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Abstract
The electrical activity in a photoreceptor is initiated when

photons are absorbed by photopigment molecules of the cell.
When the receptor is exposed to a photon flux of a particular
wavelength, the actual number of photons absorbed in a cell
varies with Poisson fluctuation. This fluctuation introduces a spa-
tial variation in absorption by cells and a temporal variation, with
repeated exposure, in the number of cells absorbing each spe-
cific level of light energy. Here we characterize such variations
and quantify the relationship between the spatial and temporal
variations for an array of receptors exposed to an arbitrary light
spectrum. The spatial variation in absorption by cone cells im-
plies that visual stimulation produces a distribution of responses
in cone excitation space. We show that the resulting excitations di-
rectly reproduce MacAdam’s (1942) classic measurements of the
variability of color matches. Our model applies to both a living
and a non-living array of photosensitive elements. We carried out
a performance evaluation by a CMOS sensor repeatedly exposed
to uniformly illuminated color patches. Our findings suggest that
spatial fluctuation in absorbed light energy by cells is invariant
with respect to the total number of like-type cells from which the
histogram is obtained. However, temporal variation with repeated
exposure in the proportion of cells at a specific level of absorbed
light energy decreases as the spatial variance and number of pix-
els increases. Our results also support the assumption that each
cell absorbs light energy independently from the other cells. The
proposed characterization is important for understanding the reti-
nal factors that limit color detection and discrimination in the hu-
man visual system. It also has technical significance for color
image enhancement in imaging by a digital sensor.

Introduction
When a photoreceptor is exposed to a photon flux of a par-

ticular wavelength, the stochastic nature of absorbed light energy
is described by the probability that a particular number of pho-
tons is absorbed in the receptor. The actual number of photons
absorbed in a cell varies with Poisson fluctuation. This type of
fluctuation, known as photon noise [1], has been investigated in
retinal receptors of the human eye [2–4] and digital camera sen-
sors [5–7]. This photon fluctuation, however, should be revisited
for the case in which a population of receptors is exposed repeat-
edly to arbitrary light of multiple wavelengths. This is because,
first, due to the principle of univariance [8], spatial variation in
the excitation of cells is described by the variance of absorbed
light energy among a population of identical cells of a specific
type and not by the variability in the number of photons absorbed

in a cell. Second, with repeated exposures, the relation between
temporal variation in the number of cells at a given energy level
and the spatial variation in absorption by a population of cells is
not specified merely by the distribution of photons in a cell.

In this paper, we determine a distribution for the average
number of cells at each specific level of absorbed light energy,
the variance of which quantifies the spatial variation in absorp-
tion by individual cells. With repeated exposure, we also deter-
mine the temporal fluctuation in the number of cells absorbing
an energy level and discuss the relation between the spatial and
temporal variations. To validate this relationship, we carry out a
performance evaluation on a CMOS sensor.

Distribution of Cells across Energy Levels
The fundamental assumptions and mathematical derivations

underlying the proposed model are provided elsewhere [9]. Here
we introduce a distribution for the absorbed light energy by a pop-
ulation of photoreceptor cells. When a retinal area containing N
identical cells of the same class is stimulated with light of multi-
ple frequencies, with the assumption that N cells absorb photons
of different frequencies independent from each other,

dN̄Q ≈
N

σQ
√

2π
exp
[
−1

2

(Q−µQ

σQ

)2
]

dQ ; Q≥ 0, (1)

represents the average number of cells, dN̄Q, that have absorbed
photon energy between Q and Q+dQ units. In Eq. (1),
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The parameters of the model are listed in Table 1. Figure 1(a)
schematically illustrates the spatiotemporal variation. In Eq. (2),
µQ is the average amounts of light energy absorbed by N identical
cells all together, and σ2

Q is the spatial variance in the amount of
energy absorbed by all N cells. In this model, NQ is the number
of identical cells with energies between Q and Q±∆Q/2, for an
instance of exposure. The actual amount of absorbed energy in a
cell varies with repeated exposure, causing a temporal fluctuation
in the histogram itself. We are also interested in finding var(NQ),
the temporal variation, with repeated exposure, in the number of
cells with Q units of energy, that is,

var(NQ) = N̄Q(1− N̄Q/N). (3)
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Within a small energy interval, δQ, the temporal variance in the
proportion of identical cells with µQ energy units is approximated
by,

var(NµQ/N)≈ δQ
NσQ
√

2π
. (4)

Table 1. The table summarizes a list of parameters for estimat-
ing the histogram of absorption in Eq. (1).

