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Abstract
In recent years, Convolutional Neural Networks (CNNs)

have gained huge popularity among computer vision researchers.
In this paper, we investigate how features learned by these net-
works in a supervised manner can be used to define a measure of
self-similarity, an image feature that characterizes many images
of natural scenes and patterns, and is also associated with im-
ages of artworks. Compared to a previously proposed method for
measuring self-similarity based on oriented luminance gradients,
our approach has two advantages. Firstly, we fully take color into
account, an image feature which is crucial for vision. Secondly,
by using higher-layer CNN features, we define a measure of self-
similarity that relies more on image content than on basic local
image features, such as luminance gradients.

Introduction
Self-similarity is a prominent feature of images that de-

pict natural scenes, patterns or objects. In a broad sense, self-
similarity measures to which degree features of smaller subre-
gions of an image are also present in the image as a whole. In nat-
ural images, self-similarity has been calculated based on different
statistical properties. For example, images of natural scenes ex-
hibit a scale-invariant (self-similar) Fourier power spectrum [17].
Moreover, they possess a fractal structure, which has been stud-
ied with the box-counting method [14] and was previously linked
to naturalness and preference of scenes [8]. Amirshahi et al. [2]
proposed a method to calculate self-similarity based on a pyramid
of histograms of oriented luminance gradients (PHOG, [3]).
Interestingly, large subsets of visual artworks share self-similar
properties with images of natural scenes ([16, 6]). Recent
progress in the field of experimental aesthetics demonstrates that
self-similarity, in combination with other features, allows distin-
guishing artworks from non-artistic images like photographs of
everyday objects or human faces ([4, 15, 7]).
Most algorithms that were developed to measure self-similarity
have the disadvantage that they focus on specific image features
(for example, luminance gradients) while partially or completely
neglecting other features (for example, color), which are as rele-
vant for human perception. In the present work, we therefore pro-
pose a method that uses diverse features learned by Convolutional
Neural Networks (CNNs); these features are strikingly similar to
those found in the human visual system [19]. In particular, be-
sides edge information, they take into account color features and
spatial frequency information as well, and thereby mirror visual
system function more closely than the other methods mentioned
above.

We ask the following questions:

• Are features learned by CNNs suitable to define a measure
of self-similarity?

• How does a CNN-based measure of self-similarity compare
to previously used measures, in particular the PHOG mea-
sure?

• Can one make use of the increasingly abstract representa-
tions that are obtained by consecutive filtering in CNNs to
define a measure of self-similarity that focuses on image
content rather than on basic structural image features?

The remainder of this article is organized as follows: The
next section introduces the previously proposed method for mea-
suring self-similarity using PHOG. After we briefly introduce
CNNs, we will describe our approach, which is based on CNN
features. Next, we will introduce the image datasets that we use
in our experiment and will present our experimental results. An
answer to the above questions will be given in the last section of
this article.

Previous Work: PHOG Self-Similarity
Self-similarity as proposed by [2] is based on a pyramid

representation of histograms of oriented gradients (PHOG, [3]).
Histograms of oriented gradients (HOG, [5]) were originally de-
signed for object recognition, whereas their pyramid represen-
tation was used to estimate the similarity between two images
by calculating the distance of their respective PHOG descriptors.
Amirshahi et al. [2] proposed the following algorithm for calcu-
lating the self-similarity of an image: First, the HOG is calculated
for the entire image, referred to as layer 0. Subsequently, the im-
age is divided into four equally sized subregions and the HOG
is calculated for each subregion, respectively. The resulting his-
tograms are referred to as histograms on layer 1. This procedure
can be repeated up to layer l, on which the image is divided into
4l equally sized subregions. The gradient orientations are then
binned into k equal intervals and each histogram is normalized.
To assign a measure of self-similarity, the histogram of each sub-
region is compared to the histogram at a lower level by using the
Histogram Intersection Kernel (HIK), which provides a measure
of similarity of two normalized histograms h and h′ with k bins,
and is defined as follows:

HIK(h,h′) =
k

∑
i=1

min(hi,h′i) (1)

In the first approach published by the authors, the measure
of self-similarity is calculated as the median of the HIK of each
subregion and its respective parent region:

