
E

A

W
c
T
e
o
M
il
q
M
a
m
of
C
s
H
p
W
L
o
a
m
th
a
b
M
a
in
o
tu
a

I

m
u
d
li
r
s
p
p
d
r
o
u
r
th
p

d
th
c

E

Emitis Roshan a
 

Abstract 
The perform

Waypoint, Best 
compared in te
Tokunaga’s [1]
experiment, give
observers were a
Munsell papers 
lluminant. Give

questions. Ques
Munsell paper u
average (12 mat
made under a giv
of the Munsell p
Computation sho
signal is close to
How do algorith
prediction of th
Wilcoxon signed
Linear perform 
observer average
and MMV (meta
method most clos
he color signal 

average observe
better than Wpt 
MMV center. Q
another? Using 
ndividual observ

observers somew
urn slightly outp

all significantly o

ntroduction
 Logvinenko

matching experi
under one light 
dissimilar match
ight (the match
epetitions each.

simultaneously. 
papers are rearr
papers under re
display nor colo
eflectance chang

of approximately
used as test/matc
ed illuminants a
hem and conside

possible non-iden
The Logvin

differs from man
hat subjects are 

color which is le

Evaluati
Le

and Brian Funt, 

mance of color p
Linear, MMV c

erms of how w
asymmetric c

en a Munsell p
asked to determ
made the least

en this data, 
stion 1: Are o
under the match
tches) color sign
ven illuminant c
paper’s color si
ows that in 274
 the mean color 

hm predictions 
he actual color 
d-rank test show

equally, and t
e, which, in turn,
mer mismatch v
sely predicts the
of the relit refle

er than Best Lin
and KSM2, both

Question 4: Do
a leave-one-obs
vers predict the 
what better than
performs Best L
outperform CAT

n 
o & Tokunaga [
ment in which 
(the test illum

hing paper from 
h illuminant). 
 The papers un
See Figure 1 fo
ranged between
al illuminants, 

ors obtained usin
ges [2] [3]. The 
y equal illumina
ch illuminant co
are very similar
er only the illum
ntical pairs of 5 

nenko & Tokuna
ny other asymme
not asked to ma
ast-dissimilar. 

on of Co
east-Diss

School of Com

prediction metho
center, and reli
well they expla
color matching 
paper under a 

mine (3 repeats) 
t-dissimilar matc
we address th

observers choos
h illuminant? If 
nal (cone respo
ondition should 
ignal under the 
4 of the 400 cas

signal of the ma
compare to the 

r signal of the 
ws that KSM2, W
that both slight
, significantly ou

volume) center. Q
e observer avera
ectance is a bett
near, which in 
h of which outpe
o the observers
server-out comp
average matche

n the relit color
Linear, Wpt and 
T02 and MMV ce

[1] conducted an
observers view

minant) and then
a set of 22 pape
There were 4 
der both lights 

or a photograph 
n trials. Note th

not colored pat
ng hidden illum
experiment invo

ance and all 30 p
onditions.  Howe
r, in this paper w

mination conditio
of the illuminan
aga (L&T hence
etric color match
atch colors, but r

olor Pre
similar A

mputing Science,

ods CAT02, KSM
it color signal a
ain Logvinenko 

results. In th
test illuminant,
which of 22 oth
ch under a ma
he following fo
sing the origin
they are, then 
nse triple or XY
correspond to th
match illumina

ses, the relit co
atches. Question

average observ
relit paper? T

Waypoint, and B
tly outperform 
utperforms CAT
Question 3: Wh

age? We found th
ter predictor of 
turn is margina
erform CAT02 a
s agree with o
parison shows th
es of the remaini
r signal, which 
KSM2, which th

enter. 

n asymmetric co
w a Munsell pap
n choose the le
ers under a seco

observers and
are always visib
of the setup. T

hat these are r
tches on a digi

minants to simul
olved 6 illumina
possible pairs w
ever, since the tw
we exclude one
ons based on the
nts. 
eforth) experim

hing experiments
ather to choose t

ediction 
Asymm
, Simon Fraser 

M2, 
are 

& 
heir 
, 4 
her 
tch 

four 
nal 
the 
YZ) 
hat 
ant. 
olor 
n 2: 
ver 
The 
Best 

the 
T02, 

ich 
hat 
the 

ally 
and 
one 
hat 
ing 
in 

hen 

olor 
per 

east 
ond 
d 3 
ble 

The 
real 
ital 
late 
ants 
ere 
wo 
of 
20 

ent 
s in 
the 

 

