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Abstract 
This paper will explore the mobile and business perspectives 

of visually lossless image quality, as well as review recent 
scientific advances. It is the outcome from the Special Session on 
Visually Lossless Video Quality for Modern Devices: Research 
and Industry Perspectives organized at the Human Vision and 
Electronic Imaging 2017 by IS&T at San Francisco Airport, 
Burlingame, California, USA, Jan 29 - Feb 2, 2017. It summarizes 
four presentations and a panel discussion. 

Introduction  
An often-sought goal in image and video coding is to generate 

images and videos which are maximally compressed, but visually 
lossless from the uncompressed versions. In terms of visual 
psychophysics, such an objective would mean that the compression 
distortions are below the threshold of detection. This can be 
loosely phrased that it cannot be seen by a majority of population 
most of the time. 

The research area has matured and commercial applications 
have emerged e.g. in the mobile industry where sometimes visually 
lossless compression is used in order to cope with the bandwidth 
requirements for the visual presentation on the display. This paper 
will explore the mobile and business perspectives of visually 
lossless image quality, as well as review recent scientific advances. 
It is the outcome from the Special Session on Perceptually Lossless 
Image Quality for Mobile Devices organized at the Human Vision 
and Electronic Imaging 2017 by IS&T at San Francisco Airport, 
Burlingame, California, USA, Jan 29 - Feb 2, 2017. It will 
summarize four presentations (see titles and abstracts below) and a 
panel discussion. 

Background 

Common Industrial Visual Quality Assessment 
In general, applications of visual quality occur in the 

industrial arena and have been directed toward a wide range of 
quality. This includes both testing methodologies as well as 
predictive models. For example, in the widely used International 
Telecommunication Union (ITU) guidelines for subjective video 
quality assessment, the Double Stimulus Continuous Quality Scale 
(DSCQS) method ITU-R Rec BT.500-13 (BT500)[1] or the 
Absolute Category Rating (ACR) ITU-T Rec P.910 [2] uses a 5-

grade quality scale with subject input options of Excellent, Good, 
Fair, Poor, and Bad, as shown in Table 1 to left. Another scale 
listed in the BT500 [1] guidelines is the ITU impairment scale, 
which uses the following options: Imperceptible, Perceptual but 
not annoying, Slightly Annoying, Annoying, and Very Annoying, 
see Table 1 to the right. Note that these scales were intended for a 
single stimulus, but can also be paired with a known reference, as 
in the above mentioned DSCQS with an explicit reference or in 
ACR with a hidden reference. Both methods span a substantial 
range of visual quality, that is, they include both sub-threshold and 
suprathreshold visible differences. In many applications, such 
assessment of overall suprathreshold visual quality is exactly what 
is needed. 

Table 1: The Quality and Impairment scales of BT500 

 

For paired comparisons, Likert scales are often used since 
they have a bipolar structure that enables consideration of the two 
stimuli, as shown in Table 2[1]. These are generally arranged in a 
left-to right orientation corresponding to two images being shown 
side-by-side. However, in some applications, the quality sought 
after is strictly visually lossless. That is, all visible differences 
(distortions) are designed to be below the human threshold and the 
intent of testing is to determine if this goal has been achieved. One 
can easily see that the five graded Quality scale in Table 1 has no 
ability to determine whether visually lossless quality occurs or not. 
The category ‘Excellent’ may imply visually lossless in some 
applications, and for some viewers but this is generally not the 
case. On the other hand, the impairment scale does have the ability 
to assess visually lossless behavior, such as the boundary between 
response 5 and 4. Likewise, the thresholds could possibly be 
determined from Likert scales using the responses -1, 0, +1, 
although the adjectives given are not as exact regarding threshold 
as does the ITU impairment scale. 
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Table 2: The Comparison scale of BT500 

  

In most conceptions of visually lossless, two images (or 
videos) are compared, with one being a Reference and one being a 
Distorted version. The distortions may not mean solely deviations 
from realism (artifacts, such as blocking artifacts and ringing) but 
include any changes from the reference, even if plausible to 
realism (such as color shifts, tonescale shifts, blur). Terms like 
Original, Source, and Uncompressed are also used for the 
Reference, but the reference may not always be the original 
version, or its source, and the distortion may not involve 
compression so those terms do not generalize. For example, in 
post-production workflows, the term Mezzanine Content is used to 
describe content that is compressed very lightly, but is 
subthreshold, and is used at certain stages of the workflow. This 
Mezzanine content is then further compressed for distribution. So 
in this case, both the reference and distorted would be compressed 
video streams. Although there is not complete agreement on all of 
the details, the terms visually lossless, perceptually lossless, 
perceptually transparent, and visually identical are all referring to 
the same thing. When only visual aspects are being considered, 
some prefer the terms visually lossless, etc., and save analogous 
terms like perceptually lossless to cases when there are multiple 
sense dimensions involved, such as audio-visual assessment.  