MSe(I,L) = median(HIK(hs,hPr(s))|s ∈ Sections(I,L)) (2)
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where I is the image, L is the level, on which the self-
similarity is computed, hs is the HOG value for a sub-image s
in the Sections(I,L) and Pr(s) corresponds to the parent of sub-
image s. In more recent publications of the PHOG method, dif-
ferent choices were made with regard to which levels were used
for comparison. Here, we will adopt the method by [4], where all
subregions on level 3 are compared to the ground level. Further
improvements were suggested by [15], who extended the measure
of self-similarity to be used on color images by first converting
the image to Lab color space and computing the gradient image
as follows:

Gmax(x,y) = max(‖∇IL(x,y)‖,‖∇Ia(x,y)‖,‖∇Ib(x,y)‖). (3)

Although this method detects color gradients in the oppo-
nent (red-green and blue-yellow) color space, color gradients do
not contribute substantially to the resulting gradient image and,
furthermore, any information on color differences is lost in the
ensuing analysis. In the present work, we will overcome this re-
striction by using a different approach.

Defining Self-Similarity Based on CNN Filters
CNNs were first proposed by [12] and have gained huge

popularity in recent years because they yielded record-breaking
results in various image classification challenges (for example,
see [11], [18]). CNNs learn a hierarchy of different filters that
are applied to an input image, allowing them to extract meaning-
ful information that is needed for detecting or classifying objects
within an image. Recent progress in computing technology and
the availability of huge amounts of data for training have helped to
increase their popularity even further. Various architectures that
consist of different building parts have been investigated. We will
not describe these models in full detail here, but instead give a
short overview of how CNNs process images.
Typically, CNNs include some of the following layer types: (i)
Convolutional layers, in which the channels of the previous layer
are convolved with a set of different filters and then transformed
by a nonlinear activation function. (ii) Another widely used layer
type is a pooling layer, which performs a subsampling opera-
tion, either by averaging or taking the maximum response over
image regions of specified sizes. (iii) The model we use in our
experiments introduces an additional normalization layer, which
performs local brightness normalization of filter responses. Dif-
ferent layer types can be stacked on top of each other, so that
consecutively applied filtering of the input image extracts more
and more abstract features. (iv) Finally, fully connected layers on
top are used to assign a class label to each input image, based
on the features extracted by the previous layer. This list is not
comprehensive and other layer types have been proposed in on-
going research.The filters are learned in a supervised manner with
the backpropagation algorithm, which compares a class label as-
signed by the network with the true label and changes the network
parameters according to their contribution to the current error.
Here, we adopt and modify the method proposed by [2]. Instead
of using edge detectors, we use filters learned by CNNs. In do-
ing so, we gain two advantages over the original method. Firstly,
color is taken into account as an independent property and not
by detecting opponent color edges only. Moreover, CNN filters

respond to a range of spatial frequencies. Secondly, CNN struc-
ture is hierarchic and encodes more and more abstract features
at higher layers, finally representing objects and shapes. We can
make use of this structure to develop a self-similarity measure that
reflects image content and goes beyond focusing on low-level fea-
tures, such as edges.
In our experiments, we use the architecture proposed by [11] as
provided in the Caffe Library [9], but drop the fully connected
layers on top. This modification allows us to resize the input to
have a dimension of 600×800 pixels.
Our measure of self-similarity is obtained as follows: First, every
image is processed by the network, which yields 96 filter response
maps after the first convolutional layer, 256 after the second, 384
after the third and fourth, and 256 after the last convolutional layer
in the network. Using these filter responses, we then build a his-
togram of the maximum responses in subregions of the image, i. e.
we perform a max-pooling operation over a grid of equally sized
areas in the image. Our measure of self-similarity is calculated as
follows:

MSe(I,L) = median(HIK(hs,hG)|s ∈ Sections(I,L)) (4)

Similar to the originally proposed method [2], a histogram
hG of filter responses obtained from image I at the ground level is
compared to all histograms at level L. Following the approach by
[15], we chose to use level 3 for our calculations, which results in
8× 8 equally sized subregions. According to the authors, calcu-
lations on level 3 are suited best to distinguish image categories
in their experiments; beyond that level, results are more unstable.
The median of all calculated values yields the final measure of
the self-similarity of an image. A value of 1 indicates high self-
similarity, whereas a value approaching 0 is obtained for an image
of low self-similarity. Synthetic example images that illustrate the
advantage of using CNN features over PHOG features are shown
in Figure 1.

