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Abstract
Understanding the depth order of surfaces in the natural

world is one of the most fundamental operations of the visual sys-
tems of many species. Humans reliably perceive the depth order
of visually adjacent surfaces when there is relative motion be-
tween them such that one surface appears or disappears behind
another. We have adapted a computational model of primate vi-
sion that fits important classical and recent psychophysical data
on ordinal depth from motion in order to develop a fast, robust,
and reliable algorithm for determining the depth order of regions
in natural scene video. The algorithm uses dense optic flow to de-
lineate moving surfaces and their relative depth order with respect
to the parts of the static environment. The algorithm categorizes
surfaces according to whether they are emerging, disappearing,
unoccluded, or doubly occluded. We have tested this algorithm
on real video where pedestrians and cars sometimes go behind
and sometimes in front of trees. Because the algorithm extracts
surfaces and labels their depth order, it is suitable as a low-level
pre-processing step for complex surveillance applications. Our
implementation of the algorithm uses the open source HPE Cog-
nitive Computing Toolkit and can be scaled to very large video
streams.

Introduction: Depth Order from Motion
Biological visual systems effectively use motion cues for

scene segmentation. For a prey with effective static camouflage,
the change in optical signals resulting from their motion may be
the only cues available to a predator’s visual system for detection
surface segregation (of prey from background or emerging from
behind an obstacle). The motion of one surface behind another,
illustrated in Figure 1, provides powerful and reliable cues for
depth order (but not metric depth). These accretion and deletion
cues are always associated with the background surface. Consider
a moving background behind a static figure, or a moving back-
ground seen through an aperture. The accretion and deletion cues
are just as powerful and useful in natural video. As will be dis-
cussed in the description of our algorithm, the notion of accretion
or deletion of discrete featural elements (e.g., dots or texture) can
be generalized to growth or erosion of relatively homogeneous
image regions.

Inspired by models of primate vision that explain depth or-
der based solely on kinetic clues [1][2][3], we have created the
CogMO (Cog-Motion-Occlusion) algorithm. The essential in-
sights of previous models, that the form and motion pathways of
the primate visual system are mostly separated but must interact,
and that there exist simple mechanisms for detecting accretion and
deletion, have been incorporated into the CogMO algorithm.

Surround is static, non-moving
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Figure 1: When a random noise rectangle moves to the right in
front of a random noise background (A), the appearance and dis-
appearance of dots by the sides of the rectangle (accretion and
deletion cues) creates a clear depth order – the moving rectangle
is seen in front of the surround. (B) Examining more closely one
row of hypothetical pixels, accretion and deletion can be detected
when a pixel has no corresponding counterpart in the previous or
next frame (marked with circles).

CogMO Overview
The CogMO algorithm described here uses only motion sig-

nals to derive depth order from video. This algorithm segre-
gates isolated moving surfaces from static background and es-
tablishes depth relations (such as “occludes”, or “being occluded
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Figure 2: Diagram of the algorithm in [1] that is the main in-
spiration for the current work. Note the separate where (motion
processing) and what (form processing) streams.
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by”) along the boundaries of moving surfaces. Note that this is
not a “3D reconstruction”, but a “layering” of the environment
using motion cues.

Furthermore, inferring depth relationship in the dynamic
scene allows our algorithm, over time, to learn the location and
the shape of static occluding objects and potentially complete oc-
cluded surfaces “amodally”. This means that an (incomplete) rep-
resentation of the whole object (e.g., a bounding box) can be in-
ferred without reliance on any domain knowledge (such as from a
classifier) about the identity of the object undergoing occlusion.

In order to produce motion signals, we used the Zach et al.
dense optic flow algorithm [4]. Our CogMO algorithm performs
in near real time1 (2 fps) on video recorded of a street scene. The
moving objects in the scenes (cars, trucks, pedestrians) are some-
times occluded by trees. Our algorithm in most cases correctly
identifies ordinal depth in the scene and learns locations of the
occluding trees. These relationships are marked in real time for
human visualization using color and luminance.
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Figure 3: Overview of the CogMO algorithm.