FIGURE 1
TOKUNAG

YELLOWIS

ARE REAR

Du
colored 
left-han
dissimil
perfect 
metame
may re
metame
the effe
experim

Ba
several 
observer
based C
[8], MM
signal (L
match il
cases, w
the test 
groups: 
illumina
and tho
(CAT02

In a
four que
Munsell
signal o
predictio
better o
methods
correspo

Method
metric M

University, Van

1. THE ASYMMETR

GA [1] SHOWING 

SH LIGHT AND THE 

RRANGED BETWEEN

uring each trial,
patch (a Munse

nd panel and ob
lar patch from t

asymmetric m
er mismatching (
eflect metameric
eric lights under
fect of metame
ment is provided 
ased on the L&T

color prediction
r performance.

CAT02 [5], KSM
MV (metamer m

LMS cone resp
lluminant. Detai

we assume that th
and match illum
those that requi

ants (Wpt, Best 
ose that require 
2, KSM2).  
analyzing the m
estions: (i) Are 
l paper under the

of the observers’
on of the actua

or worse than th
s? (iii) Which
onds to the ob

ds in Ter
Matching

ncouver, British

RIC MATCHING SET

THE EXAMPLE O

RIGHT-HAND PANE

N TRIALS. 

, a laser pointe
ell paper from th
bservers are as
the right-hand p

match will usua
(i.e., the fact tha
c lights under 
r a second illum
er mismatching
by Logvinenko 

T asymmetric ma
n methods to de
In particular, w

M2 [6], Wpt [7],
mismatch volume
ponse or XYZ) 
ils of these meth
he methods have

minants. These m
re the full spectr
Linear, MMV 
only the color 

methods relative t
observers gene

e match illumina
 least-dissimilar

al color signal o
he predictions m
h computation
bserver average?

rms of 
 

h Columbia, Can

TUP USED BY LOG

OF THE LEFT-HAN

EL IN BLUISH LIGHT

er is used to s
he matte collectio
sked to identify
panel. As L&T 
ally be impossi
at two different 

one illuminant
minant). Further 
g in the conte
et al. [4]. 
atching results, w
etermine which b
we compare von
 Best Linear 3x

e) center [9] and
of the test pape

hods are given b
e accurate inform

methods are divid
ral power distrib
center, Relit co

r signals of the 

to the L&T data,
erally choosing 
ant? (ii) If the av
r matches is con
of the relit pape
made by the co
al method mo
? and (iv) How

 

nada   

GVINENKO AND 

ND PANEL IN 

T. THE PAPERS 

select a test 
on) from the 
y the least-
point out, a 
ible due to 
reflectances 
t, but non-
analysis of 

ext of this 

we compare 
best models 

n-Kries-rule-
x3 transform 
d Relit color 
er under the 
elow.  In all 

mation about 
ded into two 
bution of the 
olor signal), 

illuminants 

, we address 
the original 
verage color 

nsidered as a 
er then is it 

omputational 
ost closely 
w does the 

140
IS&T International Symposium on Electronic Imaging 2017

Human Vision and Electronic Imaging 2017

https://doi.org/10.2352/ISSN.2470-1173.2017.14.HVEI-133
© 2017, Society for Imaging Science and Technology



 

 

performance of individual observers compare to the computational 
methods in predicting the least-dissimilar matches of the average 
observer?  

Background  
Numerous methods for predicting ‘color’ under a change of 

illumination have been proposed. Derhak and Berns [7] make the 
distinction between chromatic adaptation transforms (CATs) and 
material adjustment transforms (MATs). A CAT is intended to 
predict what color signal under the match condition will appear the 
same as under the test condition. Of course there is the issue of 
what ‘the same’ means. Derhak and Berns define the goal of a 
MAT as “…to predict material constancy or how sensor 
excitations for an object color change with changes in observing 
conditions” [7]. The problem with this definition is, as established 
by Logvinenko et al. [4], that as a result of metamer mismatch 
intrinsic object colors that are independent of the illuminant simply 
do not exist—hence material constancy does not exist either. 
However, so long as we bear in mind that we will not obtain 
constancy or “material color equivalency” [7] we can still 
investigate methods of predicting—given a color signal from a 
given surface reflectance under a first light—what its color signal 
is likely to be under a second light. Wpt [7] is one such color 
signal predictor. However, the issue we address here is not whether 
one CAT or color signal predictor is better than another, but rather 
whether or not any of them successfully predict the least-dissimilar 
matches made by the observers in L&T’s experiment.  

