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Abstract

The performance of color prediction methods CAT02, KSM’,
Waypoint, Best Linear, MMV center, and relit color signal are
compared in terms of how well they explain Logvinenko &
Tokunaga’s [1] asymmetric color matching results. In their
experiment, given a Munsell paper under a test illuminant, 4
observers were asked to determine (3 repeats) which of 22 other
Munsell papers made the least-dissimilar match under a match
illuminant. Given this data, we address the following four
questions. Question 1: Are observers choosing the original
Munsell paper under the match illuminant? If they are, then the
average (12 matches) color signal (cone response triple or XYZ)
made under a given illuminant condition should correspond to that
of the Munsell paper’s color signal under the match illuminant.
Computation shows that in 274 of the 400 cases, the relit color
signal is close to the mean color signal of the matches. Question 2:
How do algorithm predictions compare to the average observer
prediction of the actual color signal of the relit paper? The
Wilcoxon signed-rank test shows that KSM?, Waypoint, and Best
Linear perform equally, and that both slightly outperform the
observer average, which, in turn, significantly outperforms CAT02,
and MMV (metamer mismatch volume) center. Question 3: Which
method most closely predicts the observer average? We found that
the color signal of the relit reflectance is a better predictor of the
average observer than Best Linear, which in turn is marginally
better than Wpt and KSM?, both of which outperform CATO02 and
MMV center. Question 4: Do the observers agree with one
another? Using a leave-one-observer-out comparison shows that
individual observers predict the average matches of the remaining
observers somewhat better than the relit color signal, which in
turn slightly outperforms Best Linear, Wpt and KSM?, which then
all significantly outperform CAT02 and MMV center.

Introduction

Logvinenko & Tokunaga [1] conducted an asymmetric color
matching experiment in which observers view a Munsell paper
under one light (the test illuminant) and then choose the least
dissimilar matching paper from a set of 22 papers under a second
light (the match illuminant). There were 4 observers and 3
repetitions each. The papers under both lights are always visible
simultaneously. See Figure 1 for a photograph of the setup. The
papers are rearranged between trials. Note that these are real
papers under real illuminants, not colored patches on a digital
display nor colors obtained using hidden illuminants to simulate
reflectance changes [2] [3]. The experiment involved 6 illuminants
of approximately equal illuminance and all 30 possible pairs were
used as test/match illuminant conditions. However, since the two
red illuminants are very similar, in this paper we exclude one of
them and consider only the illumination conditions based on the 20
possible non-identical pairs of 5 of the illuminants.

The Logvinenko & Tokunaga (L&T henceforth) experiment
differs from many other asymmetric color matching experiments in
that subjects are not asked to match colors, but rather to choose the
color which is least-dissimilar.
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FIGURE 1. THE ASYMMETRIC MATCHING SETUP USED BY LOGVINENKO AND
TOKUNAGA [1] SHOWING THE EXAMPLE OF THE LEFT-HAND PANEL IN
YELLOWISH LIGHT AND THE RIGHT-HAND PANEL IN BLUISH LIGHT. THE PAPERS
ARE REARRANGED BETWEEN TRIALS.

During each trial, a laser pointer is used to select a test
colored patch (a Munsell paper from the matte collection) from the
left-hand panel and observers are asked to identify the least-
dissimilar patch from the right-hand panel. As L&T point out, a
perfect asymmetric match will usually be impossible due to
metamer mismatching (i.e., the fact that two different reflectances
may reflect metameric lights under one illuminant, but non-
metameric lights under a second illuminant). Further analysis of
the effect of metamer mismatching in the context of this
experiment is provided by Logvinenko et al. [4].

Based on the L&T asymmetric matching results, we compare
several color prediction methods to determine which best models
observer performance. In particular, we compare von-Kries-rule-
based CATO2 [5], KSM? [6], Wpt [7], Best Linear 3x3 transform
[8], MMV (metamer mismatch volume) center [9] and Relit color
signal (LMS cone response or XYZ) of the test paper under the
match illuminant. Details of these methods are given below. In all
cases, we assume that the methods have accurate information about
the test and match illuminants. These methods are divided into two
groups: those that require the full spectral power distribution of the
illuminants (Wpt, Best Linear, MMV center, Relit color signal),
and those that require only the color signals of the illuminants
(CATO02, KSM2).

