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Abstract 

Visually induced motion sickness (VIMS) is frequently 
reported with stereo and VR display systems. We tested whether 
VIMS can be detected by off-the-shelve wearable electrophysiology 
devices, where the VIMS were induced by driving in the virtual 
world. Our data indicates that 1) the correlation between blood 
pressure and heart rate, and 2) the changes of mean gravity 
frequencies in TP9Delta and FP1Theta, and 3) the changes of SDs in 
TP9Alpha and TP10Alpha of the EEG signals may be possible 
candidates of the VIMS onset indicator. However, it is still hard to 
conclude that those physiological signals can be used as definitive 
VIMS indicators because our analysis only differentiates the 
physiological response to VIMS vs. non-VIMS, not the detection of 
VIMS onset, nor estimation of VIMS severity in real-time. 

Introduction  
Visually induced motion sickness (VIMS) is a discomfort 

disorder, which is often induced when a person is exposed to 
virtual and physical motions that are not well matched. For 
example, when a person immerses into a virtual environment of a 
driving simulator, the optic flow of the driving scene induces 
strong vection (self-motion illusion), but the vestibular system and 
the skeletomuscular system generates no self-motion because the 
person who drives is usually stationary in the static driver seat.  

Mismatched motion signals are not limited to inter-sensory 
conflicts but may affect intra-sensory signal conflicts, such as 
dynamic spatiotemporal distortions of expected stability of rigid 
world [1].  

A person experiencing VIMS suffers headaches, dizziness, 
disorientation, stomach awareness, nausea, and even vomiting. 
This phenomenon raises safety and health concerns with current 
virtual reality (VR) platforms, in particular, head mounted display 
(HMD) systems. The VIMS has been identified as a major hurdle 
to overcome for wider spread use of the VR systems. Although 
many VR HMDs incorporate motion trackers to synchronize the 
users’ virtual view with physical motions, VIMS still occurs 
frequently, presumably because fully synchronized view is difficult 
to achieve.  

Pre- and post- VIMS questionnaires [2] developed for flight 
simulators have been used as the main method to measure the 
presence and level of the VIMS experienced due to the virtual 
environment exposure. However, this subjective measure of the 
symptoms may strongly prime the subject, and only get coarse 
temporal changes of the VIMS. In other words, it generally 
measures aftereffects of the VIMS.  

To investigate causes of the VIMS or develop a VIMS 
countermeasure, it is essential to have VIMS measuring methods 
that (objectively) quantify the magnitude of VIMS. 

Physiological measures supporting the objective and frequent 
(quasi-continuous) measure, such as electrogastrography (EGG), 
electrocardiography (ECG), salivary cortisol level, blood pressure 
(BP), heart rate (HR), and electroencephalography (EEG) have 
been proposed and tested as possible objective markers of VIMS to 
overcome the limitations of the subjective VIMS rating.  

Cheung et al. [3] reviewed more than 10 years of EGG studies 
connecting gastric activity with changes in VIMS level, and 
concluded that EGG was not a reliable measure for VIMS because 
the increase in gastric activity from 1cpm to 3cpm is not always 
presented in VIMS onset. However, Kim et al. [4] found that net 
tachygastria does increase with VIMS, and argue that the EGG can 
be used as a measure of the VIMS.  

Ujike, et al. [5] computed the ratio of power between lower 
frequency (LF: 0.05-0.1 Hz) and high frequency (HF: 0.15-0.4 Hz) 
of the ECG, which is an index of sympathetic nerve activity, for 
2D and 3D stimulus viewing groups, and they found an overall 
increase of LF/HF ratio in 3D compared to 2D, which matched 
well with the VIMS estimated by questionnaire. Similar results 
were reproduced by Kiryu, et al. [6]. 

Ramsey [7] measured heart rate (HR) and salivary cortisol 
level before and after exposing to virtual reality environment, and 
found an increase of both HR and cortisol level, and they correlate 
well with subjective VIMS questionnaire scores.  