Color signal predictors can be divided into two categories: 
those that require full knowledge of the spectral power 
distributions of both the test and match illuminants; and those that 
require only the color signals of the perfect reflector under each 
illuminant. In the first category are Relit, Best Linear [8], Wpt [7] 
and MMV center [9].  

The Relit color signal is simply the color signal of the given 
test paper under the match (second) illuminant. Computing it 
requires the full spectral reflectance function of the surface as well 
as the SPDs of the second illuminant. Since L&T used matte 
Munsell papers, we assume that the color signal	 , ,  
resulting from light impinging on sensors Rk(λ) (k = 1…3) from a 
surface of spectral reflectance S(λ) illuminated by light with 
spectral power distribution E(λ) is: 

 

 ϕ x S λ E λ R λ dλ	 k 1,2,3     (1) 

The Relit ‘prediction’ of the color signal is not a prediction 
but rather, under the assumption of matte reflectance, it is the 
actual answer. Wpt involves a 3x3 linear matrix transformation of 
the test color signal to the match color signal. The 3x3 
transformation is determined based on the SPDs of the illuminants 
and a training set consisting of the reflectances of all the papers in 
the Munsell collection. In order to satisfy other design 
requirements, Wpt does not, in fact, determine the optimal 3x3 
matrix. In comparison, the Best Linear method [8] is based on 
using the optimal 3x3 matrix mapping the color signals from the 
training set (1600 Munsell papers) under the test illuminant to the 
match illuminant. 

MMV center prediction is based on computing metamer 
mismatch volumes. For a given color signal under the test 
illuminant, the set of color signals it could theoretically become 
under the match illuminant defines a convex volume in color signal 

space called the metamer mismatch volume (MMV). Computing 
the MMV requires full knowledge of the SPDs of both illuminants. 
Logvinenko et al. [9] propose using the color signal at the 
geometric center of the MMV as the prediction of what the color 
signal under the test illuminant is likely to become under the match 
illuminant. 

In the second category of color signal prediction methods—
those that require only the color signals of the illuminants—we 
consider von-Kries-based CIECAM02 [5] and KSM2 [6]. At the 
heart of CIECAM02 is the chromatic adaptation transform CAT02, 
which applies the standard von Kries (diagonal) transformation 
after a sharpening transformation [10][11]. The sharpening 
transform is tuned on corresponding color datasets and therefore it 
is not specifically designed to predict color signals of surfaces 
under the test illuminant.  

Also in the second category is KSM2 developed by Mirzaei et 
al. [6]. KSM2 uses Gaussian-like reflectance functions (called 
wraparound Gaussians). Each such Gaussian reflectance is 
specified by 3 parameters: K the scaling, S the sigma, M the peak 
wavelength. To make a color signal prediction, KSM2 finds three 
Gaussian functions, one representing an SPD metameric to the test 
illuminant, a second metameric to the match illuminant, and a third 
representing a reflectance metameric to the given test color signal 
under the Gaussian SPD metameric to the test illuminant. It then 
computes the color signal of that Gaussian reflectance under the 
match Gaussian illuminant and uses that color signal as its 
prediction.  

Observers choose original Munsell paper 
Are observers generally choosing the original Munsell paper 

under the match illuminant as the least-dissimilar one?  For each 
illumination condition, 4 observers with 3 repeats made least-
dissimilar matches. All 20 chromatic papers were used as test 
papers. For each of the 20 test papers, therefore, there are 12 least-
dissimilar matches reported. If the observers are selecting the 
original paper as being least-dissimilar then the color signal of the 
original paper under the match illuminant (the relit color signal) 
can be expected to be close to the average relit color signal of the 
selected papers. Figure 2 shows examples of the 95% confidence 
region centered on the average relit color signal of the observer 
matches for four of the test papers for the red-neutral illumination 
condition (i.e., red test, neutral match illuminant).  In the plot, 
three of the four relit color signals fall within the 95% confidence 
interval.  

