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Abstract 

Humans resolve the spatial alignment between two visual 
stimuli at a resolution that is substantially finer than the spacing 
between the foveal cones. In this paper, we analyze the factors 
that limit the information at the cone photoreceptors that is 
available to make these acuity judgments (Vernier acuity). We 
use open-source software, ISETBIO1 to quantify the stimulus 
and encoding stages in the front-end of the human visual system, 
starting with a description of the stimulus spectral radiance and 
a computational model that includes the physiological optics, 
inert ocular pigments, eye movements, photoreceptor sampling 
and absorptions. The simulations suggest that the visual system 
extracts the information available within the spatiotemporal 
pattern of photoreceptor absorptions within a small spatial 
(0.12 deg) and temporal (200 ms) regime. At typical display 
luminance levels, the variance arising from the Poisson 
absorptions and small eye movements (tremors and 
microsaccades) both appear to be critical limiting factors for 
Vernier acuity. 

Introduction 
Many aspects of imaging systems including displays and 

image coding strategies are designed to accommodate the 
spatial, chromatic and temporal resolution requirements of the 
human visual system.  Human spatial resolution can be assessed 
using a variety of experimental protocols (e.g., contrast 
sensitivity, Vernier acuity, crowding), and for each protocol the 
bottleneck may be traced to one or several components of the 
visual system. We used the Image Systems Engineering Toolbox 
for Biology (ISETBIO) to understand the role that different 
front-end components play in limiting judgments of Vernier 
acuity (relative position). 

Relative position resolution can be measured by having a 
subject judge whether a pair of line segments, presented just 
above and below fixation, is aligned or misaligned. The 
resolution of this Vernier acuity (relative position) is very 
precise compared to the sampling rate of the cone receptor 
mosaic [1] [2]. When the lines are presented to the same eye and 
near the fovea, observers detect an offset between the lines that 
is on the order of one-fifth of the width of a single cone. When 
the two lines are presented in corresponding locations to the 
right and left eye, the stimulus appears to be a single line whose 
apparent distance varies with the offset. Discrimination of the 
binocular offset in this case is called stereoacuity and the 
threshold is on the order of one third the width of a single cone 

                                                
1 Available at: https://github.com/isetbio 

[3]. The high relative position acuity of the human visual system 
is a factor driving the need for higher pixel counts in visual 
displays. 
 

 
Figure 1. The ISETBIO computational observer for threshold discrimination. 
We simulate the impact of stimuli at multiple stages within the visual pathway. 
The stimuli are represented by their spectral radiance, and we calculate the 
transformation to retinal irradiance by the physiological optics, transmission 
through various inert pigments, eye movements, and photopigment isomerizations. 
The software includes methods to calculate photocurrent, bipolar responses and 
ganglion cell responses. In this paper we focus on the information contained in the 
isomerizations, a space-time pattern includes the effects of random eye movements 
and Poisson photon absorptions.  
 

The information used to judge relative position in the 
Vernier acuity task must be present in the spatial-temporal 
distribution of the cone absorptions of the human retina, since 
subsequent processing cannot add to this information. The 
nature of this information has been understood qualitatively for 
many years [4].  A thorough analytical assessment of the 
information available to an ideal observer with a fixed eye 
position and the signal-defined-exactly and signal-defined-
statistically was developed by [5]. 

This paper extends that analytical work by using 
computational tools to simulate the encoding and to assess the 
discriminability of aligned from offset stimuli. The value of 
creating a computational method is that we can simulate a 
variety of factors that have no closed-form solution and thus 
analyze how different biological properties (e.g., physiological 
optics, eye movements, cone spacing) impact the information 
encoded for a range of stimuli (chromatic, stimulus size and 
timing). Here we simulate how Vernier acuity depends upon 
several specific parameters, including stimulus size, eye 
movements, image radiance level and defocus. 