A study by Graybiel et al. [8] found that BP nor HR changes 
did not indicate VIMS level changes. However, Holmes et al. [9] 
reported that BP and HR variability are well correlated with the 
level of VIMS. The changes in BP and HR variability were also 
found by Yang, et al. [10], when subjects viewed 2D and S3D 
movies.  Changes were larger for the 3D condition. 

Sugita et al. [11] observed BP and HR changes during the 
VIMS stimulus exposure in VIMS-onset and non-VIMS-onset 
groups, and found that the temporal change of BP was less 
correlated to HR changes in VIMS onset group, suggesting that BP 
and HR correlation may be used as an objective VIMS measure. A 
similar conclusion was derived by Abe et al. [12] by computing the 
maximum cross-correlation coefficient between BP and HR 
variability using a finger photoplethysmography (PPG). 

Electroencephalograph (EEG) was also tested as a surrogate 
measure of VIMS by Lin, et al. [13], Chen, et al. [14], and Naqvi, 
et al. [15]. All suggested that the alpha and gamma bands of the 
EEG power spectrum are valid indicators of VIMS, where a 
decrease in alpha band power represents a VIMS onset signature. 
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A recent fMRI study done by Miyazaki [16] suggested that 
asynchronous bilateral MT+ activation may be a marker of VIMS.   

Although many studies have claimed that the VIMS can be 
measured by various autonomic responses, the large inter-subject 
variability and lack of repeatability suggest that no particular 
physiological measure (or combinations of measures) can be 
considered as reliable as the subjective scoring. Also, many of the 
measurements proposed require expensive clinical/scientific tools 
and invasive application to the skin or scalp which require gels and 
adhesives. 

In this study, we tested the feasibility of using off-the-shelve, 
inexpensive wearable wireless devices for measuring VIMS, which 
we induced by virtual driving in the driving simulator, a task that is 
known to induce severe VIMS [17]. 

Methods 
 

Participants 
Fifteen normally sighted subjects aged from 20 to 45 were 

recruited from the Schepens Eye Research Institute. All subjects 
voluntarily signed an informed consent form approved by the 
Institute Review Board before the experiments. Nine subjects (4 
males) completed the studies and reported here. The others six 
subjects served in pilot experiments and calibration of the set up.  

Measuring devices 
The Muse (InteraXon Inc., Ontario Canada), a wearable 

device, was used to record EEG continually. This EEG headband 
was designed for monitoring brain activity during the meditation 
through four EEG channels, two electrodes are at the frontal lobe 
(FP1 & FP2) and the other two are at the temporal lobe (TP9 & 
TP10). The EEG data was sampled at 10 bits and at 220Hz. The 
accelerometers in the Muse sampled user head motion at 50Hz. 
The Muse was connected via Bluetooth to a laptop computer for 
logging. 

BP and HR were measured by the iHealth wireless blood 
pressure wrist monitor (BP7), and iHealth wireless pulse oximeter 
(PO3) (iHealth Labs Inc., California, USA). Both were connected 
to the logger (usually smartphone) via Bluetooth. It takes about 40 
seconds for the BP7 to obtain a single BP and HR reading 
(including inflation and deflation of cuff), so BP was sampled 
every minute. The PO3 was a small oximeter placed on a fingertip 
that measures perfusion index, SpO2 levels, and HR every second. 
It was used to record HR continuously. 

Driving simulator for inducing VIMS 
 

 
Figure 1.  A wide field VR environment driving simulator (FAAC 
Inc. Ann Arbor, MI) used to induce motion sickness. 

We used a wide field (220°) driving simulator to induce 
VIMS (Fig. 1). Although the driving simulator is equipped with a 
motion seat and force feedback steering wheel, which provides 
proprioceptive motion stimulation matched with virtual motion, we 
have observed that about 30% of subjects participated in our 
previous driving simulator studies reported some level of VIMS. 