Figure 2 shows the general trend of the confidence ellipses (or 
ellipsoids in XYZ) with the relit color signal falling in or near it. 
To check all 400 cases (20 papers under 20 illuminant conditions), 
we computed the Mahalanobis distance for each relit color signal 
from the mean observer color signal for each particular 
illumination condition. The advantage of the Mahalanobis distance 
measure is that it is independent of any full-rank linear 
transformation of the sensor space such as the 
Hunt-Pointer-Estevez transformation from XYZ to LMS. As a 
reminder, the Mahalanobis distance of a point x x , x , … , x  
to a set of points y  with mean μ μ , μ , … , μ and covariance 
matrix S in n-dimensional space is defined as: 

 

     (2) 
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FIGURE 2. Four examples of the 95% confidence ellipses centered on the 
mean (dot) of the 12 matches with the locations of the relit color signals 
of the Munsell papers marked by asterisks surrounded by a ring. The 
illumination condition is red to neutral. Starting at the bottom ellipse and 
proceeding clockwise the ellipses correspond to Munsell papers 10BG 
5/10, 5GY 7/12, 10R 5/16 and 5RP 5/12. 

Since XYZ space is 3-dimensional, the expected distribution 
of Mahalanobis distances is a chi-squared distribution with 3 
degrees of freedom.  The critical values of the associated chi-
squared distribution are used to check if a point at a given distance 
DM is inside the given ellipsoidal confidence interval or not. 
However, since there are only 12 observations per patch/illuminant 
condition there are quite a few cases where all 12 observations fall 
within a 2-dimensional or, occasionally, a 1-dimensional subspace. 
This happens whenever all the observers agree on a set of only two 
or three candidate papers. In these cases, so long as the point is 
close to the subspace (as measured in terms of eigenvalues of the 
singular value decomposition) we project the point into the 
subspace before computing the Mahalanobis distances. It should be 
noted that if the points all fall on a plane then the expected 
distribution of Mahalanobis distances will be from a chi-squared 
distribution with 2 degrees of freedom and the confidence interval 
will be an ellipse instead of an ellipsoid based on the critical values 
for 2 degrees of freedom. Similarly, if the points fall on a line then 
the confidence region will turn into a simple confidence interval.  

In 274 cases of the 400 cases (68.5%), the relit paper’s color 
signal falls inside the corresponding confidence region. We also 
did the same test but based on CIE1976 uv chromaticity 
coordinates and found that in 291 cases the relit color signal was 
within the corresponding confidence ellipse. These results suggest, 
perhaps not surprisingly, that observers generally (but definitely 
not always) find the match paper that is physically identical to the 
test paper to be the least dissimilar one. 

Color Signal Prediction Comparison 
Whether or not observers are actually predicting what the 

color signal of a given paper under the test condition will be under 
the match condition, we can, nonetheless, treat the average color 
signal of the least-dissimilar matches as a predictor and evaluate 
how accurate that predictor is. In the L&T experiment there were 4 
observers so we have 5 different predictors. ObsC is the predictor 
based on combining all 12 results (4 observers, 3 repeats) by 
averaging them and Obs1, Obs2, Obs3, Obs4 are predictors based 
on the average of each observer’s 3 repeats taken separately. For 

comparison, we also used implementations of KSM2, MMV center, 
Wpt, CAT02 and Best Linear as predictors.  
 
Table 1. Comparing Relit Color Signal Predictions.  Column 3 
indicates in how many cases out of the 20 different illumination 
conditions that the Wilcoxon test indicates that method from 
column 1 has a statistically lower error than the method from 
column 2 in predicting the color signal of the 20 papers under 
the match illuminant; column 4 the reverse; and column 5 when 
they are statistically equivalent. 

M
ethod 1

 

M
ethod 2

 

E
rr1<

E
rr2 

E
rr2<

E
rr1 

E
qua

l 

ObsC 

KSM2 

2 5 13 
Obs1 6 3 11 
Obs2 2 4 14 
Obs3 0 7 13 
Obs4 1 3 16 
ObsC 

CAT02 

14 2 4 
Obs1 14 0 6 
Obs2 14 2 4 
Obs3 9 2 9 
Obs4 12 2 6 
ObsC 

MMV Center 

19 0 1 
Obs1 20 0 0 
Obs2 20 0 0 
Obs3 18 0 2 
Obs4 19 0 1 
ObsC 

Wpt 

0 6 14 
Obs1 4 3 13 
Obs2 2 5 13 
Obs3 0 7 13 
Obs4 0 5 15 
ObsC 

Best Linear 

0 7 13 
Obs1 0 5 15 
Obs2 2 6 12 
Obs3 0 9 11 
Obs4 0 6 14 
KSM2 CAT02 18 0 2 
KSM2 MMV Center 20 0 0 
KSM2 Wpt 1 2 17 
KSM2 Best Linear 0 8 12 