Computational methods 

Visual simulation 
We refer to the simulation pipeline and inference engine as 

the Computational Observer (Figure 1) [6]. The simulation 
specifies quantitatively how the stimulus is transformed to 
produce the cone absorptions2.  We use simple machine-learning 
                                                
2 Photons can be absorbed by the photopigment without causing a 
change in the arrangement of the atoms (isomerization). The simulations 
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methods as the inference engine to assess how well different 
stimuli can be discriminated. 

 
Scene modeling.  

In many psychophysical and engineering problems the 
stimuli can be described as the spectral radiance from a 
calibrated display (i.e., a flat surface of Lambertian emitters at a 
single distance). To fully determine the spectral and spatial / 
temporal properties of the stimuli, a carefully calibrated display 
model is required. Calibration involves measurement of the 
display’s spectral, spatial and temporal properties [7] [8] [9-11].  

ISETBIO can also be combined with quantitative computer 
graphics using modern ray tracing software [12] [13] that 
generate a description of the light field incident at the cornea 
[14].  This capability is not used in this article. 

 
Physiological optics  

The physiological optics model converts the scene radiance 
to the retinal irradiance. For the small fields of view analyzed 
here the calculations are isoplanatic; that is, a shift-invariant, 
wavelength-dependent, convolution kernel can describe them. 
The software allows specification of an arbitrary kernel; in this 
application we parameterize defocus by controlling the Zernike 
polynomial defocus coefficient [15], which makes it possible to 
align simulations with empirical measurements using adaptive 
optics [16].  

 
Eye movements 

We model three types of fixational eye movements: drift, 
micro-saccade and tremor as independent factors [17] [18] [19]. 

  
Cone absorptions 

Visual quantum efficiency is the product of the lens and 
macular pigment transmittances and LMS photopigment 
absorbances [20]. The several components (e.g., macular 
pigment, lens pigment and photopigment densities and the 
spatial arrangement of the cone samples) are parameterized for 
simple experimentation. 

 
Retinal neurons 

The software includes simulations of photocurrent, bipolar 
cells and retinal ganglion cells.  We do not use these functions in 
this paper.  

 
Inference engine 

We train linear support vector machines (SVMs) [21] [22] 
to discriminate between the spatiotemporal pattern of cone 
absorptions generated by pairs of test stimuli.  We train on 
sample data and test using an independent set of stimuli. For 
efficiency, and without losing significant precision, we reduce 
the cone absorption patterns in the training and test data sets 
using principal components.  The computational observer’s 
performance is a lower bound on resolution. Using informal 
experiments, we observed that different classifiers generate 
somewhat different absolute performance levels. In all cases we 
tested, however, the general trends and relative performance are 
consistent. The performance of the classifiers used here does not 

                                                                            
in ISETBIO do not distinguish between these cases and we simply use 
the word absorptions. 

differ greatly from the ideal classifier with the signal-defined-
exactly [5]. 

Classification 
Figure 2 summarizes the simulation and classification 

pipeline. We create the dynamic spectral scene radiance for a 
pair of stimuli - aligned and offset vertical white lines on a gray 
background. The temporal sequence is sampled at 10 ms over a 
400 ms total stimulus duration. The line stimulus luminance was 
modulated by a Gaussian temporal window with a 100 ms 
standard deviation, centered at 200 ms. The scene spectral 
radiance was modeled using calibration data from a 
conventional (Apple) LCD.  

 

 
 
Figure 2. Computational pipeline for Vernier acuity. The Vernier acuity 
experiment compares two dynamic spectral radiance scenes, one with aligned (blue 
outline) and one with misaligned (red outline) line segments. We compute the 
dynamic retinal irradiance and the spatio-temporal patterns of Poisson cone 
absorptions including eye movements. Multiple samples of the these cone 
absorptions from the aligned and misaligned stimuli are used to train an SVM 
linear classifier. Classification accuracy is assessed using independently generated 
test data (yellow). 
 