Image Database
In this study, we used a total of eight different categories

of images, namely images of man-made things like objects and
urban scenes, as well as several sets of more or less self-similar
natural patterns like clouds, plant patterns, large vistas, branches
and lichen (Table 1) [15]. In addition, we compare these cate-
gories to a set of artworks of Western provenance (JenAesthetics
dataset, [1]), which consists of 1629 different images and covers
different artistic styles like Renaissance, Baroque, Romanticism,
Realism, Impressionism, Modern Art, etc., ranging from the 15th
to the 21st century. All other categories were taken with a Canon
camera (EOS 500D) by one of the authors. Example images can
be found in Fig. 2. All images were scaled to a resolution of
600× 800 pixels, because a fixed resolution is required by the
defined input resolution of the CNN.

Experimental Results
CNN Features on the First Layer

We compared our method to calculate self-similarity by us-
ing CNN features to the PHOG-based method, which solely relies
on edge information. Hence, we calculated the two measures for
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synthetic images and for different image categories. Synthetic im-
ages are shown in Figure 1 and illustrate the advantage of using
CNN features over PHOG features. As expected for CNN fea-
tures, differences in color and spatial frequency are reflected in a
change of the value of self-similarity, whereas these differences
have almost no effect when using PHOG features.

Figure 3 shows a plot of the results for all image categories
analyzed; mean values and standard deviations are given in
Table 1. Natural patterns like lichen, branches or plant patterns,
which are known to be highly self-similar, yield the highest
self-similarity values with our CNN-based measure. Images
of objects, which show low self-similarity in general, yield
relatively low values with both methods. These results suggest
that our novel measure is well suited to calculate self-similarity.
The average self-similarity increases slightly from 0.812 using
PHOG to 0.835 using CNNs. A likely explanation for this
increase is that the CNN-based measure reflects color also,
which is more homogeneous across most images, especially
for natural images, whereas the PHOG method relies on edges
exclusively. Branches, for example, are often foreground to a
blue sky (Fig. 4b), which yields higher self-similarity with the
CNN method; the PHOG method ignores this homogeneous
background coloration. Similarly, urban scenes often feature
large patches of sky, and, in addition, the facades of depicted
buildings show rather uniform coloring, which make the images
more self-similar with the CNN method. Interestingly, clouds
slightly decrease in self-similarity and show a higher variance
for the CNN-based values compared to the PHOG-based values.

(a) PHOG: 0.95, CNN: 0.97 (b) PHOG: 0.94, CNN: 0.81

(c) PHOG: 0.98, CNN: 0.94 (d) PHOG: 0.97, CNN: 0.75

Figure 1: Synthetic images that illustrate the advantage of us-
ing CNN features over PHOG features. The images on the top
(1a, 1b) show a prominent change in color, which is reflected in a
change of self-similarity only when using CNN features. On the
bottom row (1c, 1d), a similar effect can be observed for a change
in spatial frequency: While the PHOG-derived measure does not
reflect this change, the CNN-based measure drops notably.

This variance may be due to a heterogeneity of the images in
the dataset: multiple fleecy clouds are highly self-similar (Fig.
4c), whereas single large clouds (Fig. 5c) yield low values of
self-similarity. Further examples of how color contributes to the
two measure can be found in Figures 4 and 5.

CNN Features on Higher Layers
Besides developing features akin to human vision, another

intriguing property of CNNs is the increasingly abstract nature
of features on higher layers. While on the first layer, edges and
colored areas of an image are detected, features are grouped on
higher layers, building blob detectors or even more abstract fea-
tures that respond to distinct objects [20]. Here, we ask whether
we can make use of this property in order to measure not only
self-similarity of edges and color, but also self-similarity of more
abstract (higher-level) features which may reflect content. Hence,
besides using features of the first convolutional layer as presented

Figure 2: Example images of the categories we use in our experi-
ment. From left to right, top row to bottom: objects, urban scenes,
large vistas, clouds, plant patterns, branches, lichen and an image
from the JenAesthetics dataset. The artwork shows Isaac’s Ser-
vant Tying the Bracelet on Rebecca’s Arm, painted by Benjamin
West in 1775.
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above, we also chose to use features of convolutional layers 2−5
to calculate self-similarity. We used the same method as described
above, but replaced the histograms that were computed on the first
layer responses by histograms from higher convolutional layers.
Results are given in Tables 2 and 3.

The mean self-similarity decreases from 0.835 on convolu-
tional layer 1 (Table 1) to around 0.660 on convolutional layer
2, being relatively stable on the following layers until dropping
again drastically to 0.33 on convolutional layer 5 (Tables 2 and
3). Interpreting these results is not straightforward and would be
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Figure 3: Comparison between self-similarity defined on simple
edges (PHOG, a) and on the first-layer features of a CNN (b). The
overall results tend to be comparable, while subtle changes can
be found for individual categories: branches and urban scenes
become more self-similar because images of this category typi-
cally share large patches of similar color, such as sky or facades.
Plant patterns show less variance because these images are mostly
single-colored.