CAT02 MMV Center 14 0 6 
CAT02 Wpt 0 20 0 
CAT02 Best Linear 0 20 0 

MMV Center Wpt 0 20 0 
MMV Center Best Linear 0 20 0 

Wpt Best Linear 0 2 18 
 
Using the same test/match conditions and Munsell papers as 

above, we compute the average prediction error for each of the 
predictors measured in terms of the Euclidean distance between the 
predicted XYZ and the relit XYZ. Although the results reported 
here are in terms of XYZ, almost identical ranking results were 
obtained using Euclidean distances in Hunter-Pointer-Estevez 
LMS space. We compare the performance of the predictors to one 
another using the Wilcoxon one-sided and two-sided tests. The 
Wilcoxon test results are tabulated in Table 1. All the tests are 
performed at the 5% significance level. Note that the three 
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rightmost columns of the table show the number of illumination 
conditions for which Method 1 is statistically better on average 
than Method 2, whether Method 2 is better than Method 1, or 
whether they are statistically equal. 

Overall the results in Table 1 indicate Best Linear, Wpt and 
KSM2 are roughly equivalent and all are slightly better predictors 
than ObsC; however, all four of them significantly outperform 
CAT02 and MMV center. Note that as mentioned above that Best 
Linear, Wpt, and MMV center require the full spectra of the test 
and match illuminants, while ObsC, KSM2 and CAT02 require 
only their color signals. In other words, the former ones may or 
may not predict human performance, but they cannot possibly 
provide a computational model of any aspect of color perception. 

 

Predicting Observer Average Matches 
To determine which method most closely predicts observer 

least-dissimilar matching behavior, for each of the 20 illumination 
conditions, we use the 12 (4 observers, 3 repeats) matches made 
and compute the average of the color signals arising from the 
matched papers under the match illuminant. We then compare this 
average observer least-dissimilar match to the predictions made by 
the various computational methods measured in terms of Euclidean 
distance between the respective color signals. The Wilcoxon 
signed-rank test was then used to evaluate the methods with 
respect to one another in terms of their performance in predicting 
the 20 matches. The Wilcoxon results for the 20 illumination 
conditions are listed in in Table 2. As an example, the first row in 
the table indicates that KSM2 outperforms the Relit color signal in 
only one illumination condition, the Relit outperforms KSM2 in 4 
illumination conditions, and in 15 illumination conditions their 
performance is evaluated as statistically equivalent. 
 
Table 2.  Comparison to Average Observer Matching. Column 3 
indicates in how many cases out of the 20 different illumination 
conditions that the Wilcoxon test indicates that method from 
column 1 has a statistically lower error than the method from 
column 2 in predicting the average observer least-dissimilar 
matches of the 20 papers; column 4 the reverse; and column 5 
when they are statistically equivalent. 

M
ethod 1

M
ethod 2

E
rr1<

E
rr2

E
rr2<

E
rr1

E
qua

lity 
test 

Relit KSM2 4 1 15 
Relit MMV Center 20 0 0 
Relit CAT02 9 0 11 
Relit Wpt 2 0 18 
Relit Best Linear 0 0 20 
KSM2 MMV Center 19 0 1 
KSM2 CAT02 5 2 13 
KSM2 Wpt 1 0 19 
KSM2 Best Linear 0 2 18 

MMV Center CAT02 0 17 3 
MMV Center Wpt 0 19 1 
MMV Center Best Linear 0 20 0 

CAT02 Wpt 0 6 14 
CAT02 Best Linear 0 9 11 

Best linear Wpt 0 0 20 
 

In sum, the results in Table 2 indicate that the color signal of 
the relit reflectance and best linear fit estimator are equivalent 
predictors of the average observer, and both are only marginally 
better than Wpt and KSM2, both of which, in turn, clearly 
outperform CAT02 and MMV center. KSM2 is, in comparison to 
the other methods, both a good predictor and requires only the 
color signals of the illuminants, not their full spectral power 
distributions.  

Note that the results in this Table 2 show the relative 
performance of the methods, not the absolute performance. In 
other words, the methods might be doing equally poorly rather 
than equally well.  Table 3 lists the accuracy of each method’s 
predictions averaged over the 400 cases. The accuracy is measured 
in terms of the Euclidean distance between the prediction and the 
average XYZ of the 12 least-dissimilar matches, and similarly for 
uvcoordinates.  

