https://doi.org/10.2352/ISSN.2470-1173.2017.14 HVE-1 36
This work is licensed under the Creative Commons
Attribution 4.0 International License.

GPU-accelerated vision modeling with the HPE cognitive com-

puting toolkit

Benjamin Chandler; Los Altos, CA

Abstract

The HPE Cognitive Computing Toolkit (CCT) is an open-
source modeling platform backed by Hewlett Packard Enterprise.
CCT provides a domain-specific language designed for problems
like vision modeling and deep learning. The CCT platform com-
piles programs written in this language to native graphics proces-
sor (GPU) code. Developing vision models in CCT is far simpler
and more productive than writing GPU code directly, but without
sacrificing the performance gains of GPU acceleration. This pro-
gramming model scales to interesting problems like dense optic
Sflow, anisotropic diffusion, and deep learning. CCT is particularly
powerful when combining multiple state-of-the-art techniques in
a single algorithm.

Introduction

Graphics processor unit (GPU) acceleration is one of the
driving forces behind the rapid growth of deep learning [1]]. For
the right workloads, a GPU implementation can be radically faster
and more efficient than an equivalently optimized CPU imple-
mentation. Dense matrix-matrix multiplication is one such work-
load. Google’s TensorFlow platform leverages optimized parallel
CPU and GPU operators for matrix multiplication [2]. Tensor-
Flow 0.12.1 with a single consumer-grade NVIDIA GTX 1080
GPU can multiply two 16,384 by 16,384 single-precision matrices
in approximately 1.85 seconds, including the overhead of trans-
ferring data back to main memory. Running the same TensorFlow
graph on an Intel i7-6700K CPU at 4 GHz requires approximately
82 seconds per multiplication. The GPU implementation requires
44X less time to complete.

GPUs, however, use a different programming model than
conventional CPUs and can be much harder to program. Two
key productivity hurdles when working with GPUs are the need
for kernel fusion and the lack of performance portability. Kernel
fusion in an optimization in which two or more GPU kernel func-
tions are merged into a single kernel function. Merging functions
in this way requires more development time and produces code
that consumes more register space on the GPU, but saves GPU
memory bandwidth and GPU global memory space.

When implementing a simple computation like (a + b)/2,
for instance, a more modular approach would be to build one ker-
nel for addition and one kernel for division by a constant. This
approach offers maximum flexibility and makes code changes
easy. It requires two kernel invocations to execute the function,
however, and memory bandwidth utilization is poor. An opti-
mal implementation would merge those two kernels into a sin-
gle, specialized kernel that adds two variables and divides by a
constant. The developer would need to write a new specialized
kernel for every function. In many real-world applications, how-
ever, minimizing GPU memory bandwidth consumption is critical

156

for achieving good performance and kernel fusion is therefore an
unavoidable optimization step.

The work required to write good specialized kernels would
be less of a productivity concern if not for the rapid evolution
and heterogeneity of GPUs. Each vendor balances parallelism,
clock frequency, local memory, and the memory hierarchy differ-
ently. Even from a single vendor, the balance points from gener-
ation to generation can change significantly. In practice, this of-
ten means that some amount of re-tuning is required every time a
GPU-accelerated program needs to run on new hardware. Ven-
dors like NVIDIA have smoothed away much of the pain for
common application domains by providing libraries of acceler-
ated primitives. The cuDNN and cuBLAS libraries are two ex-
amples from NVIDIA [3]. The vendor updates these libraries as
they release new hardware to ensure the accelerated primitives are
always efficient. For less common application domains, users are
left to handle per-device performance tuning on their own.

The cognitive computing toolkit

The HPE cognitive computing toolkit (CCT), formerly pub-
lished under the name ”Cog ex Machina” [4], is an open-source
software platform designed for GPU-accelerated modeling. It
works well for workloads like deep learning and many classes
of vision problems. CCT is available under an Apache 2.0 license
athttps://github.com/hpe-cct.

Like TensorFlow, CCT is an embedded domain-specific lan-
guage. This means it provides programming primitives aimed a
specific problem domain, rather than trying to target general pro-
grams. The embedded attribute means that it is hosted inside an-
other language and uses the tooling from that host language. For
TensorFlow, the host language is Python. CCT uses the Scala lan-
guage. Developing CCT programs works much like developing
regular Scala programs. All of the same integrated development
environments, build tools, and dependency managers work ex-
actly as they do for ordinary Scala. No CCT code is invoked until
the program is run.

At run time, the CCT compiler and execution manager build
an internal representation of the computation the user wants to
execute, optimizes that representation to a minimum set of GPU
kernels, emits appropriate GPU code, and manages the scheduling
of the necessary GPU kernels on the available devices.