Experimental procedure 
In the pre-driving segment (Fig. 2), the subjects were seating 

at rest (for 1~3 minutes). Then the subjects were asked to maintain 
a quiet standing pose for one minute with eyes opened (labeled as 
“BO” for “Before-driving eye-Opened”), and eyes closed for 
another minute (labeled as “BC” for “Before-driving eye-Closed”) 
to record the subjects’ baseline physiological states. During these 
baseline measurements, subjects kept their left arm bent to heart 
level for BP and HR measurements. 

After this baseline measurements, the subjects drove a long 
“winding road” in the simulator. Each subject had different motion 
sickness tolerance threshold so actual driving duration varied from 
several minutes to more than 30 minutes.  

During the driving, the subjects were asked to verbally report 
their subjective rating of the VIMS level (VIMSL), which varies 
from 0 (non-VIMS), 1 (slight VIMS), 2 (moderate VIMS), 3 
(severe VIMS), and 4 (very severe VIMS). The experimenters 
probed the subjects to report the VIMSL every minute, but also 
asked subject to report VIMSL when they felt a change in the 
discomfort level.  

We used this simple asynchronous VIMSL reporting method, 
instead of using the lengthier VIMS questionnaires to obtain semi-
continuous VIMS level the subjects experienced. Similar VIMS 
reporting scheme was successfully used by Fernandes, et al. [18] 
for measuring the effect of dynamic peripheral visual field 
restriction on VIMS. 

The subjects continued to drive until they felt very 
uncomfortable. When the subjects reached their highest VIMSL 
that they could tolerate which could be less than the highest score, 
“4”, the subjects stopped the driving. Some continued to drive for a 
couple of minutes after the first report of VIMSL of “4” while 
others quit right away after reporting a lower VIMSL.  

Once the driving stopped, subjects got out of the driving 
simulator for post-driving measurements. The subject maintained a 
quiet standing pose for one minute with eyes opened (labeled as 
“AO” for “After-driving eye-Opened”), and another one minute 
with eyes closed (labeled for “AC” as “After-driving eye Closed”). 
Physiological data were recorded throughout the procedure.  

In most of the cases (eight out of nine cases), we kept 
measuring the physiological data even after collecting the AC data 
while the subjects stood still until their VIMSL returned to zero. 
There were brief interruptions of measurements between eyes state 
changes (less than 10 seconds) and between segments (less than 
1minutes).  
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Figure 2. Timeline for experimental procedure and physiological measures, showing 
a schematic VIMS level changes for the corresponding segment.  

 IS&T International Symposium on Electronic Imaging 2017
Human Vision and Electronic Imaging 2017 219



 

Data processing 
The purpose of our study was to determine whether specific 

physiological signal changes can be used as markers for a person’s 
VIMS in VR environment. If there are such physiological 
measures, those measures should at least differentiate a person’s 
physiological state between the VIMS and non-VIMS states.  

In this study, we applied within subject comparisons for the 
mean and standard deviation (SD) of the physiological signals 
measured during the non-VIMS (baseline period: VIMSL=0) and 
VIMS (driving and recovering period: VIMSL>0) states to see if 
any physiological signal produces meaningful overall differences. 
The increase or decrease of the signal the means may represent a 
direct physiological response to the VIMS, while the physiological 
variation, SD, may indicate increase or decrease of disturbance in 
the physiological system due to VIMS. 

For cardio data, the systolic (SYS) and diastolic (DIA) blood 
pressures were measured, and the pulse pressure (PP), a difference 
between SYS and DIA, was computed. The SD of each subject’s 
measured blood pressures were normalized to their min and max 
values, making them varied from 0 to 1. The correlations between 
blood pressure measures (SYS, DIA, and PP) and HR in VIMS and 
non-VIMS stages were also computed. 

For the EEG data, the power spectral density (PSD) functions 
for five frequency bands, delta (0-4 Hz), theta (4-8 Hz), alpha (8-
12 Hz), beta (12-30 Hz) and gamma (30-50 Hz), were computed 
for the brain activity signals captured by each of the four 
electrodes for every one minute. Then the corresponding gravity 
frequencies (GF) within those frequency bands were computed. 
The differences between the signals on the left and right side of the 
brain were also computed for paired electrodes (TP10-TP9 and 
FP2-FP1) for each frequency band.  

