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Abstract
We present an algorithm to get high-speed video us-

ing camera array with good perceptual quality in realistic
scenes that may have clutter and complex background. We
synchronize the cameras such that each captures an image
at a different time offset. The algorithm processes the jit-
tery interleaved frames and produces a stabilized video. Our
method consists of: synthesis of views from a virtual cam-
era to correct for differences in cameras perspectives, and
video compositing to remove remaining artifacts especially
around disocclusions. More explicitly, we process the opti-
cal flow of the raw video to estimate, for each raw frame,
the disparity to the target virtual frame. We input these
disparities to content-aware warping to synthesize the vir-
tual views, significantly alleviating the jitter. Yet, while
the warping fills the disocclusion holes, the filling may not
be coherent temporally, leading to small jitter still visible
in static/slow regions around large disocclusions. How-
ever, these regions don’t benefit from high rate in high-speed
video. Therefore, we extract low frame rate regions from
only one camera and video composite them with the re-
maining highly moving regions taken by all cameras. The
final video is smooth and efficiently has high frame rate in
high motion regions.

Introduction
Slow motion videos are pervasive. To get these videos,

we first acquire a high-speed video, i.e., a video captured
at a very high frame rate, larger than the typical 30-60
frames per sec (fps). When played at slower rate, it be-
comes a ’slow mo’ video. Such videos are popular and use-
ful because they enable us to see details we usually miss in
reality. The applications are wide including sports, science,
photography, and testing and manufacturing, see Figure 1.

These videos can be captured by a specialized cam-
era. Phantom camera [4] is the high end high-speed camera
from Vision Research that captures at 25,000 fps and can
go up to 1 million fps by trading off resolution. However,
such cameras are expensive, and can weigh up to 1.4Kg.
On the other end of the spectrum, some smartphones nowa-
days, such as iPhone and Samsung, have high-speed mode,
making slow mo videos available to a wider population.
For example, iPhone 6 can capture video at 240 fps with
resolution 720 p, lower than the 1080p resolution of the
regular video 60 fps [5].

However, there is special interest for high-speed video
from camera arrays for the following reasons:

1. Such systems are popular, see Figure 2, and have their
own merit for bringing a whole class of new applica-
tions due to the multiple cameras: computing depth,

refocusing after capture, and creating panoramas.
2. In case of low frame rate individual cameras, camera

arrays can reach high-speed rates, just like the spe-
cialized high-speed cameras. For already high frame
rate cameras, we can multiply this rate and enable
more applications.

3. In high-speed video from camera arrays, we preserve
the spatial resolution, unlike the trade-off between res-
olution and frame rate in specialized cameras.

Given a camera array of N cameras, C1, C2, . . ., and CN ,
assume without loss of generality that each camera can
capture video at F fps. Synchronizing C1, C2, . . ., and
CN to start capturing at interleaved times t1, t2, . . ., and
tN , we get a video that samples the time dimension N
times finer at N ×F fps, see Figure 3a and b. Since the
cameras have different perspectives, the resulting frames
are misaligned and the video is jittery. Hence, there is
need for an algorithm to process these frames so that the
final high-speed video is visually acceptable.

Figure 1. (a) Slow mo in sports on YouTube (b) Slow mo footage on
YouTube (c) ’Blink and you’ll miss it’: Highspeed video of sea snail, 10x
slower [6] (d) Slow mo video in soda can quality testing courtsey of YouTube.

Figure 2. (a) Dell Venue 8 7000 [7] (b) Pelican camera array [8] (c) Light
16 camera-array [9] (d) Huawei P9 phone with dual cameras [10](e) HTC
One phone with dual cameras [11] (f) LG G5 phone with dual cameras [12].
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Figure 3. (a) Individual camera capturing video at F fps (b) camera array
of N cameras (e.g. N = 4). Jittery raw high-speed video. Effective frame
rate=NxF fps. (c) After view synthesis and postprocessing, we have our
smooth high-speed video at NxF fps.