Table 1: Comparison between PHOG self-similarity and CNN
self-similarity calculated with features on convolutional layer 1.

Category Images PHOG self-sim. CNN self-sim.
Objects 207 0.660 ± 0.055 0.732 ± 0.049
Urban scenes 219 0.724 ± 0.044 0.818 ± 0.029
Large vistas 473 0.859 ± 0.041 0.840 ± 0.048
Clouds 268 0.783 ± 0.035 0.757 ± 0.064
Plant patterns 331 0.880 ± 0.053 0.893 ± 0.020
Branches 301 0.828 ± 0.043 0.903 ± 0.011
Lichen 244 0.941 ± 0.007 0.910 ± 0.010
JenAesthetics 1629 0.798 ± 0.048 0.826 ± 0.037
All 3672 0.812 ± 0.076 0.835 ± 0.060

highly speculative, especially for higher layers, since it is not cer-
tain what specific image features that layers capture exactly.
Comparing the different image categories (Tables 1 and 2), one
can observe a change when going from first-layer features to
second-layer features. For example, lichen growth patterns are
the most self-similar images in our experiment on layer 1, but fall
behind on higher layers, being less self-similar than plant patterns

(a) P: 0.65, C: 0.87 (b) P: 0.66, C: 0.87 (c) P: 0.69, C: 0.80

Figure 4: Example images that are more self-similar when com-
puted with CNN features (C) of the first convolutional layer than
when computed with PHOG features (P). The edges in the sub-
regions of the image differ, i. e. they are not self-similar, but the
homogeneous colorations (green for plant patterns and blue for
skies) result in higher self-similarity values for the CNN-based
method.

(a) P: 0.87, C: 0.57 (b) P: 0.69, C: 0.51 (c) P: 0.87, C: 0.56

Figure 5: Example images that are less self-similar when com-
puted with CNN features of the first convolutional layer than
when computed with PHOG. (a) When color is taken into ac-
count, our measure of self-similarity differentiates between the
green field and the blue sky. (b) The color difference of the red
candle, yellow matchboxes and the shadow in the upper part of the
image is neglected by the PHOG method but covered by the CNN
method. (c) The cloud features many different shades from white
to gray and blue, so that the image is less self-similar overall.
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Table 2: CNN-based self-similarity computed on features of con-
volutional layers 2 and 3.

Category conv2 conv3
Objects 0.630 ± 0.054 0.594 ± 0.037
Urban scenes 0.674 ± 0.042 0.631 ± 0.035
Large vistas 0.632 ± 0.042 0.651 ± 0.038
Clouds 0.599 ± 0.071 0.613 ± 0.044
Plant patterns 0.708 ± 0.049 0.713 ± 0.024
Branches 0.698 ± 0.029 0.698 ± 0.012
Lichen 0.693 ± 0.019 0.728 ± 0.012
JenAesthetics 0.658 ± 0.050 0.669 ± 0.037
All 0.660 ± 0.056 0.667 ± 0.048

Table 3: CNN-based self-similarity computed on features of con-
volutional layers 4 and 5.

Category conv4 conv5
Objects 0.605 ± 0.046 0.319 ± 0.051
Urban scenes 0.630 ± 0.054 0.347 ± 0.056
Large vistas 0.592 ± 0.041 0.270 ± 0.053
Clouds 0.622 ± 0.038 0.262 ± 0.031
Plant patterns 0.689 ± 0.048 0.400 ± 0.078
Branches 0.666 ± 0.022 0.369 ± 0.036
Lichen 0.667 ± 0.021 0.363 ± 0.055
JenAesthetics 0.637 ± 0.054 0.341 ± 0.076
All 0.637 ± 0.054 0.334 ± 0.076