The GF of a PSD was defined as:  
 

𝐺𝐹 =
∑ 𝑓∙𝑓2
𝑓1 PSD(𝑓)

∑ PSD(𝑓)𝑓2
𝑓1

,        (1) 

 
where f represents the frequency of the EEG signal, and f1 

and f2 represent the lowest and highest frequency of a given 
frequency band. 

Note that the PSD defines the energy distribution of a signal 
in the frequency domain for given time period, while the GF is a 
representative (“center of mass”) frequency in a given frequency 
range, which conveys the same level of energy that the 
corresponding PSD carries. In other words, for a given frequency 
range, the energy carried by the signal in the frequency range 
lower than the GF is one-half of the total energy carried by the 
signal. Therefore, computing the GF for each PSD computation 
allows us to see the temporal changes in brain activity within a 
given frequency band.  

Chen, et al. [19] argued that the GF can be used for measuring 
the visual fatigue. In their study, GFs of before and after watching 
the 60 minutes of S3D / 2D contents were computed and showed 
that watching S3D contents reduces the GF significantly more than 
watching 2D contents. 

Results 
 

Fig. 3a shows a subject’s subjective VIMSL changes during 
the experiment. In this example, the increase of VIMSL started 
about 5 minutes after starting the driving (about 24 min), then 
started to decline a few minutes after stopping the driving. 

Fig. 3b shows the time synchronized BP changes. A small 
increase of the SYS can be observed with the start of driving rather 
than VIMS onset, where the DIA showed no change during the 
driving. Both SYS and DIA values dropped with the end of 
driving. Fig. 3c shows the HR dropping with the start of driving 
then increases at the end of driving with no impact on the reported 
VIMS onset. 

Fig. 3d-h shows the GF changes for each EEG channels in 
five different frequency bands. However, it is hard to visually 
detect any trend of changes correlated with either driving or 
VIMSL changes.  

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 
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Figure 3. Time synchronized measurement results of a subject 
(S1), illustrating (a) VIMSL changes throughout the experiment, 
(b) blood pressure,(c) heart rate measured, and (d-h) GFs of the 
different EEG channels (TP9, TP10, FP1, and FP2) in five 
different frequency bands (delta, theta, alpha, beta,  and gamma). 

 
We computed the mean and SD of the nine subjects’ SYS, 

DIA, PP, and HR measured in non-VIMS and VIMS sections. Fig. 
4 shows the distribution of the measured data.  

A pairwise t-test was applied to each physiological measure. 
The results (Fig. 4) show that there are no significant differences in 
all measurements. For the mean value: SYS (t(8)=2.31, p=0.54), 

DIA (t(8)=2.31, p=1.0), PP (t(8)=2.31, p=0.66, and HR (t(8)=2.31, 
p=0.92). For the SD: SYS (t(8)=2.31, p=0.41), DIA (t(8)=2.31, 
p=0.06), PP (t(8)=2.31, p=0.08, and HR (t(8)=2.31, p=0.35). 

 

 
Figure 4. Comparison of the mean (top row) and standard 
deviation (bottom row) of systolic (SYS) and diastolic (DIA) blood 
pressure, pulse pressure (PP), and heart rate (HR) between non-
VIMS and VIMS sections for each subject. Each dot in the plots 
represents a subject’s data. If there is a significant trend of 
increase or decrease due to VIMS, the majority of dots should be 
located above or below the diagonal line, respectively. As shown 
above, in all comparisons, no significant difference between Non-
VIMS and VIMS sections was found.  

 

Also a pairwise t-test was applied to the correlations between 
1) SYS and HR, 2) DIA and HR, 3) PP and HR in non-VIMS and 
VIMS sections, but all correlations were statistically insignificant: 
SYS-HR (t(8)=2.31, p=0.70), DIA-HR (t(8)=2.31, p=0.78), and 
PP-HR (t(8)=2.31, p=0.60).  