CCT holds all program state in an abstraction called a com-
pute graph. Inside the compute graph, a field is the abstraction for
data, an operator is the abstraction for computation, sensors and
actuators allow developers to get state into or out of a compute
graph, and the feedback operator allows learning and adaptation.
The core data type, a field, is an N-dimensional array of tensors.
N may be zero, one, two, or three. Each tensor in the field may be
be of order zero through order three. All tensors in a given field

IS&T Infernational Symposium on Electronic Imaging 201
Human Vision and Electronic Imaging 201

7
7

https://github.com/hpe-cct

object BackgroundSubtraction extends CogDebuggerApp (

new ComputeGraph {

val movieFile = "resources/courtyard.mp4"

// Build an asynchronous sensor bound to a movie file on disk. The sensor

// will read frames as quickly as possible.
val movie = ColorMovie(movieFile, synchronous

false) .toVectorField ()

// Build an array of vectors matching the dimensions of the tinput movie
val background = VectorField(movie.fieldShape, Shape(3))

// Compute a low-pass filter over the video

background <== 0.999f * background + 0.001f * movie

// Compute an error norm between the background state and current frame
val suspicious = reduceSum(abs(background - movie))

// Probes - prevent the optimizer from removing these marked fields

probe (movie)
probe (background)
probe (suspicious)

Figure 1.

Source code for the BackgroundSubtraction application. The program lives inside a ComputeGraph, which is owned by the wrapping debugger

application instance. The debugger allows a developer to step, run, or reset the program at will while visualizing the program state. The "movie” sensor binds
to a video file on disk. In asynchronous mode, it will read frames as quickly as the compute graph can step. Synchronous mode locks the step rate of the

compute graph to the native frame rate of the video file. The "background” field is a variable of the same dimensions as the input video. On each step of the
compute graph, the feedback operator "<=="indicates that the state of the background field should be updated with 0.999 times the previous background state
and 0.001 times the current frame. This is a low-pass filter. The suspicious field is an error metric computed over the current background state and the current

frame. Probe annotations mark fields that the user may want to look at. The optimizer is free to merge away any non-probed fields.

must have the same shape. All fields have an implicit time dimen-
sion. For example, a 1080p color video would be represented in
CCT with a 1920x1080 field containing vectors of length three.
Each vector plane holds a single color channel. The time dimen-
sion indicates which frame of the video is loaded.

Operators allow developers to construct new fields as a func-
tion of existing fields. Operators in CCT range from simple
functions like addition up to complex primitives like frequency-
domain convolution. Users can define their own operators by writ-
ing functions that use existing CCT primitives and functions. To
define new primitives, CCT also provides a low-level GPU oper-
ator API. This low-level API is suitable for portions of an appli-
cation that are too difficult for CCT to automatically optimize.

Sensors and actuators are the primitives by which users can
move data into or out of a compute graph. On each step of the
compute graph, the CCT framework will execute an arbitrary
user-defined CPU function for each sensor or actuator. For a sen-
sor, the framework will pass the user function a standard CPU
buffer to fill. For an actuator, the framework will provide the user
function a copy of the fields driving that actuator.

The special feedback operator ”<==" defines temporal re-
lationships in the compute graph. In an application without feed-
back, there is no persistent state and the compute graph contains
a directed acyclic graph of fields and operators. On each step of
the compute graph, CCT will read data from the sensors, execute
any intermediate operators, and write to any bound actuators. The
feedback operator allows persistent state by allowing a field to up-
date its state as a function of fields from the previous step of the
compute graph.

The source code for a simple example containing feedback
is shown in Figure[I] In this example, the “background” field is

IS&T Infernational Symposium on Electronic Imaging 2017
Human Vision and Eledronic Imaging 2017

defined by a feedback loop. On each step of the compute graph,
the background state updates using its own previous state and the
current state of the input to the application. This example is a sim-
ple low-pass filter, but the feedback primitive is powerful enough
to represent much more sophisticated types of computation. The
weights of a deep learning system implemented in CCT use the
feedback primitive in exactly the same manner.

CCT includes a visual debugger to ease development of vi-
sion algorithms. This debugger automatically extracts the struc-
ture of the compute graph and allows users to visualize any part
of the model state. Model stepping is controlled by the debug-
ger, so users are free to step, run, stop, or reset the model at will.
The sample application from Figure [T]running in the debugger is
shown in Figure 2]

CCT optimization

The CCT programming model is designed for ease-of-use,
but also to preserve critical information necessary to automati-
cally emit efficient GPU code. Kernel fusion and kernel tuning
are the two primary objectives of the CCT optimizer.

To enable kernel fusion, CCT adds a layer of abstraction on
top of a conventional low-level GPU kernel. This abstraction, a
kernel fragment, captures the inputs, outputs, and threading struc-
ture of the kernel code. A kernel fragment can contain an arbi-
trary computation, but must use the threading structure provided
by the CCT kernel fragment API, read its inputs from the CCT
API, and write its outputs to the CCT API. These hooks allow
CCT to automatically wire together kernel fragments to produce
merged kernels.

The kernel merger proceeds in two phases. In the first, the
merger attempts to combine fields and operators that contribute

157

|£| BackgroundSubtraction -- Cog X 5.0.0 --

Run 0| Stop Step1 10 100 1000 10000 Reset

Cycle: 83884

-] X

Save.. Platform

Graph I’F\e\ds | 1|_pPrcrl:rea + - | Close All | Read probes

Graph Options | Re-layout | ?