Previous work and Problem Statement
Our objective is to enable high-speed video on camera

arrays by transforming the jittery raw interleaved video
into visually plausible video. Other researchers have pre-
viously proposed using camera arrays to get high-speed
video [1, 2, 3].

FourSee Camera Array [3]: the prototype has 4
cameras pointing inwards and 1 lens. The cameras capture
video at interleaving times, but are physically arranged so
that they all capture the same perspective. While there is
no need for an algorithm to align the frames, this configu-
ration is specific for high-speed video only, forfeiting desir-
able camera arrays capabilities such as depth. Contrarily,
most camera arrays purposefully have different perspective
for every camera to get these capabilities.

The approach in [1] is an early proof of concept
stabilizing only a single depth plane using homographies
and the artifacts are quite visible. Our approach is not
simply based on homography and therefore has much more
stabilization power.

The approach in [2] is a major improvement over [1],
where the authors design a new flow algorithm and warp
the images to virtual camera position. However, this solu-
tion does not address the occlusion and disocclusion areas,
which are challenging and cause significant artifacts. The
example ’ball.wmv’ in [2] has simple plain background and
does not have many objects. But for richer scenes with
closer objects and big gaps in depth, the artifacts due to
occlusions/disocclusions would be intolerable. In our ap-
proach, we carefully work on eliminating the artifacts as
in Compositing section. Moreover, as mentioned in [1],
errors in the flow will cause distortions, as clearly seen
around the head of the player for example in ’ball.wmv’.
We use confidence to put less weight on point correspon-
dences that we don’t trust, hence reducing the artifacts
due to flow errors as in Content-aware warping section.

In this paper, we combine flow estimation, view syn-
thesis, and video compositing to generate a high-speed
video from camera arrays in realistic scenes with complex
environment, where we stabilize all the depth planes and
carefully remove disocclusion artifacts, without sacrificing
depth capabilities or reducing spatial resolution.

Algorithm Description
Our algorithm mainly has 2 components as in Fig-

ure 4: view synthesis to align the perspective and video
compositing to remove artifacts.

Figure 4. High-speed algorithm. (1) view synthesis: content aware warping.
(2) Posprocessing: compositing to generate the final high-speed video.

View synthesis
We choose the virtual camera position at the array

center, as close as possible to all the cameras. We use
content-aware warping as a fast method to synthesize views
from the virtual perspective. The result video will be much
better aligned than the raw interleaved frames, but some
artifacts will remain and will be addressed in later step.
Content-aware warping
As in Figure 5, content-aware warping [13, 14, 21] ren-

ders a perceptually pleasant view from the target virtual
camera by first curing the noisy input target disparity or
correspondences. Using a dense disparity map or sparse
point correspondences is a design knob that trades off qual-
ity vs complexity. The output disparities, d1, d2, . . ., dV ,
don’t need to cover the whole support of the image and can
cover a sample of the original dense image pixels positions
such as a regular grid of vertices. Solving for this sampled
disparity is another parameter for the system designer to
control the size of the problem, and hence balance com-
putational complexity and memory requirements together
with perceptual quality requirements. For this purpose, we
formulate a cost function in terms of the desired disparity
and minimize it as in the equation below. The solution
to this optimization problem is the sought disparity, which
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can be readily used to generate the synthetic view.

E = Ed +αEs, (1)

where the data and the distortion terms are defined as

Ed(d1d2, . . . ,dV ) =
∑

polygon p

∑
n

cn(wn
tdp−on)2,

Es(d1d2, . . . ,dV ) =
∑

polygon p

spf(dp),

The original disparities and their confidence are o1,
o2, . . ., oM and c1, c2, . . ., cM . The confidence gives bet-
ter quality results as less trustworthy samples due to flow
errors contribute less to the solution. dp is the vector of
unknown disparity values at vertices of polygon p of the
grid. on is the disparity at a point in p and wn is the
vector with interpolation weights for each vertex of p for
this point, e.g., bilinear interpolation weights. f(·) is the
perceptual distortion and sp is the saliency weight (for less
distortion in salient regions). We use sum of squared dif-
ferences between disparity pairs at vertices of p for f(·) as
in [14] and variance for sp as in [13].

