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Abstract
We propose a novel hybrid framework for estimating a clean

panoramic background from consumer RGB-D cameras. The
method explicitly handles moving objects, eliminates distortions
observed in traditional 2D stitching methods and adaptively han-
dles errors in input depth maps to avoid errors common in 3D
based schemes. It produces a panoramic output which integrates
parts of the scene as captured from the different poses of the mov-
ing camera and removes moving objects by replacing them with
their correct background information in color and depth. A fused
and cleaned RGB-D has multiple applications such as virtual re-
ality, video compositing and creative video editing. Existing im-
age stitching methods rely on either color or depth information
and thus suffer from perspective distortions or low RGB fidelity.
A detailed comparison between traditional and state-of-the-art
methods and the proposed framework demonstrates the advan-
tages of fusing 2D and 3D information for panoramic background
estimation.

1. Introduction
Consumer and prosumer photography has seen an increase

in the last decade with a large share coming from mobile pho-
tography and social media. Capturing moments with family and
friends for quick sharing on the web is now being interjected with
the need to share creatively edited versions. For instance, cin-
emagraphs (sequences where the relative speeds of objects in the
scene have been changed from the original input) and video com-
positing are some of the popular video editing effects, but today
they require professional setup and manual effort. The availabil-
ity of 3D and multi-camera systems such as Intel RealSense [2]
and Google Tango [1] in mobile devices can help automate many
of these tasks. Many applications benefit from having a clean
RGB-D of the static scene background, for re-composition of ob-
jects or stereo view generation for VR applications. A clean and
panoramic background image (see Fig. 1) is defined as one that
retains the static background color and depth, and is composed
of all parts of the scene as revealed by a moving (panning or ro-
tating) camera. We develop a framework to estimate such a back-
ground from videos captured from handheld mobiles devices with
such RGB-D sensors. An overview of the proposed framework is
shown in Fig. 2.

2. Related work
Panoramic 2D image stitching has been extensively studied

and is now common in most mobile devices. Typically, a special
mode is activated to take multiple overlapping pictures or pan-
ning video of the scene, which are seamlessly stitched to form the
composite panorama [5, 12]. Most 2D based stitching methods
assume that the scene is sufficiently far from the camera or does
not contain many depth layers i.e. parallax can be ignored. This

assumption allows using affine or homography transforms for the
composition. However, if the scene is not roughly planar then
the homography assumption is violated and stitching artifacts like
broken image structures or ghosting due to moving objects appear.
A homography can also be applied if the camera undergoes a pure
rotation about the center of projection, however in practice this is
hard to achieve in hand-held captures. To alleviate these artifacts,
seam cutting approaches [4, 7] try to find the best possible seam
to stitch two images and use image blending [10, 6] to create visu-
ally appealing results. These methods are able to partially tackle
the misalignments given the underlying homography assumption.
Zaragoza et al [13] introduced the idea of location-dependent pro-
jective warps and Lin et al [8] used a smoothened affine trans-
form. These spatially-varying warping algorithms were shown to
handle parallax better than homography. However in [14] it was
demonstrated that the previous methods cannot address cases with
large parallax. Therefore, an improved local stitching method is
proposed which combines content-preserving warping and seam
cutting.

Recently, using depth information has become more popu-
lar due to the reduced cost of depth cameras [9]. Exploiting the
depth information overcomes the homography restriction and re-
duces the perspective distortions of 2D methods. Simultaneous
Localization and Mapping techniques are used for real-time cam-
era pose estimation, tracking and dense reconstruction of scenes.
Salas-Moreno et al [11] observed that many scenes consist of spe-
cific objects/structures and developed a 3D object based scene
representation. Newcombe et al [9] developed the first real-time,
dense volumetric scene reconstruction using a hand-held Kinect
depth sensor. Different from these 3D reconstruction and fusion
works which target high quality 3D scans of a scene, our work fo-
cuses on stitching regular user videos where each part of the scene
may be only seen for a few frames.

More related to our work, stereoscopic stitching [15] was
applied on the stereo disparity along with the two pairs of stereo
images. However, this method does not handle moving objects
which results in artifacts. As shown in Figs. 3 and 9, previous
works have errors when there are moving objects, large parallax,
or in the presence of common errors or missing depth data. We
propose a hybrid approach which deals with those problems and
produces visually pleasing outputs required for the previously de-
scribed creative media effects.

