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Abstract
3D cameras that can capture range information, in addition

to color information, are increasingly prevalent in the consumer
marketplace and available in many consumer mobile imaging
platforms. An interesting and important application enabled by
3D cameras is photogrammetry, where the physical distance be-
tween points can be computed using captured imagery. However,
for consumer photogrammetry to succeed in the marketplace, it
needs to meet the accuracy and consistency expectations of users
in the real world and perform well under challenging lighting
conditions, varying distances of the object from the camera etc.
These requirements are exceedingly difficult to meet due to the
noisy nature of range data, especially when passive stereo or
multi-camera systems are used for range estimation. We present
a novel and robust algorithm for point-to-point 3D measurement
using range camera systems in this paper. Our algorithm utilizes
the intuition that users often specify end points of an object of in-
terest for measurement and that the line connecting the two points
also belong to the same object. We analyze the 3D structure of the
points along this line using robust PCA and improve measurement
accuracy by fitting the endpoints to this model prior to measure-
ment computation. We also handle situations where users attempt
to measure a gap such as the arms of a sofa, width of a doorway
etc. which violates our assumption. Finally, we test the perfor-
mance of our proposed algorithm on a dataset of over 1800 mea-
surements collected by humans on the Dell Venue 8 tablet with In-
tel RealSense Snapshot technology. Our results show significant
improvements in both accuracy and consistency of measurement,
which is critical in making consumer photogrammetry a reality in
the marketplace.

Introduction
3D cameras that can capture range information (distance to

each point in a scene) in addition to color information are increas-
ingly prevalent today. Existing technology to generate 3D images
include stereo or multiple cameras (PointGrey Bumblebee, HTC
One M8, Fuji FinePix 3D W3, Dell Venue 8/10 with Intel Re-
alSense Snapshot technology), structured light systems compris-
ing projected light patterns and cameras (Intel RealSense, Kinect
for Xbox 360), time-of-flight cameras (Kinect for Xbox One) etc.
An important and interesting application enabled by 3D cameras
is photogrammetry or measurement, where the distance between
different points on an image can be measured in metric units [10].
Close range photogrammetry systems used in industrial or other
applications can be fairly complex systems and online systems
operating in real-time, in particular, suffer from reduced accuracy
and may require manual intervention [7, 12]. Proliferation of 3D
cameras in the consumer space make possible photogrammetry
of objects in consumer camera imagery with interesting appli-

cations in interior design, sports photography etc. In particular,
the user can specify two points in the image to measure the dis-
tance between them such as the height of a person, the height of
a skateboard jump, length of a piece of furniture etc. Essential
requirements in such consumer applications are accuracy and re-
peatability of the measurements and fast computation to enable
interactivity, which makes this a challenging problem similar to
online industrial photogrammetry.

Distance is typically measured by utilizing the range infor-
mation, along with geometric calibration information, to compute
the 3D coordinates of the points specified by the user using tri-
angulation [13]. The measurement can then be computed as the
Euclidean distance between these 3D points. However, such a
simple approach to measurement suffers from several drawbacks
and cannot deal with noisy range values which are quite common,
imprecise user inputs (for instance, when the specified points are
slightly away from object of interest and land in background ar-
eas) etc. The resulting inaccuracy and lack of repeatability when
the measurement is performed at different points on an object
leads to poor user experience and affects the success of consumer
photogrammetry applications. In many cases, the two points spec-
ified represent endpoints on an object of interest and all points ly-
ing between these endpoints also belong to the object of interest.
Further, real world objects that are being measured have a profile
that is linear along the measurement axis. We utilize these obser-
vations to develop an algorithm that can accurately estimate dis-
tance between two specified points. In this paper, we present this
algorithm for accurate consumer photogrammetry that can run at
interactive rates on a mobile device and also improves consistency
and repeatability. We implemented and tested the proposed algo-
rithm on the Dell Venue 8 tablet with Intel RealSense Snapshot
technology and the results show significant improvement in mea-
surement accuracy and consistency.