In analyzing the methods relative to the L&T data, we address
four questions: (i) Are observers generally choosing the original
Munsell paper under the match illuminant? (ii) If the average color
signal of the observers’ least-dissimilar matches is considered as a
prediction of the actual color signal of the relit paper then is it
better or worse than the predictions made by the computational
methods? (iii) Which computational method most closely
corresponds to the observer average? and (iv) How does the

IS&T Infernational Symposium on Electronic Imaging 2017
Human Vision and Electronic Imaging 2017



performance of individual observers compare to the computational
methods in predicting the least-dissimilar matches of the average
observer?

Background

Numerous methods for predicting ‘color’ under a change of
illumination have been proposed. Derhak and Berns [7] make the
distinction between chromatic adaptation transforms (CATs) and
material adjustment transforms (MATs). A CAT is intended to
predict what color signal under the match condition will appear the
same as under the test condition. Of course there is the issue of
what ‘the same’ means. Derhak and Berns define the goal of a
MAT as “...to predict material constancy or how sensor
excitations for an object color change with changes in observing
conditions” [7]. The problem with this definition is, as established
by Logvinenko et al. [4], that as a result of metamer mismatch
intrinsic object colors that are independent of the illuminant simply
do not exist—hence material constancy does not exist either.
However, so long as we bear in mind that we will not obtain
constancy or “material color equivalency” [7] we can still
investigate methods of predicting—given a color signal from a
given surface reflectance under a first light—what its color signal
is likely to be under a second light. Wpt [7] is one such color
signal predictor. However, the issue we address here is not whether
one CAT or color signal predictor is better than another, but rather
whether or not any of them successfully predict the least-dissimilar
matches made by the observers in L&T’s experiment.

Color signal predictors can be divided into two categories:
those that require full knowledge of the spectral power
distributions of both the test and match illuminants; and those that
require only the color signals of the perfect reflector under each
illuminant. In the first category are Relit, Best Linear [8], Wpt [7]
and MMV center [9].

The Relit color signal is simply the color signal of the given
test paper under the match (second) illuminant. Computing it
requires the full spectral reflectance function of the surface as well
as the SPDs of the second illuminant. Since L&T used matte
Munsell papers, we assume that the color signal (¢4, @2, ©3)
resulting from light impinging on sensors Ry(A) (k = 1...3) from a
surface of spectral reflectance S(A) illuminated by light with
spectral power distribution E(}) is:

P09 = [ SOEMR A (k = 1,2,3) (1)

The Relit ‘prediction’ of the color signal is not a prediction
but rather, under the assumption of matte reflectance, it is the
actual answer. Wpt involves a 3x3 linear matrix transformation of
the test color signal to the match color signal. The 3x3
transformation is determined based on the SPDs of the illuminants
and a training set consisting of the reflectances of all the papers in
the Munsell collection. In order to satisfy other design
requirements, Wpt does not, in fact, determine the optimal 3x3
matrix. In comparison, the Best Linear method [8] is based on
using the optimal 3x3 matrix mapping the color signals from the
training set (1600 Munsell papers) under the test illuminant to the
match illuminant.

MMV center prediction is based on computing metamer
mismatch volumes. For a given color signal under the test
illuminant, the set of color signals it could theoretically become
under the match illuminant defines a convex volume in color signal
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space called the metamer mismatch volume (MMV). Computing
the MMV requires full knowledge of the SPDs of both illuminants.
Logvinenko et al. [9] propose using the color signal at the
geometric center of the MMV as the prediction of what the color
signal under the test illuminant is likely to become under the match
illuminant.

In the second category of color signal prediction methods—
those that require only the color signals of the illuminants—we
consider von-Kries-based CIECAMO2 [5] and KSM? [6]. At the
heart of CIECAMO?2 is the chromatic adaptation transform CATO02,
which applies the standard von Kries (diagonal) transformation
after a sharpening transformation [10][11]. The sharpening
transform is tuned on corresponding color datasets and therefore it
is not specifically designed to predict color signals of surfaces
under the test illuminant.

Also in the second category is KSM? developed by Mirzaei et
al. [6]. KSM? uses Gaussian-like reflectance functions (called
wraparound Gaussians). Each such Gaussian reflectance is
specified by 3 parameters: K the scaling, S the sigma, M the peak
wavelength. To make a color signal prediction, KSM? finds three
Gaussian functions, one representing an SPD metameric to the test
illuminant, a second metameric to the match illuminant, and a third
representing a reflectance metameric to the given test color signal
under the Gaussian SPD metameric to the test illuminant. It then
computes the color signal of that Gaussian reflectance under the
match Gaussian illuminant and uses that color signal as its
prediction.