Parameter Description Units

ν Frequency Hz

h The Plank Constant Js

Iν Stimulating spectral radiance Wsr−1 m−2 Hz−1

% Collecting area of a photoreceptor m2

A Pupil area mm2

f Focal length of the eye mm

τν Pre-retinal spectral transmittance –

Jν Spectral absorptance of a cell –

Q Level of energy J

N The total number stimulated cells –

NQ Number of cells with Q energy units –

N̄Q Expected number of cells with Q energy units –

µQ Average of absorbed energy by all the N cells J

σ 2
Q The spatial variance J2

var(NQ) The temporal variance –

∆t Duration of exposure s

Distribution of Cone Excitations in Color
Space

Given that identical cells exposed to uniform light absorb
different levels of energy, our model can predict, as shown in Fig-
ure 1(a), the distribution of responses within cone excitation space
produced by trichromatic stimulation. Such scattering, at least at
the moment of receptoral stimulation, implies an uncertainty due
to spatial variation in absorption by individual cells [10, 11]. Pre-
vious studies [12, 13] suggest that this uncertainty may influence
human color discrimination performance. To illustrate such scat-
terings, we selected 25 color centers of MacAdam ellipses [14].
The spectral radiance of a color at the luminance of 50 cdm−2 is
produced by a mixture of three Gaussian-shaped virtual primaries
with the center wavelengths of 455, 520, 650 nm and a FWHM
of 30 nm. For the purpose of illustration, we take ∆t = 1 s and %
= 2 µm2, and use the Smith and Pokorny cone fundamentals [15].
As shown in Code File 1 [16], we used the Monte Carlo method
to randomly generate excitations in the three types of cone cells
using Eq. (1). Figure 1(b) shows the distribution of cone excita-
tions for each of the 25 MacAdam color stimuli in the MacLeod-
Boynton chromaticity diagram [17]. Note that the chromaticity
coordinates, l and s in this plot are not independent variables:
Their joint probability follows a form of ratio distribution [18].
The distribution of cone excitations represented within the Judd
modified CIE 1931 chromaticity space in Figure 1(c) closely re-
semble those of the magnified chromaticity scatterings obtained

by MacAdam for the variability of color matches. This observa-
tion is not trivial because the distribution of chromaticities for a
color stimulus is directly obtained from the corresponding cone
excitations and it also supports the notion of a probabilistic repre-
sentation of color within a color space rather than a deterministic
one [19]. Note that evidence for the contribution of higher order
mechanisms, such as sites of adaptation, to the discriminability
judgment has also been reported in the literatures (for reviews
see [20, 21]). The result shown here motivates further investiga-
tion into the influence of individual cell signals on the discrimina-
tion mechanism and the source of observed differences between
the variability of color matches and discrimination threshold (see
p. 574 in [22]).

Digital Sensor
The proposed distribution of photon energies among pho-

toreceptors applies equally to a non-living array of photosensitive
elements. In a digital sensor, Jν in Eq. (2) is equivalent to the
spectral quantum efficiency function, τν is the spectral transmit-
tance of the lens, f is the distance from the lens to the image plane,
% is the effective pixel area, A is the effective aperture size and ∆t
is the duration of exposure. By taking the charge, q, collected by
each pixel across wavelengths as a variable, we have:

µq = q0
% A∆t

f 2
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hν
Iν dν ,
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2
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0
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f 2

∫
ν
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Iν dν ,

(5)

in which, q0 is the charge of an electron. From Eq. (4), we find
the relationship between the temporal and spatial fluctuations at
the peak of average µq as

var(Nµq/N)≈ δq
Nσq
√

2π
, (6)

in which var(Nµq/N) is the temporal variance in the proportion
of pixels with the average collected charge of µq.

Experiment
Since the proposed model applies to an array of pixels as

well, we expect that the model predicts accurately the relationship
between the spatial and temporal fluctuations in a digital sensor,
as given in Eq. (6).

Method
A CMOS sensor was repeatedly exposed to a uniformly illu-

minated Macbeth color checker with 24 color patches. The spec-
tral radiance for each of the 24 color patches was measured by
a PR650 spectroradiometer. Acquisition of an unprocessed raw
RGGB image was performed with an exposure duration of 50 ms.
To account for the dark voltage, a dark pedestal value of 42 bits
was taken off from the raw image pixel values. Figure 2 shows the
experimental setup and the spectral quantum efficiency functions
of the imaging device modified by transmittance of the lens.