Our algorithm makes its depth order assessment entirely on
the basis of motion signals determined from the optical flow field.
This allows to isolate motion processing as a module that can be
used as a component in a larger more comprehensive vision sys-
tem. For more robust scene interpretation, this algorithm can be
combined with other algorithms that exploit luminance and color
(see for example [5]).

The objectives of the proposed algorithm are to identify
moving surfaces and for each moving surface to classify its
boundaries as belonging either to the surface itself or to the static
foreground that partially occludes a given moving surface. Mak-
ing such an inference is equivalent to establishing ordinal depth
relationship for certain pairs of adjacent surfaces in a scene. For
an explanation of the importance of surfaces in the context of hu-
man motion perception see [6]. The functional control flow of the
CogMO algorithm is shown in Figure 3.

Computational Environment
In order to process natural video on a realistic time scale,

we implemented our algorithm in a special computational envi-
ronment, Cog Ex Machina (CogX, version 4) [7]. CogX uses
and abstracts available computational resources (GPUs) and en-
forces parallel computation through a special modeling language.
This language supports formulation of the algorithm in terms of
algebraic manipulation of tensor fields (multidimensional arrays)
that are used to represent abstractions of computations that can be
viewed as done by “neural units”.

CogMO Algorithm
To determine ordinal depth relationships, the visual image

undergoes a sequence of transformations; each of these has an

1HP Z820 workstation with an NVIDIA GeForce GTX TITAN GPU

analogy in primate visual processing. Figure 4 shows the data
flow and relationship between functional units of the proposed
algorithm. The rest of this section is a description of each of the
functional modules shown in the figure. In what follows, “box 1”,
“box 2”, etc. refers to the labels in the top left corner of the boxes
in this figure.

Optic Flow
Optic flow (box 2, Figure 4) refers to a velocity field (two-

component vector field O(0) and O(1)) generated by processing
a stream of video V [t] (box 1, Figure 4), where V is a luminance
scalar field. Optic flow algorithms used in visual image process-
ing can be largely divided into two classes. Dense algorithms
produce velocities for all locations in the field. Sparse algorithms
produce velocities only for specified locations. While sparse al-
gorithms require fewer computational resources and presumably
rely on less noisy data, they are concerned with a higher-level cor-
respondence problem. For our low-level algorithm, dense optic
flow is required.

Discretized Motion
The representation used for optic flow is an analog vector.

The CogMO algorithm works with a discrete set of motion direc-
tions. Discrete representations are generally less noisy than ana-
log representations. The operation which transforms optic flow
into discrete motion representation (box 3, Figure 4) is specified
by Equations 1–4. Motion direction is encoded by a normal vec-
tor m(d), where d = 0,1...n−1 that span 2D direction space with
n directions and intervals of size 360°/n. The directional angle φ

is computed from the optic flow according to:

φ = atan2(O(0),O(1)) (1)

where function atan2() uses the inverse tangent (arctan) function
to find an angle in [−π,−π] (i.e., full 360°) interval specified by
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Figure 4: Detailed CogMO algorithm data flow and component
interaction diagram.

IS&T International Symposium on Electronic Imaging 2017
Human Vision and Electronic Imaging 2017 161



two vector components. The motion direction D is found as the
closest vector to m according to Equations 2 and 3:

φmin = min(|φ −m(d)|) for d = 0...n−1,

where m(d) = atan2(2πd/n) (2)

D(d) =
{

1 if |φ −m(d)|= φmin
0 otherwise

(3)

Direction signals are thresholded to eliminate motion noise to pro-
duce a discretized motion signal M according to Equation 4,

M = D(max(O)> Gm)[‖O‖−Lm]
+ (4)

where Lm is a local motion magnitude threshold and Gm is a
global magnitude threshold. Thus, a discretized motion repre-
sentation M is a vector field that approximately preserves velocity
direction. The number of vector components in such a field is
equivalent to the number of directions of velocity (n), but at most
one tensor component can be non-zero.