However, it was observed that in non-VIMS section, 67% of 
subjects shows significant correlations (r > 0.5) in SYS-HR, but 
this correlation broke in VIMS section, where only 22% of 
subjects maintained significant correlation. Similar patterns of 
breaking down of the correlation were also found in DIA-HR 
(89%→44%) and PP-HR (56%→11%), as shown in Fig 5. This 
means that more subjects lost BP-HR correlation when the VIMS 
was onset.  

 

 
Figure 5. Number of subjects (out of 9 subjects) showed strong 
correlations between (a) SYS and HR, (b) DIA and HR, and (c) PP 
and HR in non-VIMS and VIMS sections. In all cases, the 
correlations between blood pressure and heart rate in non-VIMS 
sections are more likely to be ‘significantly’ correlated than those 
in VIMS sections. It may indicate that usual tendency of higher 
blood pressure associated with higher heart rate is more likely 
disturbed by VIMS. 
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Similar analyses were carried out for the EEG data based on 
computed GFs for each frequency band for all channels. Fig. 6 
shows all GF measurements that resulted in statistically significant 
difference (all ts(8)=2.31, ps<0.05) between non-VIMS and VIMS 
sections. Significant differences were found for the mean values of 
TP9Delta, FP1Theta, and TP10Beta, and SDs of TP9Alpha and 
TP10Alpha. 

 In other channels and frequency bands, no significant 
difference between non-VIMS and VIMS sections was found (all 
ts(8)=2.31, ps>0.05). 

 

 
Figure 6. Comparison of the mean (top row) and standard 
deviation (bottom rows) of GFs for those frequency bands and 
channels that showed significant differences between non-VIMS 
and VIMS sections. 

  
The correlations between left and right brain signal pairs 

(FP1-FP2 and TP9-TP10) for all frequency bands were also 
computed, then a pairwise t-test was applied to compare the mean 
correlations. For all frequency bands, no significant difference was 
found. Also, unlike the BP-HR correlation analysis, no particular 
trend of EEG signal correlation confidence level change was 
observed between non-VIMS and VIMS sections. 

Using the off-the-shelf inexpensive wearable EEG devices, 
we have noted large signal variability (noise) in every band and 
channels from time to time. We suspect that those noisy data might 
be caused by the poor connection with the skin, so those data 
segments were excluded in our analysis (about 1.7% of total). 

 

Results 
 

This pilot study focused on the changes of the mean and 
standard deviation of various physiological signals in an attempt to 
detect VIMS occurrence in a VR environment. 

Our data indicates that: 1) the mean and standard deviation 
changes of BP and PR may not be suitable for VIMS detection 
since they changed little between VIMS and non-VIMS state. 2) 
Reduction of correlation between BP (SYS, DIA, and PP) and HR 
may indicate the presence of VIMS. 3) For most of the channels 
and frequency bands of EEGs, the mean and SD of GF changes 
between VIMS and non-VIMS states are not significant, except the 
means in TP9Delta and FP1Theta and SDs in TP9Alpha and TP10Alpha. 
4) No significant change in the correlations between left and right 
brain signals (FP1-FP2 and TP9-TP10) were found for VIMS 
onset.  

Although we found some significant differences between non-
VIMS and VIMS states, it is still hard to conclude that these 

signals can be used as the VIMS indicators because our analyses, 
so far, only differentiate the physiological response to the VIMS 
over whole period including severe VIMS, not the detection of the 
VIMS onset, nor estimation of VIMS severity in real-time.  

In order to confirm our findings, a repetition of these results is 
necessary. To make the finding useful, further analysis methods 
should be developed for timely detection and level estimation in 
real time.  

Finally, since this study was conducted with the driving 
simulator, the elicitation of VIMS was a result of visual and 
physical interactions with the stimulus contents. Therefore, it may 
be difficult to determine if the measured physiological differences 
were caused by the emotional or physical impact of the task (e.g. 
driving) or solely reflects the impact of VIMS. Therefore, our 
results should be verified in a more controlled experimental design 
such as viewing the same video contents in different viewing 
methods, where one of the viewing methods is known to induce 
more VIMS (i.e., 2D vs. S3D). 
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