Results
The histogram distributions of 10-bit digital output of the

sensor with repeated exposure is plotted separately for each of
the RGGB channels by black curves in Figure 3(a). In this plot, a
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(a)

(b) (c)

Figure 1. Our model suggests that identical cells within a cone class (L-, M-,

or S-cone) exposed to uniform stimulating light absorb different levels of light

energy. Due to spatial variation, a visual stimulation produces a distribution of

responses within the cone excitation space. (a) The histogram of the average

number of cells with Q units of absorbed energy, N̄Q, approximately follows

a form of Gaussian distribution. The proportion of like-type cells is shown

by N̄Q/N. The gray region around the black distribution curve shows the

temporal variation in the number of cells at an energy level. (b) A Monte

Carlo simulation of excitations in cone cells exposed to the 25 MacAdam

color stimuli shown within the MacLeod-Boynton chromaticity diagram. The

diagram is plotted by (l,s) = (QL/QL +QM , QS/QL +QM) where QL, QM , and

QS are independently generated random energies for L-, M-, and S-cones,

respectively. (c) Assuming that the cone responses are linearly related to the

color-matching functions, the triplet, (QL,QM ,QS), is linearly transformed to

the Judd modified CIE 1931 XYZ space from which distributions for the same

25 stimuli are plotted within the xy chromaticity space (see p. 615 ref. [22]).

solid colored curve shows the distribution predicted by the model.
The temporal variation in the number of pixels at each specific
level of digital count can be observed by histogram fluctuation
along the vertical axis. As shown in Figure 3(b), the model pre-
dicts such temporal fluctuation quite accurately.

To illustrate the results obtained with repeated exposures,
we measured the average of pixel values and the spatial vari-
ance of pixel values for each of the 24 color patches across tri-
als of exposure, from which the transformation-invariant quantity
of the channel-wise signal-to-noise ratio (SNR: mean divided by
the standard deviation) was calculated for each of the 24 color
patches. We plot in Figure 4(a) the measured SNR as a function of
the predicted SNR (µq/σq). In this plot, the fluctuation along the

(a)

(b)

Figure 2. In the experiment, a CMOS digital sensor with 10-bit digital output

was exposed repeatedly to a uniformly illuminated color checker. (a) The

figure shows the experimental setup. (b) The quantum efficiency function of

the sensor, QE, corrected for the transmittance of the lens, τ, is plotted as a

function of wavelength for each of the sensor channels.

(a) (b)

Figure 3. A CMOS sensor was repeatedly exposed to a small color checker.

In each trial of exposure, the histogram of pixel values was obtained from an

array of 1089 pixels per channel. For a color patch, we predicted the mean

and variance of the charge collected by pixels using Eq. (5). We then perform

a linear transformation to plot the predicted distribution centered on the av-

erage of pixel values for each of the RGGB channels. (a) The channel-wise

histogram across trials of exposure for a red patch is shown by black curves.

The solid colored curve is the predicted distribution. (b) The measured tem-

poral variance with repeated exposure is plotted by a dashed curve. In this

plot, the predicted temporal variance is shown by a solid curve.
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vertical axes is due to the temporal variation of histogram distri-
bution across trials of exposure. This result represents the typical
performance of the model in predicting the histogram for a single
exposure, despite fluctuation in the actual amount of absorbed en-
ergy by a cell. However, as shown in Eq. (1), the model predicts
the expected value of the number of cells at each energy level with
repeated exposure. Therefore, we carry out performance evalua-
tion by comparing the prediction with the average of histograms
obtained with repeated exposures. From the average histograms
for a given color patch, we plotted the measured SNR versus the
predicted SNR for each of the RGGB channels in Figure 4(b). Vi-
sual inspection of the plots in Figure 4 illustrates the performance
of the model.

(a) (b)

Figure 4. For each of the 24 color patches across trials of exposure, an

area with 1089 pixels per channel was selected and the mean of pixel val-

ues as well as the variance of the same patch was calculated. (a) The plot

shows the measured SNR, the mean of pixel values divided by the standard

deviation of the same patch, across trials of exposure as a function of the pre-

dicted SNR (µq/σq) for each of the RGGB sensor channels. The observed

fluctuations along the vertical axis correspond to the temporal variation with

repeated exposure in the number of pixels at each specific level of digital

counts. (b) From the average histograms of a color patch, we obtain the

mean divided by the standard deviation of the same patch (SNR). The plot

shows the measured SNR as a function the predicted SNR.