We transform the scene spectral radiance into the dynamic 
retinal spectral irradiance. We then simulate a spatially-regular 
cone mosaic with randomly interleaved L, M and S cones with 
1.4 x 1.4 um apertures (1.96 um2), spaced at 2 um, in an L:M:S: 
ratio of 6:3:1. We calculate the time series of cone absorptions 
(Poisson noise) for the aligned and offset patterns 1000 times. 
We then create 1000 eye movement paths in which tremor is 
sampled at between 76-90 Hz with a mean displacement of 0.4 
cones per sample. Drift is assigned a speed of 10 +/- 1 
cones/sec, which amounts to a mean drift on the order of 4-6 
cones for the 400 ms stimulus duration. The microsaccade 
frequency is low and rarely occurs during the 200 ms stimulus 
duration; hence they are immaterial to the simulation.  The same 
eye 1000 movement paths are assigned to aligned and offset data 
so that small statistical differences in the eye movements cannot 
contribute to classification performance. 

We train the SVM linear classifier on a random selection 
(80%) of the aligned and misaligned samples.  The classifier 
finds an optimal affine transform that serves as a decision 
boundary.  We estimate classifier accuracy using the held out 
data (20%). The scripts used to produce the analyses in this 
paper are available from 
https://github.com/isetbio/WLVernierAcuity. 
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Computational experiments 

Eye movements 
The computational methods enable us to explore the 

interactions between different components of the visual system. 
Our first experiment considers the impact of two types of eye 
movements, tremor and drift, on Vernier acuity thresholds 
(Figure 3).  Microsaccades are not important for these 
experiments with briefly presented stimuli, and there is some 
reason to believe people suppress microsaccades during these 
acuity experiments  [17], 
 

 
Figure 3.  Eye movements impact classification performance.  The curves show 
classification accuracy as a function of bar offset for a different eye movement 
simulation and bar length. In the absence of eye movements (blue) classification is 
best, approaching 1 arcsec at 80% correct. In the presence of drift (yellow), tremor 
(red) or both (purple) threshold declines. The impact of eye movement is 
particularly large for simulations with a 3 arcmin bar length (A) and the same 
trends can be observed for simulations with a 10 arcmin bar length (B). Notice that 
for these two bar lengths when the eye is fixed classification performance is 
similar, and eye movements have a particularly strong effect on the short bar 
length. The simulated cone mosaic extended 0.35 deg, cone spacing 2 um, and a 
random positioning of the L,M, and S cones. The stimuli were white bars on a gray 
background of 35 cd/m  .  Stimulus duration was 400 ms with the lines coming on 
and off with a Gaussian envelope with a standard deviation of 100 ms (effectively 
a 200 ms stimulus duration). 
 

When the eyes are fixed, as in the signal-defined-exactly 
case, classification performance is very high (80% correct at 1 
arcsec). Introducing drift, tremor or both significantly reduced 
classification accuracy and, in all cases, the dominant effect is 
tremor. We performed simulations using a short (3 arcmin) and 
longer (10 arcmin) line length. The impact of the eye 
movements is particularly large for the short bar length (Figure 
3A). The substantial impact of tremor on the Vernier acuity 
threshold was a surprise to at least one of the authors.  We 
discuss empirical papers aiming to clarify the impact of eye 
movements on Vernier acuity [23] [24] later.  

Luminance, defocus, and bar length 
Vernier acuity is limited by a combination of Poisson noise 

in the absorptions, the cone sampling geometry, cone absorption 
noise arising from random eye movements, and the local loss of 
signal contrast due to defocus [5]. Increasing stimulus 
luminance increases the signal-to-noise of cone absorptions; eye 
movement tremors and defocus both spread the retinal image of 
the line and decrease the signal-to-noise. 
 