Motion Field
The motion field (box 4, Figure 4) S is a binary scalar field

encoding location where discretized motion is present. This rep-
resentation is an intermediate step required to enumerate motion
surfaces — connected regions of coherent motion. Determining
locations where a discretized motion vector field is non-zero is
done by selecting a non-zero component of the discretized vector
field M according to Equation 5,

S = Mmax. (5)

Here Mmax selects maximal component of each vector of the vec-
tor field M. This operation constitutes tensor rank reduction from
1 to 0 (i.e., vector to scalar). Examples of motion fields are shown
in the second row of Figure 5.

Motion Boundaries, Motion Onset and Offset
Motion boundaries (box 5, Figure 4) delineate the extent of

a region of motion. A location on the motion boundary can be la-
beled as motion onset or motion offset. Onset of motion encodes
locations where the motion emerges and the offset encodes loca-
tions where the motion disappears. This determination is possible
only by analyzing the optic flow signals. The motion boundary
signal B is computed according to

B(d) = S−S�m(d), (6)

where S�d designates the shift of the whole image S by a di-
rectional vector m(d); m(d) encodes a directional vector for the
direction 2πd/n. Oriented motion onset B+ and offset B− signals
are computed according to Equations 7 and 8:

B+(d) = M(d)[M(d)−M�m(d)]+ (7)

B−(d) = M(d)[M(d)−M�m(comp(d))]+ (8)

Note that comp(d) represents the direction opposite to m(d). Mo-
tion directions orthogonal to the direction of the boundary are sup-
pressed as they do not represent motion onset/offset, in Equations

9 and 10:

B+(d) = B+(d)[B(ort(d))+B(comp(ort(d)),1] (9)

B−(d) = B−(d)[B(ort(d))+B(comp(ort(d)),1] (10)

Where d corresponds to one of the n basic directions spanning
direction space with 360°/n intervals; ort(d) represents direction
perpendicular to d (in the sense of +90°). Finally, scalar represen-
tation for motion onset and motion offset is computed by tensor
reduction:

B± = B±max (11)

Detecting Motion Surfaces
Motion surfaces (box 6, Figure 4) are formed by connected

and coherently moving pixels. Some of these surfaces may be-
long to the same objects while some of them may not. The rea-
sons for discontinuities within a single object can be occlusions
or noise resulting from optical flow computation. The reason for
any given discontinuity can be identified by a proper motion field
analysis. Disconnected surfaces potentially can be grouped to-
gether as parts of the same object. However at this stage of visual
image processing, the goal is to delineate motion surfaces and to
process surfaces instead of pixels. Motion surfaces represent a
higher layer in the hierarchy of visual data encoding than pixel
representation. Unlike pixels, which can be characterized only

Figure 5: The top row shows the input frames to the algorithm
chosen from processing of two video sequences. On the left side
a pedestrian is walking behind a tree (the cars are parked). On the
right side, the car is moving to the left. The second row show the
motion onsets (red) and offsets (green). The third row shows the
moving regions labeled by the algorithm as emerging (blue) and
disappearing (red). The bottom row shows the moving regions
(lightened) together with the actual occluders (reddish).
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by their luminance value, motion surfaces can be described by a
multidimensional set of properties characterizing their shape and
dynamics. However motion surface properties are uniform, as-
sociated with the entire region and therefore significantly reduce
the bandwidth required for their description and communication.
The motion surfaces consist of individual pixels, but a pixel repre-
sentation of the scene already exists at the earlier stages of visual
processing described above (boxes 2–4, Figure 4) and once mo-
tion surface boundaries are determined they can be used to extract
pixel representation of a region.

We use an iterative recurrent dynamic filling-in process (still
box 6, Figure 4) to segregate individual motion surfaces from the
motion field S. In the process of surface demarcation, an initial
seed placed within a connected region is allowed to spread by
convolving the seed with a small (3x3) rectangular kernel with
subsequent gating by the original motion field and thresholding
the results at the end of each iteration. The process is continued
until the resulting field stops changing. At this point, the region is
considered delineated, assigned to a corresponding layer and sub-
tracted from the original motion field in order to identify the next
seed. The process continues until no seed can be placed within
the original motion field, because all its non-zero locations would
belong to identified motion surface.