 
Table 3. Accuracy in Predicting Average Observer Matches 
Mean and median over the 400 cases of the Euclidean distance 
in XYZ and CIE1976 uv between each method’s predictions 
and the average observer match. 

Method 

M
ean X

Y
Z

 

M
edian X

Y
Z

 

M
ean uv 

M
edian uv 

Relit 5.21 3.45 0.024 0.015 

Best Linear 5.56 4.17 0.040 0.023 

Wpt 6.20 4.44 0.096 0.025 

KSM2 8.08 4.50 0.043 0.030 

CAT02 7.61 5.99 0.04 0.03 

MMV Center 39.85 23.44 0.072 0.040 

 

Observers Predicting Other Observer Matches 
Clearly there will be variability in the least-dissimilar matches 

made by the different observers. To what extent do the observers 
agree with one another and is a match made by an individual 
observer any better or worse a predictor of the average observer 
match than those made by the various computational methods? 

To answer this question, we used a leave-one-observer-out 
comparison in which the one observer is excluded and the 9 
remaining trials (3 observers, 3 repeats per paper, per illumination 
condition) are averaged. The mean of the excluded observer’s 3 
trials is then used as a predictor of the 3-observer average. This 
process is repeated for each of the four observers resulting in four 
predictors Obs1,…, Obs4 making predictions of four, 3-observer 
averages. 
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Table 4. Observers versus Computational Methods. Similar to 
the preceding tables but in this case comparing via the 
Wilcoxon test how well the methods predict the 3-observer 
averages of dissimilar matches.  

M
ethod 1

 

M
ethod 2

 

E
rr1<

=
E

rr2 

E
rr2<

=
E

rr1 

E
qua

l 

KSM2 

Obs1 0 11 9 
Obs2 0 16 4 
Obs3 0 11 9 
Obs4 0 13 7 

Relit 
 

Obs1 0 3 17 
Obs2 0 9 11 
Obs3 1 5 14 
Obs4 0 8 12 

Wpt 
 
 
 

Obs1 0 11 9 
Obs2 0 12 8 
Obs3 0 9 11 
Obs4 0 11 9 

CAT02 
 
 
 

Obs1 0 12 8 
Obs2 0 16 4 
Obs3 0 13 7 
Obs4 0 17 3 

Best Linear 
 

Obs1 0 8 12 
Obs2 0 9 11 
Obs3 1 7 12 
Obs4 0 10 10 

MMV Center 

Obs1 0 20 0 
Obs2 0 20 0 
Obs3 0 19 1 
Obs4 0 19 1 

 
From Table 4 it is clear that human observers predict the 

3-observer average better than the other methods since the 
numbers in the fourth column are much larger than the third 
column. This conclusion becomes even clearer if we combine the 
results in the table over the 4 observers. In that case, we find that 
the relit color signal performance equals the observer performance 
in 54 (17+11+14+12) out of 80 cases, Best Fit in 45 cases, Wpt in 
37 cases, KSM2 in 29 cases and CAT02 in only 22 cases. In only 2 
of the 80 cases are any of the computational methods better than an 
individual observer. 

Discussion 
The Logvinenko & Tokunaga [1] asymmetric matching 

experiment is interesting because it is based on least-dissimilar 
matching of real papers under real lights. The question it addresses 
differs from that of corresponding color experiments, which tend to 
abstract color away from what its purpose might be.  Given this 
different set of experimental data, we have evaluated several color 
signal prediction methods in terms of how well they correspond to 
observers’ least-dissimilar matching.  

Firstly, our analysis shows that observers tend to find the 
given test paper to be the least-dissimilar match paper. Since there 
is a forced choice of 1 paper out of 20, this does not mean, 
however, that observers would always consider that paper to be the 
least-dissimilar if there were an effectively infinite choice of 
papers. Secondly, the analysis shows that the average color signal 

of the observer least-dissimilar matches is a relatively good 
predictor of the color signal of the test paper under the match 
illuminant. Thirdly, the computational methods Relit, Best Linear, 
Wpt and KSM2 are all quite similar in their effectiveness in 
predicting the average observer match. CAT02 is considerably less 
effective. However, none of the methods is as effective as each 
individual observer in predicting the 3-observer average of the 
other observers’ matches. This implies that all the computational 
methods studied are failing to capture some important aspect of the 
observers’ least-dissimilar matching strategy. 
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