Motivation
Using simple triangulation to measure the distance between

two points can result in reduced accuracy and poor user experi-
ence in consumer applications. First, range information is quite
noisy and this is especially true in passive stereo or multi-camera
arrays which suffer from inaccuracies in texture-less and occluded
regions [11]. Another important source of error in these systems
is the quantization of disparity, which is usually computed at in-
teger (or up to quarter pixel) precision due to computational con-
siderations. Further, windowed correlation based range measure-
ment systems commonly used in stereo or structured light systems
often suffer from inaccuracy along object boundaries that corre-
spond to depth discontinuities [11]. This is particularly problem-
atic in photogrammetry applications as measurements are often
performed between boundary points on an object. Further, range
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information may be incomplete due to a number of reasons and
interpolation of range measurements can also result in inaccura-
cies. Finally, user input is often obtained in the form of clicks or
touch in consumer applications, which is prone to user error if a
point that is one or a few pixels away from the object of interest
being measured is specified. This results in points being speci-
fied on foreground or background regions adjoining the object of
interest, resulting in grossly inaccurate measurements.

Figure 1 shows an image and the corresponding disparity
map from a Dell Venue 8 tablet with Intel RealSense Snapshot
technology. A typical measurement application will display the
color image to the user to select points for measurement. Dis-
parity errors are visible along the boundaries of the target (espe-
cially at the bottom edge) and when the user selects points in these
regions, they get inaccurate measurements with simple triangu-
lation. Further, if the user attempts to repeat the measurement
by clicking on different points on the target (3 length measure-
ments and 3 width measurements illustrated in Figure 1), incon-
sistent results may be obtained. Disparity inaccuracies are more
pronounced under challenging lighting conditions and with lowly
textured objects, which are hard to control with real-world con-
sumer photography. Measurement errors tend to increase as the
distance of the measured subject from the camera increases [1].
All of these issues motivate the need for a robust, accurate and
consistent method for point to point measurement using consumer
range cameras to improve user satisfaction with the application.

In many cases, the two points specified by the user lie along
the edges of an object that is being measured and the points that lie
along the line joining these endpoints also belong to the same ob-
ject as illustrated in Fig. 1. In this instance, valuable information
can be obtained by analyzing the 3D structure of all points that lie
along this line. Further, real world objects that are being measured
often have a profile that is linear along the measurement axis. For
example, when humans are not too close to the camera, the 3D
points on the human appear planar in many range measurement
systems. This is also true with many commonly occurring rectan-
gular or polyhedral objects in the world such as buildings, furni-
ture, cars, photographs etc. and with many objects in man-made
environments [4]. We utilize these observations to improve the ac-
curacy and consistency of measurement. We find linear structures
using all the points that lie along the two endpoints selected for
measurement using robust Principal Component Analysis (PCA).
Measurement accuracy is enhanced by computing the Euclidean
distance between the endpoints after projecting them onto these
linear structures. One issue with our proposed approach is when
a user is attempting to measure a gap between objects such as
the arms of a sofa or the width of a doorway etc. In this case,
analyzing the 3D structure of points between the two endpoints is
counter productive. We also present a method to overcome this is-
sue. A detailed description of our proposed algorithm is presented
next.

Description
We describe the details of our algorithm in this section. We

first introduce some notation and describe measurement using tri-
angulation. We then describe our algorithm for 3D measurement,
which assumes that all points along the two specified endpoints
belong to the same object being measured. Finally, we describe a
method to determine if the user is trying to measure a gap between

Figure 1. Image and co-registered disparity map from a Dell Venue 8 tablet.

Disparity inaccuracies are visible along the edges of the target board, espe-

cially along the bottom edge. These will result in measurement inaccuracies

when the user selects points in these areas to measure the dimensions of

the target board.

objects, which invalidates our measurement assumption, and re-
vert to simple triangulation for measurement when this situation
is detected.

Notation
We first introduce some notation. LetI(x,y) denote a single

or multi-channel color image at pixel location(x,y) and letR(x,y)
denote the corresponding range image registered to the color im-
age. Note that we do not assume that the range information is
complete which can occur, for instance, when the range image and
the color image are acquired from different positions (for exam-
ple, in a structured light system) or in occluded/non-overlapping
regions in stereo camera systems where disparity estimation is in-
determinate. Letp1 = (x1,y1) andp2 = (x2,y2) denote two points
in the image specified by the user whose distance is desired to be
measured. We assume a pinhole camera model for the color cam-
era and that intrinsic calibration information is available in the
form of a projection matrixK. For a pinhole camera, the pro-
jection matrix takes the form in Equation 1 where(cx,cy) denotes
the principal point,( fx, fy) denotes the focal lengths andsdenotes
the skew. Many consumer digital cameras havefx = fy ands= 0.
Without loss of generality and for simplicity, we assume that the
skew component is 0 in this paper.