Filling-in processes were serialized in order to enumerate in-
dividual surfaces. The details of surface enumeration are specified
by Equations 12 and 13:

g(i) =
{

S, i = 0
g(i−1)∗C(i−1), i > 0

(12)

C(i) = S∗ spread(wta(g(i)),g(i))|i
i = 0,1, ...∑

k,l
gkl(i)> 0 (13)

Where, k is a contour index, and x is defined by

x =
{

0 x > 0
1 x = 0

(14)

C(i) is a motion field, g(i) represents the ith iteration in a process
of surface finding d = spread(s, f ) is an operator that finds sub-
set of pixels connected to pixel s specified as a seed in a field f .
It performs a set of subsequent convolutions with a small (3x3)
rectangular kernel K

d(i) =
{
|conv(s,K),TK |+ ∗ f , i = 0
|conv(d(i−1),K),TK |+ ∗ f , i > 0

for i = 0,1, ...d(i) 6= d(i−1) (15)

where

conv(x,K) = ∑
i j

∑
kl

xi−k+1, j−l+1 ∗Ki j (16)

and wta(x) suppresses all pixels in the field x except the ones that
have the maximum value.

wta(x) =
{

1, xi j ≥ x,∀x
0, otherwise

(17)

The results of this process are multiple fields; examples are
shown in the third row of Figure 5. Thus final representation of
image as a collection of motion surfaces is a vector field where the
number of vector components is equivalent to a number of motion
surfaces

The following motion surfaces properties (box 7, Figure 4)
are relevant to determination of boundary ownership: centroid lo-
cation, U(i) and velocity, v(i). These properties are computed as
following:

U(i) =
(

∑k,l,Ckl 6=0 k
Ri

,
∑k,l,Ckl 6=0 l

Ri

)
(18)

v(i,d) = ∑
k,l

Ckl(i)M(d) (19)

v(i) = ∑
d
(m(d)∗ (max(O(i,d)) == O(i,d))) (20)

Here, i represents a motion surface index; d represent a discrete
motion direction, M is a discretized motion signal; m(d) corre-
sponds to a discrete velocity for direction d. The motion onset
and offset boundaries are described by:

B+(i) =
∑k,l,Ckl B+ 6=0 C(i)B+

Ri
(21)

B−(i) =
∑k,l,Ckl B− 6=0 C(i)B−

Ri
(22)

Region Dynamics
Regions dynamics (box 8, Figure 4) provides important cues

in determination of ordinal depth of a motion surface. This
process includes finding surface correspondence between two
frames. Finding correspondence is important because incorrect
correspondence would lead to incorrect judgment about the state
of occlusion.

The algorithm operates on the assumption that surface lo-
cations overlap in two consecutive frames. If they do not, the
surface has just appeared from occlusion. This assumption holds
for most of the real situations if sampling happens with sufficient
frequency. Therefore the surface enumeration signal C(i) related
to the previous frame is preserved.

Emerging( Disappearing(

Unoccluded(

gone(begin(

aside: Ideal Region State Transitions 

10(

Doubly(
Occluded(

Figure 6: Occlusion states and ideal state transitions. The car is
occluded by one or more trees. The CogMO system allows for a
noisy signal as transitions between states only occur when there
is sufficient confidence.
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Once surfaces for the current frame are found, the algorithm
processes them sequentially, determining the ancestor of each sur-
face (i.e., the same surface in the previous frame). This can only
be done by knowing the properties and dynamics of all the possi-
ble ancestors of the surface. The following surface properties are
found by using surface dynamics and surface boundary dynamics:

1. Overlap of the contour i with contours in the previous frame

I(i) = ∑
i

C(i)∗C(i)[t−1] (23)

2. Number of overlaps

N(i) = ∑
i,I(i)6=0

1 (24)

3. The location of the motion onset and offset boundaries

B+
c (i) =

∑i,I(i)6=0 B+(i)

N(i)
(25)

B−c (i) =
∑i,I(i)6=0 B−(i)

N(i)
(26)

Note that the B+(i) here from Equation 21 is different from
the B+(d) of Equation 7.