The data term constrains the desired disparities d1, d2,
. . ., dV to be close to the input disparity. At the same time,
the distortion term enforces the perceptual constraints on
d1, d2, . . ., dV . We solve (1) for d1, d2, . . ., dV by converting
it into a linear problem and efficiently using a sparse solver
(linear PCG with Jacobi preconditioner).

Figure 5. Content aware warping. Input: image + sparse or dense disparity
to target. Output: synthesized view from target virtual camera.

Many variations of the equation (1) are possible de-
pending on the application itself. For example, the authors
in [13, 14, 21] use variants of (1), respectively for video sta-
bilization, synthesizing views for autostereoscopic displays,
and generating cinematographs.
Getting depth: cascade tracking flow
As in Figure 5, for every frame captured by C1, C2, . . .,
and CN , content-aware warping needs as input both RGB
and also some depth information, in the form of dense tar-
get disparity map or sparse point correspondences to the
virtual camera. This depth information is represented by
the original disparities o1, o2, . . ., oM and their confidence

in equation (1). We could capture RGBD data by group-
ing the N cameras into N/2 stereo pairs. However, in this
way, the resulting high-speed video will have rate N/2×F
fps, i.e., half the possible speedup in frame rate. Instead of
sacrificing half the cameras for RGBD capture, our method
uses all the N cameras for high-speed capture, estimates the
target disparity map or point correspondences as explained
below, and obtains the full speedup of factor N.

As in Figure 6, we we track across the frames from C1,
C2, . . ., and CN and compute the bidirectional flow and es-
timate the confidence with cross check. Depending on de-
sired balance of quality vs computational complexity, the
tracking result can be either sparse trajectories, for exam-
ple using Kanade-Lucas-Tomasi features tracker [15, 16],
or dense flow maps. We assume dense flow without loss of
generality. The same steps are applicable to sparse track-
ing. We next cascade the flows and use the interpolation

Figure 6. Track across frames from C1, C2, . . ., and CN . (a) dense
forward and backward flow. (b)sparse track trajectories.

to estimate the disparity from every frame to its target
’to-be-synthesized’ frame from the virtual camera.

Detailed example. Assume we have N = 4 cameras
on a 2x2 grid. Because we are using all the cameras for
high-speed capture, the cameras are capturing at interleav-
ing times. Hence at any capturing instance, only one of the
cameras captures a frame and all the remaining cameras
are inactive. For example, in Figure 7, at time t, only cam-
era 3 (purple) captures and F3 is the frame captured by it.
None of the other cameras captures at this time, including
camera 0 (green). Still, we need to estimate the disparity
map F3→ F̀ from F3, the actual frame of camera 3 frame
(purple) at time t, to F̀ , the hypothetical frame that would
have been captured by camera 0 at same time t.

For this purpose, in Figure 8a, we cascade the back-
ward flows F4→ F3→ F2→ F1→ F0 to estimate the
flow F4→ F0. The cascading is done by accumulating
the flow and forward mapping ,e.g., using bilinear inter-
polation. Next, we scale this flow by 0.25 = 1/4 (N = 4
cameras) in this case as in Figure 8b, to estimate the flow
from F4→ F̀ . Generally, the scalar is c/N , where c is
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Figure 7. Need disparity F 3 → F̀ from camera 3 frame at time t to the
uncaptured hypothetical frame of camera 0 at time t.

an integer 1 ≤ c ≤ N − 1, depending on the target time
t. The scaling is justified since F0 and F4 are adjacent
frames captured by camera 0 and we assume that the mo-
tion between frames F0 and F4 can be approximated as
linear. Equivalently, we are approximating each trajectory
in a camera Cj stream as piecewise linear. To get our
estimated flow F3→ F̀ , the last step is in Figure 8c. We
cascade the forward flow F3→F4 and the estimated back-
ward flow F4→ F̀ . The result is the estimated disparity
map F3→ F̀ in Figure 8.1