 
 
Fig 4.  Vernier threshold depends on display luminance, defocus and bar 
length. We estimated Vernier offset threshold (80% correct) by varying different 
stimulus or eye model parameters.  (A) Threshold varies substantially with the 
display white point luminance. Threshold decreases as luminance increases, though 
note the leveling at the highest luminances (B) Threshold increases as we increase 
optical defocus. The inset images above the graph show the point spread function 
at 550 nm for the in-focus and 6.15 diopters of defocus.  (C) Threshold declines as 
bar length increases. Arrows indicate points where performance never reached 
80%. Stimuli and cone mosaic properties as in Figure 3. 

 
We varied the stimulus radiance level by varying the white point 
luminance of the simulated display. Vernier acuity increases as 
display white point luminance increases (Figure 4, left panel).  
Note that thresholds plateau at 1 arcsec; this may be the 
threshold level set by eye movements alone.  

We estimated Vernier offset threshold as a function of 
defocus (Figure 4, middle panel). Defocus broadens the point 
spread function, decreases the signal-to-noise at each cone, and 
increases threshold [5].  

Vernier acuity thresholds also decrease as line length 
increases (Figure 4, right panel). Unlike human performance, the 
computational observer classification accuracy increases to at 
least 12 arcmin line [25] [26] [1] [27]. Accuracy in this 
simulation would have increased further but we only simulated a 
cone mosaic extending only 0.6 deg (36 arcmin) and in the 
presence of eye movements a portion of the longer lines 
sometimes falls beyond the mosaic. 

Not shown, we simulated the effect of sweeping out 
stimulus temporal duration between 50 and 600 ms. We find that 
given the drift and tremor parameters, threshold decreases up to 
a stimulus duration of 200 ms. 

Modeling psychophysical measurements 
The main analyses explore the experimental and visual 

system parameters with the aim of dissecting the impact of 
parameters on limiting resolution. In this section, we coordinate 
the simulation with specific experimental measurements.   

Westheimer and McKee [1] studied Vernier acuity as a 
function of bar length using bright line targets on a zero 
background for 200 ms. They report that the line stimulus 
information is integrated up to about 0.12 deg.   We simulated 
their stimulus conditions and applied the computational observer 
analysis to a cone mosaic of 0.12 deg (Figure 5). The 
classification threshold (offset at 75% correct) in the simulation 
is similar to human performance (Figure 5B).  
The computational observer is intended to characterize an 
observer making full use of the information available at some 
location within the visual system, in this case the cone 
absorptions. In most cases, we expect that additional noise and 
processing imperfections in other parts of the nervous system 
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will produce behavior that is significantly worse than the 
computational observer.  For Vernier acuity, however, the 
general agreement between computational observer and human 
thresholds is surprisingly close. Hence, these analyses support 
the hypothesis that for the Vernier task the visual system makes 
efficient use of the information available in the absorptions over 
a small field of view [5].  
 

 
 
Figure 5.  A phenomenological model to summarize performance in 
Westheimer and McKee (1977). (A) Classification performance is plotted as a 
function of Vernier line offset for several bar lengths (arcmin). The simulation 
parameters were set to approximate the subjects described in McKee and 
Westheimer (1977) - cone mosaic size 0.12 deg, standard eye movements, and a 
1.45 arcmin white bar presented for 200 ms on a black background.  (B) Vernier 
offset threshold (80% correct) as a function of bar length is plotted for the SVM 
linear classifier (blue curve) along with data from two subjects (red symbols). The 
arrows indicate conditions when the 80% threshold was not quite reached. 

Discussion 

Signal-to-noise in the cone absorptions 
Eye movements (Figure 3), luminance level, defocus and 

bar length (Figure 4) and other factors (e.g., stimulus duration) 
combine to set limits for Vernier acuity.  One way to understand 
how these factors all contribute is to view how each influences 
the signal-to-noise in the pattern of cone absorptions (Figure 6). 
The panels illustrate the effect of defocus that lowers the peak 
number of absorptions and decreases the slope at the margin of 
the retinal image of the line.  Defocus reduces the ability to 
detect small differences, and similar curves can be created to 
show a similar variations in discriminability caused by eye 
movements and luminance level.  
Vernier acuity threshold depends on bar length [2].  For very 
short bars, the photons from short bars significantly overlap. 
Lengthening the bars provides more cone data and also produces 
absorptions that are clearly assigned to one or the other line [28]. 
 