4. Boundary displacements

∆B+(i) = B+(i)−B+
c (i) (27)

∆B−(i) = B−(i)−B−c (i) (28)

5. Extent of the region

∆B(i) = |B+(i)−B−(i)| (29)

Dynamics of Occlusions
A surface region can be in one of the following four states

with respect to occlusion dynamics (see Figure 6):

1. Unoccluded (OU ): no surface occludes the region.
2. Disappearing (OD): the surface is becoming more occluded

and partially hidden behind an occluding surface. The oc-
cluding surface is located in the direction pointed by the re-
gion’s velocity vector o(i) computed according Equation 20.

3. Emerging (OE): the surface is coming out of occlusion but
still partially hidden behind an occluding surface. The oc-
cluding surface is located in the direction opposite to the
region’s velocity vector o(i).

4. Doubly-Occluded (OB): in this state the surface is located
between occluders. The occluding objects are located in the
direction indicated by the region’s velocity vector o(i) and
also in the opposite direction.

The occlusion state can be determined (box 9, Figure 4) with
a various degree of reliability from a number of cues. We im-
plemented a scoring system that takes into account a dynamic
of motion onset/offset boundaries B+B− and extent of the re-
gion ∆B. In general, a moving boundary corresponds to an un-
occluded moving edge, while a static boundary corresponds to
an occluding edge belonging to a static foreground. Displace-
ment of the unoccluded edge towards the static occluding edge

correlates to the “Dissapearing” state (OD), while displacement
of the unoccluded edge away from static boundary corresponds
to the “Emerging” state (OE). The sign of displacement differen-
tiates emergence from disappearance. The size of displacement
correlates with the probability of a region being occluded from
one side versus “Unoccluded” or “Doubly-Occluded” state. The
Unoccluded state correlates with the total displacement of both
boundaries or a region’s centroid, while the double occluded state
can be characterized by a lack of boundary motion. Thus, we can
introduce a scoring system, which would allow us to select the
region’s status based on regions boundary dynamics.

Real time motion signals from video are notoriously noisy,
and therefore any of a surface’s properties can be a result of error,
random fluctuation, some weird shape irregularity, etc. To make
our algorithm more robust, in addition to the scoring system based
on the dynamics of region’s boundaries, we added a “state tran-
sition inertia”, which enables a state transition only after certain
stability threshold in assigning occlusion status to a given region
is reached.

oD(i) = |∆B−(i)|− |∆B+(i)| (30)

oE(i) =−oD(i) (31)

oU (i) =
|∆B−(i)|+ |∆B+(i)|

2
(32)

oB(i) = v(i)−oU (i) (33)

And using

omax(i) = max(oD(i),oE(i),oU (i),oB(i)) (34)

We then define OD(i),OE(i),OU (i),OB(i) according to:

Ox(i) =
{

1 if ox(i) = omax(i)
0 otherwise

for x ∈ {D,E,U,B} (35)

Here oD, oE , oB, and oU represent a score of the correspond-
ing region state. After these are computed, the maximum is cho-
sen and only the state of (OD, OE , OB, and OU ) is set for the
region. Thus the occlusion state is the result of evaluating a sur-
face’s boundary dynamics and also taking into account state tran-
sition inertia.

Boundary Ownership
Motion onsets and offsets B+ and B− can be qualified (box

10, Figure 4) as a moving surface onset H+, moving surface offset
H−, a static surface occluding edge P− and static surface disoc-
cluding edge P+ (see second row of Figure 5).