E movie ColorField(270 480 }(3) =

suspicious -

background

movie

E background VectorField{ 270 480 }{ 3) =

. L=

|COI0r Images

Figure 2.

The BackgroundSubtraction application running in the CCT visual debugger. The application ingests a video stream from a fixed camera (top

panel), performs a low-pass filter to build a background model (bottom left panel), and computes an error metric to identify pixels in the current frame that differ
significantly from that background model (bottom right panel). This program runs at approximately 1000 frames per second on an NVIDIA GTX 1080 GPU.

towards producing a single output. After this phase, a single-
output expression like (a+5) /2 would consist of only one merged
kernel. The second phase attempts to combine fields and opera-
tors with shared inputs. This phase can produce merged kernels
with multiple outputs. The sample code in Figure [T]is a case
where multi-output merging is important. Both the background
and suspicious fields depend on the previous state of the back-
ground field and the current movie frame. The multi-output merg-
ing phase is able to produce a single, merged kernel that produces
a value for both the next background state and the suspicious field.

Merging scales to complex vision algorithms. Figure [3]
shows the output of a dense optic flow algorithm running on CCT.
The implementation runs approximately 5x faster than real time
on a single NVIDIA GTX 1080 GPU.

To address the performance portability problem, CCT in-
cludes a simple kernel autotuner with online profiling. Rather
than requiring developers to specify a single, concrete implemen-
tation of a kernel fragment, the autotuner allows developers to
specify two or more candidate implementations. At runtime, the
autotuner will benchmark each candidate implementation on the
available hardware and choose the fastest option. The results of
this benchmarking process are cached to eliminate redundant test-
ing of a single candidate kernel fragment on the same GPU.

The CCT deep learning package leverages the autotuner to
optimize frequency-domain convolution. Frequency-domain con-
volution requires a computation involving local shared memory,

158

so efficiency depends on each GPU thread allocating a chunk of
work sized to match the available local shared memory on the
available GPU. The amount of local shared memory per execu-
tion unit is highly variable from GPU model to GPU model. The
CCT kernel autotuner is able to find a suitable work size alloca-
tion at runtime, eliminating the need for manual GPU detection
and parameter tuning in the deep learning package.

Conclusions

The HPE Cognitive Computing Toolkit (CCT) is an open-
source modeling platform backed by Hewlett Packard Enterprise.
CCT is available under an open-source Apache 2.0 license at
https://github.com/hpe-cct,

CCT offers a number of benefits for accelerated vision mod-
eling. CCT code is easy to write and easy to change, but pre-
serves enough information that the CCT optimizer can emit ef-
ficient GPU code. GPU-accelerated applications can run signifi-
cantly faster than an equivalently optimized CPU implementation
on common commodity hardware. This ease-of-use and perfor-
mance gain can significantly accelerate research in vision algo-
rithms.

IS&T Infernational Symposium on Electronic Imaging 201
Human Vision and Electronic Imaging 201

7
7

https://github.com/hpe-cct

[sensor VectorField(270 480){3)

Izl ‘Co\or Images | - |
{] % L

flow VectorField(270 480 }{ 2) ::

|z||:| | Show Ke'y| Clamp fo: ‘ WE‘ |co|orf|0w ; |v|

Figure 3. Dense optic flow implementation in CCT. The raw video (top
frame) shows pedestrians moving around a courtyard from a fixed vantage
point. The optic flow output (bottom frame) indicates that the leftmost two
people are moving right and rightmost two people are moving left. This pro-
gram runs at approximately 350 frames per second on an NVIDIA GTX 1080
GPU.

References

[1] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with
deep convolutional neural networks. Advances in neural information
processing systems (2012).

[2] Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado
GS, Davis A, Dean J, Devin M, Ghemawat S. Tensorflow: Large-
scale machine learning on heterogeneous distributed systems. arXiv
preprint arXiv:1603.04467 (2016).

[3] Chetlur S, Woolley C, Vandermersch P, Cohen J, Tran J, Catanzaro
B, Shelhamer E. cudnn: Efficient primitives for deep learning. arXiv
preprint arXiv:1410.0759 (2014).

[4] Snider G, Amerson R, Carter D, Abdalla H, Qureshi MS, Luveill J,
Versace M, Ames H, Patrick S, Chandler B, Gorchetchnikov A. From
synapses to circuitry: Using memristive memory to explore the elec-
tronic brain. Computer (2011).

Author Biography

Ben Chandler received his BS in cognitive science from Carnegie
Mellon University (2007) and his PhD in cognitive and neural systems
from Boston University (2014). He joined HP Labs in 2011, moved to
Hewlett Packard Labs when Hewlett Packard Enterprise split from HP in
2015, and then left the company for freelance work in December 2016.
His research focuses on applying machine intelligence at scale to real-
world problems.

IS&T Infernational Symposium on Electronic Imaging 2017
Human Vision and Electronic Imaging 2017

159