Observers choose original Munsell paper

Are observers generally choosing the original Munsell paper
under the match illuminant as the least-dissimilar one? For each
illumination condition, 4 observers with 3 repeats made least-
dissimilar matches. All 20 chromatic papers were used as test
papers. For each of the 20 test papers, therefore, there are 12 least-
dissimilar matches reported. If the observers are selecting the
original paper as being least-dissimilar then the color signal of the
original paper under the match illuminant (the relit color signal)
can be expected to be close to the average relit color signal of the
selected papers. Figure 2 shows examples of the 95% confidence
region centered on the average relit color signal of the observer
matches for four of the test papers for the red-neutral illumination
condition (i.e., red test, neutral match illuminant). In the plot,
three of the four relit color signals fall within the 95% confidence
interval.

Figure 2 shows the general trend of the confidence ellipses (or
ellipsoids in XYZ) with the relit color signal falling in or near it.
To check all 400 cases (20 papers under 20 illuminant conditions),
we computed the Mahalanobis distance for each relit color signal
from the mean observer color signal for each particular
illumination condition. The advantage of the Mahalanobis distance
measure is that it is independent of any full-rank linear
transformation of the sensor space such as the
Hunt-Pointer-Estevez transformation from XYZ to LMS. As a
reminder, the Mahalanobis distance of a point ¥ = (X4, Xz, ..., Xy) T
to a set of points y, with mean i = (i, liz, -.., iiy) Tand covariance
matrix S in n-dimensional space is defined as:

Dy(®) =& - DTS (X — i) )
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FIGURE 2. Four examples of the 95% confidence ellipses centered on the
mean (dot) of the 12 matches with the locations of the relit color signals
of the Munsell papers marked by asterisks surrounded by a ring. The
illumination condition is red to neutral. Starting at the bottom ellipse and
proceeding clockwise the ellipses correspond to Munsell papers 10BG
5/10, 5GY 7/12, 10R 5/16 and 5RP 5/12.
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Since XYZ space is 3-dimensional, the expected distribution
of Mahalanobis distances is a chi-squared distribution with 3
degrees of freedom. The critical values of the associated chi-
squared distribution are used to check if a point at a given distance
Dy, is inside the given ellipsoidal confidence interval or not.
However, since there are only 12 observations per patch/illuminant
condition there are quite a few cases where all 12 observations fall
within a 2-dimensional or, occasionally, a 1-dimensional subspace.
This happens whenever all the observers agree on a set of only two
or three candidate papers. In these cases, so long as the point is
close to the subspace (as measured in terms of eigenvalues of the
singular value decomposition) we project the point into the
subspace before computing the Mahalanobis distances. It should be
noted that if the points all fall on a plane then the expected
distribution of Mahalanobis distances will be from a chi-squared
distribution with 2 degrees of freedom and the confidence interval
will be an ellipse instead of an ellipsoid based on the critical values
for 2 degrees of freedom. Similarly, if the points fall on a line then
the confidence region will turn into a simple confidence interval.

In 274 cases of the 400 cases (68.5%), the relit paper’s color
signal falls inside the corresponding confidence region. We also
did the same test but based on CIE1976 u'v’ chromaticity
coordinates and found that in 291 cases the relit color signal was
within the corresponding confidence ellipse. These results suggest,
perhaps not surprisingly, that observers generally (but definitely
not always) find the match paper that is physically identical to the
test paper to be the least dissimilar one.

Color Signal Prediction Comparison

Whether or not observers are actually predicting what the
color signal of a given paper under the test condition will be under
the match condition, we can, nonetheless, treat the average color
signal of the least-dissimilar matches as a predictor and evaluate
how accurate that predictor is. In the L&T experiment there were 4
observers so we have 5 different predictors. ObsC is the predictor
based on combining all 12 results (4 observers, 3 repeats) by
averaging them and Obsl, Obs2, Obs3, Obs4 are predictors based
on the average of each observer’s 3 repeats taken separately. For
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comparison, we also used implementations of KSM?, MMV center,
Wpt, CATO2 and Best Linear as predictors.

Table 1. Comparing Relit Color Signal Predictions. Column 3
indicates in how many cases out of the 20 different illumination
conditions that the Wilcoxon test indicates that method from
column 1 has a statistically lower error than the method from
column 2 in predicting the color signal of the 20 papers under
the match illuminant; column 4 the reverse; and column 5 when
they are statistically equivalent.