K =





fx s cx
0 fy cy

0 0 1



 (1)

Any point in the imagep = (x,y) with associated range in-
formationZ = R(x,y) is a projection of the 3D pointP given by:

P=





X
Y
Z



=





(x−cx)Z/ fx
(y−cy)Z/ fy

Z



 (2)

The simplest way to measure the distance between pointsp1
andp2 specified by the user is to compute the Euclidean distance
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Figure 2. Measurement of an oriented target board along its length.

between the corresponding 3D pointsP1 andP2 computed using
Eq. 2. This distanced is defined by:

d =
√

(X1−X2)2+(Y1−Y2)2+(Z1−Z2)2 (3)

As described earlier, this solution suffers from numerous
problems and we describe our proposed algorithm for measuring
the 3D distance between pointsp1 andp2 next.

Proposed Algorithm
We first sample all pixels along the line defined byp1 andp2

and attempt to fit a robust linear structure to these points. To ob-
tain the closest integer coordinates along this line, we sample the
image alongx if |p1.x− p2.x| > |p1.y− p2.y| and alongy oth-
erwise. Depending on the method employed to compute range,
3D coordinates can be obtained for all or a subset of points along
this line and we denote these points using{Li = (Xi ,Yi ,Zi), i =
1,2, . . .N}. Without loss of generality, we assume thatL1 = P1
andLN = P2. Range information may be unavailable at certain
pixel locations (for example, due to lack of texture or in occluded
regions in passive stereo/camera arrays) and we ignore these pix-
els. However, we do assume that range information forp1 andp2
is available or interpolated in some manner (for example, median
disparity in a window). The locations of the 3D points{Li} are
inherently noisy due to errors in disparity estimation, calibration
etc.

As motivated earlier, we assume that the 3D points{Li} lie
on an object whose 3D profile is linear. PCA can be used to find
linear structures in this data. However, traditional PCA is sensi-
tive to outliers in the data and not well-suited to the measurement
problem where outliers in the range data are commonly observed.
Range estimates from passive stereo systems in particular tend
to be noisy at object boundaries, which is often where points are
specified for 3D measurement. We propose utilizing robust PCA
to address the outliers and solve this problem.

Robust PCA has been studied in the literature and a number
of different methods to robustly perform PCA exist [6, 2]. One
approach replaces the standard covariance matrix in the PCA for-
mulation with a robustly estimated version. This approach works
well on data of small dimensionality (3D in our case) and we

adopt this method in our paper for this reason [14]. In particular,
PCA can be performed by computing the Eigen decomposition of
the covariance matrix of the data, where the first principal com-
ponent is given by the Eigen vector corresponding to the largest
Eigen value and so on. For robust PCA, we compute the mini-
mum covariance determinant (MCD) estimator of the covariance
matrix of the data, which is a highly robust estimator of multivari-
ate location and scatter [8]. Its objective is to findh observations
out ofN whose covariance matrix has the lowest determinant. We
utilize the Fast-MCD algorithm to find the MCD solution and this
algorithm is also able to detect an exact fit - i.e., when a hyper-
plane containingh or more observations is present in the data [9].
Our choice of the FAST-MCD algorithm was mainly motivated by
its speed of execution allowing for interactive speeds on a mobile
device.

Given the data{Li , i = 1,2, . . .N} andhwhich determines the
breakdown point of the estimator, the output of the FAST-MCD
algorithm is a robust estimate of multivariate location denoted by
T and multivariate scatter denoted byS. The algorithm operates
by initializing randomh− subsets from the data and performing
iterations on this data that are guaranteed to reduce the determi-
nant of the covariance matrix [9]. For small datasets, FAST-MCD
typically finds the exact MCD and for large datasets, it generates
fairly accurate results, although not guaranteed to be the exact re-
sult. An important advantage of the Fast MCD algorithm is that
it allows for exact fit situations whenh or more observations lie
on a hyperplane and still yields robust estimates of location and
scatter (which is singular in this instance) [9]. The exact fit situ-
ation is an important case in our measurement application as this
often occurs when the 3D points along the object being measured
appear planar, which occurs commonly as described earlier.

We utilize the robust PCA solution to project the 3D points
P1 and P2 onto the estimated linear structure to generate the
predicted 3D points denoted byP′

1 and P′
2. Whenever an ex-

act fit situation is detected, the Fast MCD algorithm can also
compute the equation of the hyperplane which we denote using
aX+bY+ cZ+d = 0. We first check ifa,b= 0, which implies
that the object has the same range measurement and that the hy-
perplane is defined byZ = − d

c . In this instance, we set theZ−
coordinate ofP1 andP2 to− d

c and re-compute the predicted points
P′

1 andP′
2 using this predicted range measurement in Equation 2.