3. Overview of the proposed method and the
dataset

To the best of our knowledge this is the first method that
combines many sources of information: color, depth and object
segmentations to generate a clean panoramic color and depth im-
age from commodity 3D camera videos. An overview of the pro-
posed method is shown in Fig. 2. Given a new RGB-D frame, the
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Figure 1. Overview of the proposed method which uses RGB-D and object segmentations to output a clean RGB-D panoramic scene. The red box denotes

the first frame and the green outline shows the moving object in the reference frame.

Figure 2. Overview of the proposed framework.

Figure 3. Examples showing failure cases of traditional methods. From top

to bottom: perspective distortion in the sofa on the right side (2D stitching),

ghosting artifact due to a moving person on the left side (2D stitching) and

low RGB fidelity on the right side (3D stitching).

proposed method divides its pixels into two subsets: pixels that
use a 2D transform pipeline and those that use a 3D transform.
Both transforms are estimated using keypoint matching between
a new and the reference RGB-D frame which is being updated
over time. Then, we identify moving objects of a scene via RGB-
D segmentation [16] and remove them from these disjoint pixel
sets. This is necessary to eliminate motion related ghosting arti-
facts and perform background cleaning and filling. Next we apply
scene segmentation to divide the frame into smaller components
which are referred to as objects. These scene segments are used to
process the two pixel subsets (assigned to 2D, 3D transformations
respectively). Pixels that belong to an object that reaches the im-

age borders are not immediately processed. The pixels belonging
to an object are transformed together in one iteration to preserve
object structure. We discuss how we handle special cases of this
condition in further sections. An additional condition is consid-
ered for the 2D subset: objects that are relatively large and at a
depth close to the sensor range limit are separated from the rest of
the 2D subset and follow an independent 2D transform. All three
cases (2D, 3D transformed and independent 2D transformed pix-
els) are then combined into a single composite frame. This frame
becomes the reference frame for the next iteration. We provide
details for each module in further sections.

To evaluate the proposed method we created a comprehen-
sive dataset of video sequences captured by a hand-held Intel Re-
alSense Snapshot device (Dell Venue 8) covering various natu-
ral scenarios. We included videos with different camera motions
(natural panning, rotation, etc.), large viewpoint changes, combi-
nation of stationary and moving objects at various depths within
and beyond the depth range, and variations of object textures and
activities. Examples of our dataset can be seen in Fig. 4 (all fig-
ures are best viewed in color on a monitor). Darker regions in the
disparity maps indicate the regions where depth information was
missing or was measured with very low confidence. Given that an
end user application is targeted, we compare the different methods
through visual inspection for the problems discussed previously.

4. Proposed method
Fusing 2D and 3D information

As discussed previously using 2D or 3D information alone
leads to errors and visual distortions (Fig 3). An adaptive fu-
sion scheme can effectively combine the advantages of both ap-
proaches: the 3D information is exploited only when it is of
good quality; otherwise a 2D scheme is preferable. For every
input RGB-D frame, a simple decision for every pixel is made:
if this pixel is within the sensor range and has a reliable depth
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Figure 4. Some frames and disparity maps from our typical input sequences. Top row: ‘Jump’ sequence (handheld panning camera following a fast moving

object), Middle row: ‘Penguin2’ sequence (static scene with challenging surfaces for depth, rotating camera), Last row: ‘Stanford selfie’ sequence (scene with

moving objects within and outside camera depth range, handheld camera rotating nearly 360 degrees).

Figure 5. Hybrid 2D/3D approach (left to right): a frame from the ‘Pen-

guin1’ sequence, disparity map, map indicating 2D and 3D parts in the hybrid

scheme. Far objects and near objects with unreliable depth estimates (blue

regions) are being fed to the 2D pipeline.

estimate, it will be transformed using a 3D transform, else we
use a 2D transform (see Fig. 5). Prior to transforming the pix-
els from each category (2/3D), moving scene segments are elimi-
nated from the transformation estimations as described in the next
section. For the 2D transformation a traditional feature matching
and RANSAC approach is used to create the transformation (R2D,
t2D) where R2D is a 2×2 rotation matrix and t2D a 2×1 transla-
tion vector. Likewise using the available depth information the 3D
transformation (R3D, t3D) is created. The pixels are re-projected
to the reference coordinate system using the above transforma-
tions. If multiple pixels are transformed to the same target loca-
tion in the composite frame they are discarded under the assump-
tion that this is caused by an unreliable input depth measurement.
As a final step, small regions with missing RGB values due to the
quantization during the warping are filled by interpolation. The
same steps (except for the final interpolation) are applied to the
disparity/depth map to get the fused depth composite. The con-
verted depth/point-cloud of the current frame is projected onto the
reference frame to generate the correct disparity in the reference
coordinate frame for the disparity composite.