Figure 8. (a) Cascade the backward flows from F 4 → F 3 → F 2 → F 1 →
F 0. The result is estimated flow F 4 → F 0 (b) Scale the resulting flow of (a)
by 0.25. The result is the estimated flow F 4 → F̀ , from F 4 to hypothetical
frame of camera 0 at time t. (c) Cascade the forward flow F 3 → F 4 and
the resulting flow of (b) F 4 → F̀ . (d) The result flow of (c) is F 3 → F̀ .

Applying the same process, we estimate the disparity
maps from frame F3, the frame captured at time t by cam-
era 3, to the hypothetical frames that would have been cap-
tured by all the remaining N-1 cameras, in this case 3 cam-

1Note that even if we directly compute the flow F 4 → F 0 in-
stead of estimating it, we still need the individual shorter flows,
e.g., F 1 → F 2, to finally get F 3 → F̀ . The same applies to esti-
mating the flow from frame F 3 to all the remaining N-1 cameras.

eras: camera 0, camera 1, and camera 2. At this point, we
can estimate the desired target disparity map from frame
F3 to the virtual camera position as a weighted sum of all
these estimated flows (the weight is 1/N) as in Figure 9.
Using this weight, the target virtual camera is at the center
of the camera array. Now, our content-aware warping has
what it needs to generate the synthesized views from the
virtual camera position.

Figure 9. Get the estimate of the target disparity map: weighted sum
(weight = 1/N) of estimated flows from Figure 8.

Compositing
Generally, view synthesis algorithms [13, 14, 17, 18]

need to carefully address regions around depth boundaries
of close objects with large gaps in depth. These regions are
prone to artifacts due to large disocclusion when changing
the perspective in the new synthesized view. For example,
some view synthesis methods may generate holes in the
synthesized frames in these areas, as in [19], and a post
processing step of hole filling/inpainting [20] is needed.
However, content-aware warping does not generate holes
as it implicitly fills the disocclusion holes by stretching the
texture around them. Looking at each individual frame, it
will be perceptually acceptable and the implicit hole fill-
ing is sufficient. But while the resulting video of interleaved
synthesized views will be much better aligned than the raw
interleaved frames, it will still need some post processing
(Figure 13 and 14). Indeed, we will see flickering in the
disocclusion regions surrounding objects that are:

• static or very slowly moving, and
• close to the camera, and
• with big gap depth from their background.

While stretching the texture is sufficient for good visual
quality in individual frames coming from C1, C2, . . ., and
CN , there is no guarantee that this implicit hole filling
is coherent across temporally consecutive frames coming
from different cameras Ci and Cj . Particularly in static
regions or very slowly moving regions, viewers expect the
consecutive frames to be exactly the same or very similar.
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But in the high-speed video, consecutive frames come from
different cameras and the implicit impainting from content-
aware warping slightly differs from one frame to the next.
Due to this slight difference, our eye will notice this alter-
nating filling between the frames as the high-speed video
plays. Contrarily, in significantly moving regions, we will
not see this artifact, as the consecutive frames are anyway
expected to be significantly different in these regions and
we will not have this alternating jittery filling.

But in static or slowly moving regions, we don’t actu-
ally need high-speed video. We only need high frame rate
in the highly moving regions. Therefore, our algorithm
chooses one camera as reference and gets the static/slow
regions from this camera as in Figure 10 and 11. In the
final video, every frame is composited of the static/slow
regions from single camera video and the moving regions
from the full highspeed video. Our method not only fixes
the visible distortions, but also leads to a video with adap-
tive frame rate, varying based on amount of motion.

Figure 10. Compositing: get the static/slow regions from frames of refer-
ence camera and the remaining highly moving regions from all the cameras.