If either a or b is not equal to 0, we project the pointsP1 and
P2 onto the hyperplane to compute the predicted pointsP′

1 andP′
2.

This can be done using simple geometry by finding the perpendic-
ular projection of a point onto a plane. Equations for computing
P′

1 are shown below andP′
2 is computed similarly.

t1 =
−aX1−bY1−cZ1−d

a2+b2+c2 (4)

P′
1 =





at1+X1
bt1+Y1
ct1+Z1



 (5)

Whenever a hyperplane is not found, the Eigen decomposi-
tion of Scan be used to compute the principal components of the
data. LetS=VΛVT denote the Eigen decomposition ofSand let
v0 denote the first principal component which is the Eigen vector
corresponding to the largest Eigen value. We then projectP1 and
P2 onto this principal component to obtain the projected pointsP′

1

22
IS&T International Symposium on Electronic Imaging 2017

Digital Photography and Mobile Imaging XIII



−200 0 200 400 600
2600

2800

3000

3200

3400

3600

3800

Y (mm)

Z
 (

m
m

)

 

 

Noisy 3D points
Predicted 3D points
Principal Component

Figure 3. Plot showing a Y-Z slice of the 3D points resulting from the

measurement in Figure 2. Blue circles show the noisy 3D points, green line

shows the principal component estimated by our algorithm and the red points

show the noisy points projected onto the principal component.

andP′
2.

P′
1 = T +[(P1−T) ·v0]v0 (6)

P′
2 = T +[(P2−T) ·v0]v0 (7)

The distance between the two pointsp1 andp2 specified by
the user is then given by the Euclidean distance betweenP′

1 and
P′

2. Note that our approach is equivalent to performing a robust to-
tal least squares (TLS) fitting using a linear model on{Li}, which
is appropriate since the variables along all 3 directions (X,Y,Z)
suffer from error in the measurement application [3, 1].

Figures 2 and 3 helps visualize how our algorithm works.
A measurement is performed along the length of the target board
shown in figure 2, which is oriented with respect to the camera.
Due to the difficulty of visualizing in 3D and since the X- coordi-
nate of this target is almost constant along its length, we show the
Y-Z slice of the resulting 3D points along the measurement line as
blue circles in Figure 3. Due to integer quantization of disparity,
the Z- component of the noisy points lie at four distinct depths.
Our algorithm is able to find the principal component of the data
points (depicted in green) and the re-projections of each of these
points onto the principal component are also shown in red. Our
algorithm is able to extract the 3D structure of the target board
very well and is hence able to improve measurement accuracy,
despite the noisy range data. One interesting point to note is that
although the target is planar, our algorithm does not detect a hy-
perplane in this data and instead fits a 3D line to the data using the
principal component. This is due to quantization of the 3D points
(particularly along the Z- coordinate due to integer quantization
of disparity) resulting in the fact that there is noh-subset of points
that lie exactlyon the oriented plane, which is necessary for the
Fast-MCD algorithm to detect a hyperplane.

Detecting gaps
Finally, we need to handle situations where the user mea-

sures a gap between different objects as illustrated in Figure 4,
which violates our assumption that the points along the line join-
ing the endpoints belong to the same object. We attempt to detect

Figure 4. Blue line shows the line joining two points indicated by user for

measurement. Green line segments show the two extensions analyzed to

detect gaps.

these situations when they occur and revert to basic triangulation
to compute the measurement in these instances. We utilize the
intuition that when the user is measuring a gap, the two points
specified for measurement arein front of the points that lie along
the line joining them. We construct a fixed-length line segment
from P1 along the lineP1P2 and away fromP1 as illustrated in
Figure 4 in green. We construct a similar line segment forP2.
Whenever the two line segments appear to be in front ofP′

1 and
P′

2 respectively, we conclude that a gap has been detected. To do
this, we compute a robust estimate of rangeZext

1 from the range
measurements in line segment nearP1 using the bisquare weight-
ing function and similarly forZext

2 [5]. If Zext
1 < Z′

1 andZext
2 < Z′

2,
we conclude that the measurement endpoints represent a gap and
we abandon refining the measurement betweenp1 and p2 using
our proposed method. Note that while we could have used ro-
bust PCA to determine the depth of the line segments too, we use
the simpler approach of robustly fitting the range due to the small
number of data points analyzed.