Background Cleaning
Since the transforms are calculated from stable features,

moving objects are incorrectly transformed and result in the
ghosting artifacts observed in previous methods. In our proposed
method we create a clean background where moving parts of the
scene have been removed. Therefore, moving scene segments
are detected and excluded from any transformation to the RGB-
D composite frames. Using RGB-D segmentation [16] moving
objects are detected by first selecting an area of interest in the
reference frame. Following frames are initialized by transferring
the previous frame segmentation mask using optical flow. Let
R and N be the reference and new frame’s moving part respec-
tively in the reference coordinate system U. Then, consider the

Figure 6. Top row: Two sample frames from a panning video of five moving

persons. Middle and bottom row: results from our RGB-D fusion system.

Orange boxes indicate regions of moving objects correctly filled with back-

ground information. See Section ‘Background Cleaning’ for more details.

area F = R∩Nc (where (.)c denotes the set complement) which
can now be filled with a clean background due to the object mo-
tion. Through this iterative cleaning procedure, we can effectively
remove moving segments.

As an example, Fig. 6 shows the cleaning process of five dif-
ferent moving users as viewed over the hand-held panning video
sequence ‘Multipeople’. The proposed module effectively re-
moves all five moving objects. These regions are also excluded
from transformation estimation and warping. The contribution
of the background cleaning step is twofold: a clean background
of the scene is created by filling in holes caused by moving ob-
jects and both the 2D and 3D based schemes are refined since the
frames are now being matched only on features from the static
background and hence model camera motion correctly. Further,
the proposed framework is able to remove moving objects that
appear not only in the original frame, but also as they are being
introduced in the scene (see Fig. 6).

Object Consistency module
The modules discussed thus far handle scenes with multi-

ple depths and moving objects. Another visual error observed is
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Figure 7. Top row: RGB-D pairs and overlayed segmentation from the ‘Penguin2’ sequence. Bottom row: without (first) & with (second) object consistency.

Distortions are greatly reduced on the top and right side of the scene as shown by the last two enlarged image pairs.

distortion of objects, that can occur due to errors in input depth
or inconsistent transformation of parts of the objects in multiple
frames (see Fig. 7). This observation motivates another contri-
bution: an ‘object consistency’ module whose goal is to maintain
the object structures in a scene. By applying scene segmentation,
coherent parts or ‘objects’ in the scene can be obtained. The term
‘objects’ loosely refers to segments obtained from the segmenta-
tion algorithm and not always to semantic objects. Therefore the
segmentation specificity is not critical; only a set of relatively rep-
resentative structures or objects inside the scene is needed. Two
segmentation schemes are used to obtain such objects: multi-label
RGB-D segmentation [16] and a RGB only segmentation using
SLIC [3]. Their difference lies in that the former seeks to identify
objects that are consistent both in color and depth whereas the lat-
ter depends only on their color properties. The proposed pipeline
uses the 3D (RGB-D) segmentation for frames with reliable depth
and uses SLIC instead for frames with depth measurements be-
yond the camera range. This decision is made independently on
a frame by frame basis: if more than p = 70% of the frame has
depth larger than the sensor range, then SLIC is used. The results
are not sensitive to the value of p as SLIC usually yields satisfy-
ing results for our needs and the RGB-D scheme is used to further
exploit the depth information of the scene.

In order to minimise distortions within a segment/object,
pixels are selectively transformed based on the following crite-
ria. Consider a particular pixel and the object it belongs to and
examine if the object intersects with the image boundaries. If so,
this pixel is not transformed until the whole object appears in the
following frames due to the camera motion. If the object appears
as a whole the transformation of this pixel is allowed. As shown
in Fig. 7, the object consistency module keeps most of the scene
structure intact such as the bus on the background poster, as well
as the box and the storage cubes on the right.

Independent 2D transform
When using the object consistency module, some parts of

the scene may not be transformed unless they appear as a whole
object inside the frame boundaries (see the parts of the carpet in
Fig. 7). This can be alleviated when more frames are consid-
ered while updating the reference frame. However, it may occur
that very large background objects (such as the wall in Fig. 8)
are never transformed since they are consistent enough (color and
depth wise) to form a large scene segment that always touches the

Figure 8. Top: using strict object consistency can lead to large missing

sections of background (here right side parts of the wall and floor). Bottom:

parts recovered by transformation through the use of the independent 2D

module. See Section ‘Independent 2D transform’.

frame borders. To handle this, we define large segments as those
with an area larger than 10% of the frame’s size and with depth
close to the sensor maximum range. We transform these regions
independently of the rest of the scene i.e. find the (R2D, t2D) pair
only for this particular region. Due to their depth and color, these
segments are roughly planar and/or their depth is relatively large
hence a 2D transformation suffices. As shown in Fig. 8, the inde-
pendent transform scheme helps to bring in large parts of the wall
on the background which would be otherwise excluded from the
transformation. In Fig. 8, all the three contributions mentioned
so far are included: background cleaning for moving objects, ob-
ject consistency so that the scene’s structure remains intact and
the independent 2D transform to bring in large planar objects.

