labels, we observed:

a. Up to 12X speedup up for Graph Cuts optimization, with
8.54X on average.

b. Peak memory usage is 71% of the original method on aver-
age. In the traditional approach the peak memory usage is
over 900M,while in our framework peak memory usage is
about 640M.

c. We also verifed that the final energy after optimization is
almost same between the two approaches.

d. The runtime is reduced by 25% by using hierarchical expan-
sion in addition to pixel merging.

(a) RGB with segmentation

(b) result of pixel merging
Image resolution 1280×720
Number of labels (label groups) 30 (15)
Number of nodes after merging 79,576 (8.6%)
Optimization time - traditional (PC) 15.02 s
Speedup on PC 5.1×
Optimization time - traditional ( tablet) 20.48 s
Optimization time - proposed ( tablet) 4.34 s
Speedup on tablet 4.7×

Figure 8: Results from sample case 4. Runtimes measured on
Intel Core i5 PC and tablet with Intel Atom.

Conclusion
In this work we proposed a novel framework for fast MRF

optimization in computer vision problems. Though popular and
effective, graph-cuts based optimization for MRF do not scale
well with increasing image resolution. Previously proposed
schemes to reduce memory and/or time complexity for the op-
timization have been limited in their generality of application and
the total gain in compute efficiency for both time and memory.
To address the above shortcomings our framework applies two
strategies to speedup the MRF optimization procedure: an adap-
tive way of pixel merging and a hierarchy of label space. The
two contribute to significant reduction in memory requirements,
up to 12X speedup on mobile and PC platforms, and parallization
using multiple threads/cores in modern CPUs, without increasing
the final optimal energy (eq(1)). The generalitity of our frame-
work allows it to be applied to various computer vision problems
and target processing platforms.
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