Results
We tested our algorithm on the Dell Venue 8 tablet with Intel

RealSense snapshot technology. A depth map is created for every
image captured on the tablet using the three cameras on the sys-
tem. A measurement application allows the user to select any two
points in an image using a touch interface and the computed mea-
surement is displayed to the user. Our proposed algorithm was
implemented and run on the Intel Atom Processor (Dual Core) on
the tablet. The runtime of the algorithm is variable and depends
on the data. Exact fit situations are detected very quickly and the
worst case runtime was measured to be 55ms on images of resolu-
tion 1280x720, which is well within requirements for interactive
applications.

We tested our algorithm on> 1800 measurements of the
length and width of a textured poster and the height of a human
on the 3D image captured by the Dell Venue8 tablet. A sample set
of seven measurements (3 each along the width and height of the
checkerboard and 1 of the human) is illustrated in Figure 1. The
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points used for measurement were manually clicked by human
users on the Dell Venue8 tablet device. The data was acquired at
different distances of the target from the cameras (typically at 2m,
4m, 6m and 7m) and under different lighting conditions (indoor,
mixed lighting and outdoor conditions) to validate its performance
in the real world. Some examples from our dataset are shown in
Figure 6.

For a ground truth distance ofg and a corresponding mea-
surementm, we compute measurement accuracy using:

A= 100−100

(

|g−m|

g

)

(8)

The results of using our algorithm to compute measurement
accuracy is illustrated in Figure 5. For a fair comparison and to
account for noisy disparity values, we compare against a method
that computes the median disparity in a window surrounding each
point and uses this value to determine the Euclidean distance be-
tween the points. Our method achieves a 2.6% overall improve-
ment in mean accuracy with a 5% reduction in standard devia-
tion. Accuracy is also shown separately for different distances of
the target from the camera (2,4,6 and 7m) and it is seen that the
accuracy improvement using our proposed algorithm increases as
the distance of the targets from the camera increases. At 6m and
7m, mean accuracy improves by approximately 4%. This is to be
expected since the accuracy of measurement decreases with in-
creasing target distance due to the inverse relationship between
disparity and depth.

We tested the gap detection algorithm qualitatively on a few
images by attempting to measure gaps and observed good perfor-
mance. For a more quantitative evaluation of false positives pro-
duced by the gap detection algorithm, we tested it on this data set
which does not contain any gaps. We set the length of the exten-
sion line segments to 25 pixels. Only 6.8% of 1873 measurements
were detected as gaps which represents reasonable performance
of the gap detection algorithm. Most erroneous situations where
gaps were detected (81%) occurred at target distances≥ 6m when
the disparity was noisy.

We need to explicitly select the parameterh, which deter-
mines the breakdown point of the Fast MCD estimator, in our
algorithm. Different range measurement systems have different

Figure 6. Test images at different distances of the target and under different

lighting conditions.

accuracies and these need to be taken into consideration in se-
lecting h, which directly corresponds to the expected number of
outliers in the system. In our experiments with the Dell Venue 8
3-camera system, we seth = 0.5N since we observed that con-
tention between the two camera pairs used in disparity estimation
often resulted in upto 50% outliers. For multi-camera systems,
h can be increased as the number of cameras increases since dis-
parity accuracy is expected to improve. This is also true of struc-
tured light or time-of-flight systems that use active illumination to
achieve better range measurement accuracy.

Finally, we would like to note that we also tested the sim-
pler approach of fitting a robust line to the depth values (or just
the Z- coordinate of the 3D point), rather than modeling the 3D
points themselves. While this approach does better than the basic
algorithm (mean accuracy improved by 0.6% on all the data), it
does not reach the level of performance of our proposed algorithm
which is better able to model the 3D structure of different objects
in the real world.

Conclusions and Future Work
We presented a robust and accurate method for point-to-point

measurement from 3D camera images in this paper. Our algo-
rithm runs at interactive rates (worst case runtime of 55ms) on a
mobile device. Our method was tested using images collected un-
der challenging conditions for the algorithm and found to improve
both the accuracy and consistency of measurement applications
significantly. We believe that these improvements are essential to
make consumer photogrammetry perform to the level of expecta-
tion of consumers and succeed in the marketplace. One aspect of
our work that can be improved upon is the gap detection algorithm
we use, whose performance can be improved using more complex
3D scene modeling. We would also like to extend our algorithm
to situations where a confidence map associated with the range in-
formation is also available. Finally, we would also like to extend
some of these ideas to photogrammetry and geometric modeling
of 3D videos.
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