 
 
Figure 6.  The effect of optical defocus on the spatial pattern of L-cone 
absorptions.  The curves show absorptions in a row of a cone mosaic ( 2 um cone 
spacing) with the three types of cones at randomized positions.  The absorptions 

are shown through cones seeing the upper (solid) and lower (dashed) portions of 
the Vernier lines.  The simulation was for a 20 ms stimulus integration time and 
imaged through (A) average human optics or (B) human optics with a defocus of 2 
microns (6.15 diopters). The signal-to-noise and slopes at the edge of the line of 
the in-focus condition afford more information for judging the alignment. 

Related work 
The significant impact of eye movements on the 

performance of the computational observer can be considered in 
the context of a classic theory of visual acuity:  namely, that the 
dynamics of the signal arising from eye movements is an 
essential element of visual acuity.  This theory has roots going 
back more than a century, and in certain forms it has been 
denied [29] [2]  [23] [4].  A new form of the theory, connecting 
acuity with tremors, has been brought forth again in recent work 
[19] [30]. 

In the specific case of vernier acuity, empirical 
measurements show that stabilizing the image [23] or placing it 
into active motion [24] [27] have very little impact on the 
threshold.  The computational observer experiments show that 
the presence of small eye movements raises the Vernier 
threshold.  In the fixed eye case the classifier could discriminate 
as finely as 1 arcsec, while in the presence of eye movements 
the threshold was raised to 6 arcsec for a 10 arcmin line and 
much higher for a 3 arcmin line. 

These findings raise the question of why there is no 
difference between the stabilized and unstabilized thresholds 
measured psychophysically.  One possibility is that the visual 
system anticipates that eye movements will be present.  In that 
case, the neural apparatus needed to resolve the information 
available without eye movements may not be present.  Thus, 
when eye movements are eliminated by image stabilization, 
performance does not improve.  The situation is analogous to the 
contrast sensitivity function measured through the S-cones with 
short wavelength light.  Overcoming chromatic aberration and 
placing a high spatial frequency grating onto the retina does not 
improve contrast sensitivity; the nervous system is structured 
under the assumption that chromatic aberration is present and no 
such retinal images can arise. 

Geisler and Davila [28]  analyzed the performance limits 
for an ideal observer case when the signal is defined exactly 
(SDE) or when the signal is defined statistically (SDS).  They 
estimated thresholds for stimuli comprising dots, similar to the 
short bar lengths.  One might view the contribution here as an 
extension, some thirty years later, of the computational aspects 
of that work.  

Conclusion 
The computational observer method separates the impact of 

various factors that comprise a system, whether biological or 
engineered.  The complexity of these factors and their 
interactions generally preclude the ability to examine their 
effects by analytic calculations or direct experimental tests. The 
computational observer method complements the analytical and 
empirical work. 
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We see the strengths and weaknesses of analytical theory in 
many scientific fields. Shannon’s information theory is a 
fundamental guide to information content, but it is of modest 
help in understanding why the Internet is slow. The Hodgkin-
Huxley equations are compelling, but they do not explain how 
neuronal signaling depends on the number of myelin wraps and 
local field potentials. Computational methods provide a useful 
tool to complement the understanding derived from basic 
theoretical principles. 

This paper reports one of our initial forays using a 
computational observer approach to understand the visual 
system. We hope that further development of these models will 
clarify the interactions between the factors that shape the 
information available at different stages of the visual encoding.  
We further hope that experiments and analyses using the 
computational observer can guide decisions about behavioral 
and neurophysiological experiments that are needed to test and 
extend our understanding. 
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