H+(i) =C(i)∗B+(i)∗ (OE(i)|OU (i)) (36)

H−(i) =C(i)∗B−(i)∗ (OD(i)|OU (i)) (37)

P+(i) =C(i)∗B+(i)∗ (OD(i)|OB(i)) (38)

P−(i) =C(i)∗B−(i)∗ (OE(i)|OB(i)) (39)

Here C(i) has all locations that belong region I, set to 1, B+

defines region onset, and B− defines region offset. OD, OE , OB,
and OU flags specify motion region’s status.
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To be an edge of a moving surface H (Equations 36–37),
the boundary should belong to an occluding (OE ) region and be a
motion region onset or belong to a disoccluding (OD) region and
be a motion offset or belong to an unoccluded region (OU ). To
be an edge of a static occluding surface (Equations 38–39), the
boundary should belong to either occluding (OD) or disoccluding
(OE ) or a double occluded (OB) region and be a motion surface
offset in case of OE or a motion surface onset in case of OD.
The latter requirement reflects motion disappearance and motion
emergence at the edges of occluding surface.

For future reference, we define a moving surface region’s
front edge (H+) and rear edge (H−) with respect to direction of
velocity O computed for the region. Similarly, for static object
edges, let’s refer the edge where motion emerges the front edge
and where it disappears the rear edge.

Depth Relations
The CogMO algorithm described in this document derives

depth relations (box 11, Figure 4) from the boundary ownership
signals: H and P. These relations are local, in the sense that they
exist in the vicinity of motion boundaries. The following depth
relationship can be derived from boundary ownership H and P
and region velocity o(i):

The area in the vicinity of the occluding surface’s front
boundary P+, in the direction pointed by the region’s velocity
vector o(i) is behind the area pointed to by the opposite of the
surface velocity direction.

The area in the vicinity of the occluding surface’s rear
boundary P−, in the direction pointed by the region’s velocity
vector is in front of the occluding surface region to which rear
boundary P− belongs.

The area in the vicinity of the moving surface’s front bound-
ary H+ in the direction pointed by the region’s velocity vector
o(i) is behind the is behind the area pointed by the opposite to the

Figure 7: The top three frames are from the first event of the
pedestrian video. The highlighted portion in each frame is the
region found by the CogMO algorithm; it is highlighted accord-
ing to the ground truth established by careful human observation.
The first frame shows the pedestrian emerging from ’behind’ the
left edge of the frame; the second frame shows the unoccluded
pedestrian; and the third frame shows the pedestrian disappearing
behind a tree. The bottom part of the figure shows one column
for each unique frame and region for this event. The colors corre-
spond to the colors and states shown in Figure 6, blue is Emerging,
white is Unoccluded, red is Disappearing, and green is Doubly
Occluded. The top row is Ground Truth, with the frames shown
above marked with a black border. The bottom row shows the
CogMO output.

region velocity direction.
The area in the vicinity of the moving surface’s front bound-

ary H− in the direction pointed by the region’s velocity vector o(i)
is in front of the occluding surface region to which rear boundary
H− belongs.

Visualizing Ordinal Depth
A useful way to represent the depth relations inferred accord-

ing to the rules specified in the previous section is to use three
distinct visualizers:

• Moving surfaces – INSIDE (I)
• Static occluders – NEAR (N)
• The rest of the scene – FAR (F)

This approach allows visualization of up to 3 depths strictly based
on local relationship by applying the rules stated in the previous
section. These rules are formally applied according to

N(i) = ∑
j=0...n−1

warp(P+(i), j ∗O(i))

+ ∑
j=0...n−1

warp(P−(i),− j ∗O(i))
(40)

I(i) = conv(C(i),gaus(2.0)) (41)

F = 1−∑N(i)−∑F(i) (42)

Where i identifies a region, F represents the scene background,
N represents the area occluding a moving surface (static occlud-
ers), I represents an unoccluded moving surface, j represents an
iteration in the process of depth propagation in the vicinity of oc-
cluding edges warp(a,b) – an operator that shifts a field in the
direction pointed by vector b n – number of iterations in depth
propagation (visualization parameter n = 10) conv(a,k) – con-
volves a scalar field a with a kernel k, gauss(w) – Gaussian kernel
defined as (1/2πσ)exp(−d2/2σ2); 2w is a kernel width, d is a
distance in pixels to kernel center.