= = o m
z : iz
g g m| o |§
- N N a
ObsC 2 5 |13
Obs1 6 3 | 11
Obs?2 KSM? 2 | 4 114
Obs3 0 7 | 13
Obs4 1 3 |16
ObsC 14 | 2 4
Obs1 14 | 0 6
Obs2 CATO02 14 | 2 4
Obs3 9 2 9
Obs4 12 | 2 6
ObsC 19| 0 1
Obs1 20| O 0
Obs2 MMV Center 20 0 0
Obs3 18 | 0 2
Obs4 19 | 0 1
ObsC 0 6 | 14
Obs1 4 3 |13
Obs2 Whpt 2 5 | 13
Obs3 0 7 | 13
Obs4 0 5 | 15
ObsC 0 7 | 13
Obs1 0 5 | 15
Obs2 Best Linear 2 6 12
Obs3 0 9 | 11
Obs4 0 6 | 14
KSM? CATO02 18] 0] 2
KSM* MMV Center 20070
KSM? Wpt 1] 2 |17
KSM” Best Linear 0[] 8 12
CATO02 MMV Center 14 | 0 6
CAT02 Whpt 0 |20 O
CAT02 Best Linear 0 20 | O
MMV Center Wpt 0 [20] O
MMV Center Best Linear 0 20 | O
Whpt Best Linear 0 2 118

Using the same test/match conditions and Munsell papers as
above, we compute the average prediction error for each of the
predictors measured in terms of the Euclidean distance between the
predicted XYZ and the relit XYZ. Although the results reported
here are in terms of XYZ, almost identical ranking results were
obtained using Euclidean distances in Hunter-Pointer-Estevez
LMS space. We compare the performance of the predictors to one
another using the Wilcoxon one-sided and two-sided tests. The
Wilcoxon test results are tabulated in Table 1. All the tests are
performed at the 5% significance level. Note that the three
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rightmost columns of the table show the number of illumination
conditions for which Method 1 is statistically better on average
than Method 2, whether Method 2 is better than Method 1, or
whether they are statistically equal.

Overall the results in Table 1 indicate Best Linear, Wpt and
KSM? are roughly equivalent and all are slightly better predictors
than ObsC; however, all four of them significantly outperform
CATO02 and MMV center. Note that as mentioned above that Best
Linear, Wpt, and MMV center require the full spectra of the test
and match illuminants, while ObsC, KSM? and CAT02 require
only their color signals. In other words, the former ones may or
may not predict human performance, but they cannot possibly
provide a computational model of any aspect of color perception.

Predicting Observer Average Matches

To determine which method most closely predicts observer
least-dissimilar matching behavior, for each of the 20 illumination
conditions, we use the 12 (4 observers, 3 repeats) matches made
and compute the average of the color signals arising from the
matched papers under the match illuminant. We then compare this
average observer least-dissimilar match to the predictions made by
the various computational methods measured in terms of Euclidean
distance between the respective color signals. The Wilcoxon
signed-rank test was then used to evaluate the methods with
respect to one another in terms of their performance in predicting
the 20 matches. The Wilcoxon results for the 20 illumination
conditions are listed in in Table 2. As an example, the first row in
the table indicates that KSM?* outperforms the Relit color signal in
only one illumination condition, the Relit outperforms KSM? in 4
illumination conditions, and in 15 illumination conditions their
performance is evaluated as statistically equivalent.

Table 2. Comparison to Average Observer Matching. Column 3
indicates in how many cases out of the 20 different illumination
conditions that the Wilcoxon test indicates that method from
column 1 has a statistically lower error than the method from
column 2 in predicting the average observer least-dissimilar
matches of the 20 papers; column 4 the reverse; and column 5
when they are statistically equivalent.

= = m | m m
2 2 >R |t
g 2 m|om%s
- N N 2 <
Relit KSM? 41 1] 15
Relit MMV Center | 20 0 0
Relit CATO02 90 | 11
Relit Wpt 2 0] 18
Relit Best Linear 0 0 20
KSM? MMV Center | 19 | 0 1
KSM? CATO02 5 2] 13
KSM* Wpt 1101 19
KSM? BestLinear | 0 | 2 | 18
MMV Center CATO02 0 |17 ] 3
MMV Center Whpt 0 |19 1
MMV Center | Best Linear 0 | 20 0
CAT02 Wpt 0| 6| 14
CATO02 Best Linear 0 9 11
Best linear Wpt 0 0 20
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In sum, the results in Table 2 indicate that the color signal of
the relit reflectance and best linear fit estimator are equivalent
predictors of the average observer, and both are only marginally
better than Wpt and KSM? both of which, in turn, clearly
outperform CATO02 and MMV center. KSM? is, in comparison to
the other methods, both a good predictor and requires only the
color signals of the illuminants, not their full spectral power
distributions.