The Relation Between Spatial and Temporal Vari-
ations

As shown for a red color patch in Figure 3, the histogram
of pixel values fluctuates with repeated exposure. This type of
temporal fluctuation, var(NQ), corresponds to the variation of the
number of pixels at each specific level of absorbed light energy.
Note that digital outputs from a sensor are also subject to signal-
independent noise [23] which causes shifts in the histogram itself
with repeated exposure. The unimodal distribution of the tempo-
ral variance in Figure 3(b) shows that spatiotemporal variations
of the sensor signals in our setup is not appreciably influenced by
such sensor-based noises. According to Eq. (6), the temporal fluc-
tuation is reciprocally related to the spatial variation of light en-
ergy absorbed by individual cells. To illustrate such dependency,
for each of the 24 color patches, we measured the variance of the
proportion of like-type pixels with average value across trials of
exposure. We also measure standard deviation of the channel-
wise pixel values within a color patch using the average of his-
tograms obtained from repeated exposure. The total number of
pixels per channel, N, is 1089. We expect that Eq. (6) predicts the
measured temporal variance at the peak of average, var(Nµq/N),

from the standard deviation of pixel values. The result is shown by
a black curve in Figure 5. The dependency of temporal variation
upon the spatial variance implies that Eq. (1) provides more accu-
rate prediction of the histogram distribution for an instance of ex-
posure to a color patch when the spatial variance has greater val-
ues. A similar reciprocal relationship can be observed in Eqs (4)
and (6) between the temporal variance and the total number of
pixels, N.

Figure 5. For each of the 24 color patches and each of the four sensor

channels, we measured the variance of the proportion of pixels with average

value across trials of exposure. The figure shows a scatterplot of the mea-

sured temporal variance for the 24 patches against the measured standard

deviation of the channel-wise pixel values within the same patch. The total

number of pixels per channel, N, is 1089. The prediction by Eq. (6) is shown

by a black curve.

Discussion
We have proposed a distribution for absorbed light energy

among a population of identical photosensitive elements, applica-
ble to retinal photoreceptors and an array of interleaved pixels in
a digital sensor. Our model accounts for the spatial variation in
absorption by a population of cells and the temporal variation in
the number of cells at a specific level of light energy. The spatial
variation implies that visual stimulation produces a distribution of
responses in cone excitation space. We showed that the resulting
excitations in individual cone cells directly reproduce MacAdams
classic measurements of the variability of color matches [14].

The temporal variance in the number of cells having ab-
sorbed Q units of energy, var(NQ), depends on the spatial vari-
ance and number of cells from which the distribution is obtained.
A possible behavioral consequence of such variation is the per-
ceptual uncertainty in perceived color for small stimuli [24, 25]
where color is reconstructed from noisy input signals [26]. In this
case, an excitation falling well beyond the nominal chromatic-
ity gamut might be classified by an observer as an indescribable
color when neighboring cells receive very low level of light en-
ergy (dark background) [25]. When many neighboring cells re-
ceive stimulation well above threshold level (dimly illuminated
background) [27], such out-of-gamut colors are possibly very un-
likely to occur. Further investigation, however, is required to vali-
date this assumption by direct observation from the human retina.
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Variability in the absorptance of individual cones was also
observed in microscopic images of the human retina [28] which
was found to be primarily related to the intrinsic fluctuation in
reflectance of photoreceptors [29, 30]. In the digital domain, a
CMOS sensor suffers from photo-response non-uniformities and
gain variation [31]. Thus the spatial variation of digital outputs
in a sensor is partly attributed to such non-uniformities. We ex-
pect that the proposed characterization helps to identify and de-
compose sources of spatiotemporal variations in a sensor output
signals.

Conclusion
We characterized the spatiotemporal variation in absorption

by cells when a population of receptors is exposed repeatedly
to a uniform radiation of multiple wavelengths. The proposed
model suggests a probabilistic representation of color within a
color space rather than a deterministic representation of color by
light vectors. The characterization of such probabilistic represen-
tation provides further dimensions which facilitate color image
enhancement and the analysis of the illumination using digital
outputs of a sensor [32–34]. Although, our results confirmed the
performance of the model in a CMOS sensor, we acknowledge
that further investigation is required to evaluate signal fluctuation
due to spatial non-uniformities and intrinsic variation in optical
specifications of an imaging system.
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