The bottom row of Figure 5 shows visualisation of depth
order for the frames displayed in the top row. The moving re-
gions (INSIDE) are highlighted, the static background (FAR) is
dimmed, while any occluding areas (NEAR) are shown reddish.

Evaluation
We compared the performance of the algorithm with that of

human observers (Figures 7 and 8). We were interested in hu-
man performance in real-time, using just a few frames to decide
the occlusion state of a selected region. Thus we created a sim-
ple psychophysical task using PsychToolbox [8] where for each
region created by the CogMO algorithm, three frames were pre-
sented in rapid succession to enable the sensation of movement.
The selected region was highlighted (as in the middle frame of
the top row of Figure 7). Observers were presented with every
three-frame sequence in a random order and asked about the oc-
clusion state (E,D,U,B) of the highlighted region. It is necessary
to highlight the surface being considered, as sometimes a pedes-
trian would be visible on both sides of a tree, and thus simultane-
ously Emerging and Disappearing.

To evaluate the performance of human observers and of the
CogMO algorithm, a “Ground-Truth” was established by careful
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Figure 8: The figure shows one column for each unique frame and region, divided into events. The colors correspond to the colors and
states shown in Figures 6 and 7. The rows are (in order from top to bottom) Ground-Truth, CogMO, then three human observers (GL,
AR, HR). The three frames shown in the top part of Figure 7 are again highlighted with a black border in the “Ground-Truth” row.

back-and-forth stepping through frames. The main criterion used
to determine occlusion of a pedestrian was that the torso or head
had to be occluded; a foot appearing or disappearing behind a tree
is not sufficient.

The results of the comparison is presented in Table 1. The
performance of the CogMO algorithm (58%, using the loose stan-
dard for Doubly Occluded, B) is not on par with human observers
(87%). Interestingly, the performance of human observers when
compared to other observers is slightly lower (85%), indicating a
fairly high variability among human observers.

The CogMO algorithm, while better than random (33%),
will occasionally make incongruous judgments, such as the one
frame labeled E among the D frames of sequence one. The
CogMO algorithm is more likely than human observers to cate-
gorize surfaces as Unoccluded. While it is possible to add mech-
anisms whereby the CogMO algorithm can be tuned, please note
that as specified herein, it has no tunable (free) parameters.

Performance vs GT vs Os vs GT vs Os
CogMO 56.6% 54.0% 58.4% 54.9%

Observers 85.5% 82.6% 87.3% 85.2%
strict B loose B

Table 1: The performance of the CogMO algorithm. GT refers to
“Ground-Truth” established by careful frame-by-frame observa-
tion. Os simply means Observers. The performance of both the
CogMO algorithm and Observers are compared both the Ground
Truth and Observers. For the Observers statistics, they are aver-
aged over all Observers, and when compared to Observers that
means other Observers. The strict and loose B columns refer to
the interpretation of the Doubly Occluded state. When strict, a
judgement of B has to match a Ground Truth of B. When loose, a
judgment of B can match a Ground Truth of E, B, or D; and vice
versa.

Summary
The algorithm described in this paper processes natural video

in close to real-time and is able to extract moving regions. In ad-
dition, because video is a source of dynamic information, the al-
gorithm is able to classify the “occlusion state” of each region for
each frame. Both determining the occlusion state and comparing
with human performance on this task appears to be a completely
novel procedure. While the performance of the algorithm is ade-
quate, it does not reach human levels, suggesting that the human
visual system may make use of additional types of processing.

The CogMO algorithm is useful because the notion of oc-
clusion status of a surface can be used to keep track of objects in
the environment. For example, in an automated surveillance sce-
nario, it can be used to recognize the difference between going out
of frame vs hiding behind an object in the camera field of view.
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