Note that the results in this Table 2 show the relative
performance of the methods, not the absolute performance. In
other words, the methods might be doing equally poorly rather
than equally well. Table 3 lists the accuracy of each method’s
predictions averaged over the 400 cases. The accuracy is measured
in terms of the Euclidean distance between the prediction and the
average XYZ of the 12 least-dissimilar matches, and similarly for
u'v’coordinates.

Table 3. Accuracy in Predicting Average Observer Matches
Mean and median over the 400 cases of the Euclidean distance
in XYZ and CIE1976 u'v’ between each method’s predictions
and the average observer match.

Method 2 g 5 )

§ x S c

N N < <
Relit 5.21 3.45 0.024 0.015
Best Linear 5.56 4.17 0.040 0.023
Whpt 6.20 4.44 0.096 0.025
KSM? 8.08 4.50 0.043 0.030
CAT02 7.61 5.99 0.04 0.03
MMV Center 39.85 23.44 0.072 0.040

Observers Predicting Other Observer Matches
Clearly there will be variability in the least-dissimilar matches
made by the different observers. To what extent do the observers
agree with one another and is a match made by an individual
observer any better or worse a predictor of the average observer
match than those made by the various computational methods?

To answer this question, we used a leave-one-observer-out
comparison in which the one observer is excluded and the 9
remaining trials (3 observers, 3 repeats per paper, per illumination
condition) are averaged. The mean of the excluded observer’s 3
trials is then used as a predictor of the 3-observer average. This
process is repeated for each of the four observers resulting in four
predictors Obsl,..., Obs4 making predictions of four, 3-observer
averages.
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Table 4. Observers versus Computational Methods. Similar to
the preceding tables but in this case comparing via the
Wilcoxon test how well the methods predict the 3-observer
averages of dissimilar matches.

= =z @0
< 2 |~ | % E
g g |4 Als
Obs1| O [11] 9
2 Obs2 | 0 |16 | 4
KSM Obs3 | 0 [11] 9
Obs4 | O |13 | 7
Obs1 | O 3 |17
Relit Obs2 | O 9 | 11
Obs3 | 1 5 | 14
Obs4 | O 8 | 12
Whpt Obst| O [11] 9
Obs2 | 0 |12 | 8
Obs3 | 0 9 | 11
Obs4 | O [11] 9
CATO02 Obst| O |12 | 8
Obs2 | 0 |16 | 4
Obs3 | 0 |13 | 7
Obs4 | O |17 | 3
Obs1 | O 8 | 12
Best Linear Obs2 | O 9 | 1
Obs3 | 1 7 |12
Obs4 | O | 10 | 10
Obs1| O [20 | O
Obs2| 0 [20 | O
MMV Center obs3 1 0 [ 19| 1
Obs4 | 0 | 19| 1

From Table 4 it is clear that human observers predict the
3-observer average better than the other methods since the
numbers in the fourth column are much larger than the third
column. This conclusion becomes even clearer if we combine the
results in the table over the 4 observers. In that case, we find that
the relit color signal performance equals the observer performance
in 54 (17+11+14+12) out of 80 cases, Best Fit in 45 cases, Wpt in
37 cases, KSM? in 29 cases and CATO2 in only 22 cases. In only 2
of the 80 cases are any of the computational methods better than an
individual observer.

Discussion

The Logvinenko & Tokunaga [1] asymmetric matching
experiment is interesting because it is based on least-dissimilar
matching of real papers under real lights. The question it addresses
differs from that of corresponding color experiments, which tend to
abstract color away from what its purpose might be. Given this
different set of experimental data, we have evaluated several color
signal prediction methods in terms of how well they correspond to
observers’ least-dissimilar matching.

Firstly, our analysis shows that observers tend to find the
given test paper to be the least-dissimilar match paper. Since there
is a forced choice of 1 paper out of 20, this does not mean,
however, that observers would always consider that paper to be the
least-dissimilar if there were an effectively infinite choice of
papers. Secondly, the analysis shows that the average color signal
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of the observer least-dissimilar matches is a relatively good
predictor of the color signal of the test paper under the match
illuminant. Thirdly, the computational methods Relit, Best Linear,
Wpt and KSM? are all quite similar in their effectiveness in
predicting the average observer match. CATO2 is considerably less
effective. However, none of the methods is as effective as each
individual observer in predicting the 3-observer average of the
other observers’ matches. This implies that all the computational
methods studied are failing to capture some important aspect of the
observers’ least-dissimilar matching strategy.
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