5. Experiments on RGB-D dataset
To demonstrate the advantage of the different modules in our

proposed scheme, we compare our scheme with three other meth-
ods: state of the art parallax tolerant stitching method developed
in [14, 15], 2D image stitching [5] and 3D image stitching based
on RGB-D. Due to lack of space, only a few frames from each
video are shown. First, consider the comparison between the par-
allax tolerant stereo stitching method and the proposed method
in Fig. 9. The former was specifically built to handle moderate
parallax in the scene, however it cannot handle the moving user
and suffers both from a ghosting artifact and a visually unpleas-
ant blending effect. By contrast, the background cleaning module
in our scheme removes the moving user by filling in with correct
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Figure 9. Top: Distortions and ghosting artifacts in the state of the art

parallax tolerant stitching method of [14, 15]. Bottom: clean output from our

proposed pipeline. See Section 5.

background information. The selected scene has the majority of
the background beyond the depth camera range, hence both meth-
ods rely on 2D information resulting in some of the perspective
distortion.

In Fig. 10 we compare our hybrid pipeline with the standard
2D method [5] and a 3D approach that includes the object con-
sistency module. While a 2D approach (left) can produce cleaner
results, it cannot handle multiple depths and perspective distor-
tions (indicated by the red arrows) and stretches the objects. By
contrast, both the hybrid approach and its special case preserve
the shape of objects. However the 3D method (middle) fails to
bring in some parts of the scene (shown by green outline near right
edge of image). The hybrid approach (bottom) improves on the
3D case by bringing in more parts of the scene. To further under-
stand how the proposed method can successfully integrate the 2D
and 3D information observe the multiple-depth scene in Fig. 11.
In nearer depths (orange box) the 3D and hybrid approaches are
very similar whereas for intermediate (purple and green boxes)
and larger depths (yellow boxes), they produce different results.
Clearly, the hybrid approach outperforms for larger depths since
the 2D scheme has been activated to bring in those parts of the
scene. Both approaches have errors for the specular/textureless
objects of the scene.

Fig. 12 shows more results for other natural videos with ob-
jects and filled background at multiple depths. The background
to be filled ranges from just behind the object (nearly same depth)
and gradually moves further out of the camera range. The hy-
brid approach proves very efficient for background cleaning and
naturally integrates the two sources of information to get the best
of both methods. Finally, Fig. 13 shows a challenging case with
promising results that can inspire future work. This sequence has
a large object and camera motion as the camera tries to follow
the object(s). Further, most of the depth information is unreli-
able since the background is far away and the users are constantly
moving. The hybrid approach nicely performs background clean-
ing and avoids using the unreliable depth information. However,
there is still room for improvement in filling more parts of the
scene with the background.

6. Conclusions
A novel hybrid framework was presented that combines

many sources of information (color, depth, stationary and mov-

Figure 10. Comparative results on ‘Penguin1’ sequence (see Section 5).

From top to bottom: standard 2D approach, 3D + object consistency and

proposed hybrid pipeline results.

ing object segmentations) for panoramic background fusion and
cleaning on RGB and depth data captured by commodity 3D cam-
eras such as Intel RealSense and Google Tango. Compared to
traditional 2D or 3D schemes, the hybrid method successfully
handles natural scenes with multiple depth layers and camera mo-
tions. It can effectively handle errors in depth maps and adaptively
work at an object level to generate results with low distortions and
object structure artifacts. We compared to a state-of-the-art paral-
lax tolerant stereo stitching method [14, 15] that was designed to
handle some of the above problems, however it is unable to handle
moving objects and erroneous depth maps, causing ghosting and
stretching artifacts in the results. The proposed approach elimi-
nates these artifacts using the object consistency module. In ad-
dition stereo or 3D video sequences with large number of frames
instead of just two stereo image pairs were considered. Exten-
sive results and comparisons on a variety of real-world scenarios
showed that the proposed hybrid pipeline is able to effectively
combine multiple sources of information such as color, depth, ob-
ject and scene segmentation. Different inputs with varying de-
grees of errors and inconsistencies are adaptively handled and vi-
sually pleasing and artifact free results are produced.
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