Getting the mask and blending
In every synthesized view, we need to identify the highly
moving regions and the remaining regions. Analyzing the
temporal gradient of the video as shown in Figure 11, we
can get a mask indicating the highly moving regions. The
temporal gradient needs to be cured to get rid of noise and
get connected components together. For this purpose, we
can use classical morphological image processing. At the
end, we get a mask that partitions the synthesized view
into highly moving regions vs the other static/slow regions.
Having the masks, we generate the final video by composit-
ing. For every synthesized view and mask, we generate a
new image composited from 2 regions as in Figure 12:

• get the highly moving regions indicated in the mask
from the synthesized view itself, and

• get all the remaining regions, static/slow regions, from
the closest precedent synthesized frame from the ref-

Figure 11. Getting the motion mask from the temporal flow.

erence camera.

Many compositing techniques exist to ensure smooth tran-
sitions, we use the classical Poisson method of [22].

Consequently, our algorithm generates a high-speed
video that is perceptually pleasant. At the same time, this
video is highly adequate for compression, as it uses the
available bandwidth wisely. It effectively has an adaptive
frame rate, efficiently tailored to the amount of motion in
the video, with low frame rate in static/slow regions and
high frame rate in high-speed regions. This approach also
solves the artifacts due to the impact of cameras differ-
ences. For example, the individual cameras in the camera
array may have slight differences in their sharpness level,
which may cause artifacts in the static and slow moving
regions as above.

Figure 12. Compositing: getting the views of the final highspeed video.

Results
For our experiments, we acquire video with our camera

array prototype, consisting of a planar grid of 2x2 cameras
as in Figure 2b. Each camera captures 1920x1080 frames at
F = 30 fps, which are rectified and input to our algorithm.
We captured realistic scenes with objects at different depth
layers, which can be static or moving, and have complex
background. Our videos also have higher resolution than
the videos in [1, 2], necessitating more accurate alignment
as artifacts are much more visible at higher resolution.
Please download and see ’stabilizedHighSpeed’, ’umbrella’,
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’hat’,’throwHat’, ’jump’, ’volleyBall’, and ’movingCamera’
4x slow mo results from this link2. The bottom of Figure 13
shows difference of 2 consecutive raw frames, captured with
the camera-array static. Except for expected large mag-
nitude on moving umbrella, most other highlighted areas
illustrate misalignment due to different perspectives. After
view synthesis, top of Figure 14 shows great improvement,
but disocclusion areas still have artifacts (red arrows). Fi-
nally, compositing leads to much more stable video as in
bottom of Figure 14, except for minor remaining artifacts.
The scene ’movingCamera’ is captured in handheld mode.
Unlike our compositing method, our view synthesis com-
ponent is directly applicable in presence of camera motion.
But the need for compositing is less critical in this case,
since the camera motion alleviates the flickering artifacts
around disocclusions for the same reasons in Composit-
ing section. Briefly, the adjacent frames in the video are
anyway different even in the static regions due to the mov-
ing camera, hence independently filling the disocclusions
across frames is much less noticeable.

Figure 13. Top: rectified frame from example scene. Bottom: difference
of 2 consecutive frames.

Conclusion and Future Work
Our algorithm scales up the video rate of the camera

array to factors larger than the individual cameras’ rate.
With our algorithm, camera-arrays can also capture high
quality high-speed video, matching cameras dedicated for
this sole purpose. In the future, we will optimize the algo-
rithm to be real-time. We can also explore solving for the
motion masks as solving for labels in a graph-cut problem

2https://drive.google.com/open?id=0B3-CYFBmsrsBT2RiS3AtdkxySlE

Figure 14. Top: difference of 2 consecutive synthesized frames. Bottom:
difference of 2 consecutive composited frames in the final video.

similarly to [21, 23]. While this approach is heavier com-
putationally, it would give more accurate masks and even
higher quality results. Finally, we need to extend the com-
positing component to accommodate camera motion and
allow for handheld use.
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