and branches when using second-layer features.
Figure 6 shows the three most self-similar images for the first
layer (Fig. 6a–6c) and the second layer (Fig. 6d–6f). While a self-
similar pattern on the first layer depends on edges and color only,
our measure provides a more abstract detection of self-similarity
on the second layer where repeating patterns like twigs or leaves
make an image more self-similar. The same can be observed for
the category of artworks. Example images are shown in Figure 7.
On the first layer, the three most self-similar images are all im-
pressionist paintings, which are composed of many colored brush
strokes that are distributed across the entire image. In these im-
ages, high self-similarity probably results from the many repeti-
tive edges between the adjacent brush strokes. One the next layer,
repeating pictorial elements, such as color and luminance transi-
tions that delineate faces and body parts, may contribute to their
high self-similarity. Therefore, we conclude that second-layer
features are suitable for defining a measure of self-similarity that
focuses more on abstract features in an image.
The above results prompt the question whether self-similarity can
be calculated also with even more abstract features above layer
2. In our experiment, we did not obtain an added value to de-
tect generic image features when going beyond layer 2 (see ex-
ample images in Figures 6g–6i and 7g–7i). Rather, on convolu-
tional layer 3, the pictorial elements that constitute the high self-
similarity seem to consist of particular color combinations and
more complex forms that are seen in depictions of leaves (Figure
6h,6i), fruits and poppy flowers (Fig. 7h–7i), some of which the
CNN may have seen during training. These results are compat-
ible with a recent study by [19] who investigated the generality

of CNN features by transferring layers between networks that had
been trained on different tasks. The authors then retrained the
networks on other tasks and found the first two layers to be uni-
versal in the sense that they were interchangeable after training
between different tasks. Above the second layer, namely on lay-
ers 3 to 5, generality was no longer observable as performance
dropped. This finding indicates that the features learned on the
higher layers may not perform well simply due to the fact that
they are trained on other categories of images. Any self-similarity
detected at higher levels may thus be limited to objects, which
the network has seen before. This limitation makes higher-layer
features unsuitable for the case of detecting self-similarity in ar-
bitrary images.

(a) conv1: 0.93 (b) conv1: 0.93 (c) conv1: 0.93

(d) conv2: 0.80 (e) conv2: 0.81 (f) conv2: 0.80

(g) conv3: 0.76 (h) conv3: 0.76 (i) conv3: 0.77

Figure 6: (a)-(c) The images in the dataset that are most self-
similar when using CNN features of the first convolutional layer.
(d)-(f) The images that are most self-similar when using the fea-
tures of the second convolutional layer. While on the first layer,
self-similarity is defined by fine detail like small color blobs, the
self-similarity of the images in the second row seems to reflect
more abstract image features like leaves or twigs. (g)-(i) Using
features above the second layer results in no observable advan-
tages over layers 1 and 2.

Conclusion and Outlook
In this work, we investigated how suitable features learned

by CNNs are to define self-similarity. Features of early layers
in a CNN are known to be generic for object recognition and re-
semble edge, color and spatial frequency detectors in the human
vision system. Therefore, we propose a novel measure of self-
similarity based on CNN filters, which goes beyond the simple
edge detectors that are used in the PHOG method [2]. By an-
alyzing exemplary image sets, we demonstrate the advantage of
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using color and spatial frequency information in addition to edge
information. When we used second-layer features to define our
self-similarity measure, more complex features are detected and,
consequently, the focus shifts from edge and color information to
the content of the image.

In future studies, the measure of self-similarity proposed by
us could be applied to the field of computational aesthetics, a sub-
field of computer vision. In this field, CNN models with their pos-
sibility to apply end-to-end feature learning have been adapted to
assess image quality [13, 10]. While CNN models show good per-
formance in this task, their interpretability lacks behind, i. e. un-
derstanding what makes some images more appealing than others
is difficult with these models. In experimental aesthetics, another
(psychological) approach to study image preference, specific im-
age statistics are studied in images, such as artworks, which are
aesthetically preferred by human observers [4, 6, 7, 8, 15, 16]. In
the present study, we combined these two approaches by using
psychologically inspired deep features for the explicit design of a
novel measure for self-similarity, an image property that has been
related to artworks previously [15, 2]. How useful this measure
is for studying human preferences for particular visual stimuli or
for distinguishing artworks from other types of image categories,
remains to be established in future experiments.

(a) conv1: 0.90 (b) conv1: 0.91 (c) conv1: 0.91

(d) conv2: 0.75 (e) conv2: 0.75 (f) conv2: 0.76

(g) conv3: 0.73 (h) conv3: 0.73 (i) conv3: 0.74

Figure 7: The top rows shows the most self-similar artworks when
using features of convolutional layer 1, the middle row when us-
ing features of convolutional layer 2 and the bottom row when
using features of convolutional layer 3. While repetitive, fine col-
ored brush strokes make images of impressionist paintings highly
self-similar on the first layer, images tend to display related con-
tent and repeating patterns on the second and third level.
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