Thresholds and the Psychometric Function  
Unfortunately, the visual threshold for most dimensions of 

imagery is not a step function as might be implied from the 
impairment table in Table 1. Rather, it is a gradual transition. 
Rigorous psychophysical experiments (typically, academic as 
opposed to industrial) tend to focus more specifically on threshold 
perception, and ignore the distinctions above threshold. A 
psychometric function is measured that finds the subject’s 
probability of detection as a function of the strength of the 
parameter of interest, as shown in Figure 1 (left). For many stimuli, 
psychometric functions are generally of the same shape across 
different individuals, but exhibit varying sensitivity (causing 

horizontal shifts on the x-axis, Figure 1, right). For this example, a 
threshold may be assigned to the stimulus intensity corresponding 
to 50% seen (~24, pink arrow, left plot), but this is obviously just 
definitional, and the threshold is just a shorthand for the overall 
position of the psychometric function. For this plot, stimuli of 
strengths from 40 to 45 seem to give detectability of ~100% and 
are just surpassing the threshold region, which may still be 
considered a very slight distortion. The methods used to determine 
such psychometric functions do not have the ability to differentiate 
stimuli of strengths > 45, which is the suprathreshold region, to 
which the majority of the scales described above are allocated. To 
determine an average threshold across varying individuals, the 
detections thresholds from each are averaged, and a new 
psychometric function can be derived which describes the average 
subject (green curve in Figure 1, right).  

One common distinction between industrial visual quality vs. 
academic vision science is that industrial testing tests many more 
viewers than academic testing, but that academic testing tests each 
viewer much more thoroughly. In most industrial testing, there are 
much fewer trials per individual (sometimes just one), as well as 
less stimuli allocated to the threshold region, because the stimuli 
are needed to span a wider range of quality differences. As a result, 
in most industrial testing, a psychometric function cannot be 
constructed per individual. But industrial testing does have much 
data available as a result of testing more viewers, and attempts to 
determine thresholds can be made by averaging all subject 
responses (e.g., by looking at data for responses 4 and 5 in the ITU 
scale) and averaging those to get a group psychometric function. 

 In much industrial testing, such as using the scales in Table 1, 
attempts are occasionally made to determine thresholds by 
averaging the responses across all observers. But without first 
determining the thresholds for each viewer, the overall 
psychometric function ends up being wider, and may result in a 
different threshold than the average threshold determined when 
individual psychometric functions are measured. As a result of 
these many factors, experiments are generally designed to either 
assess the threshold, or assess the full range at the expense of loss 
of accuracy around threshold. These design decisions involve both 
stimuli set as well as experimental methodologies.  

From threshold to JNDs 
In most terminology, Just Noticeable Differences (JNDs) are 

synonymous with the threshold corresponding to the 50% response 
(after correction for guessing) [3]. In industrial applications, JNDs 
tend to be used for grouped observer perception, as opposed to 

Figure 1:  Left: psychometric function for an individual. Right: psychometric functions for multiple subjects and different methods to determine psychometric 
functions or thresholds for group behavior. 
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describing individuals. JNDs are often added and used as a ruler to 
determine quality categories. For example, it has been claimed that 
six JNDs correspond to a difference across subjective quality 
categories [3], such as from ‘fair to ‘good’. Another example of 
their usage is that one JND is not considered an advertisable 
difference; because it means only half the observers detect the 
difference. Notice that the 50% criterion is shifted from a single 
subject’s probability of detection to the performance of a group 
(e.g., corresponding to the red curve in Figure 1). Unfortunately, 
JND summation only works for small numbers, and saturation 
occurs for larger visible differences. The visual system functioning 
as derived from JND summation is also known to deviate from that 
derived from appearance estimates. For example, the luminance 
nonlinearity derived from thresholds deviates from one derived 
from suprathreshold appearance steps. Various theories have been 
proposed and tested for such deviations [4]. Fortunately, for the 
goals of visually lossless quality, neither describing nor 
understanding large appearance differences is needed.  

Sub-threshold explorations  
In this century, research in quality assessment has been 

directed to understanding sub-threshold vision. Motivations range 
from frustrations with the visual quality task interfering with the 
overall quality of experience to observations that many viewers 
may not be aware of visual distortions that are still considered 
important to the product. An example of the former is that in 
determining quality of experience of differing display capabilities 
in conveying the emotions of a narrative movie, natural viewing of 
the movie with audio from beginning to end is required. However, 
such requirements pose extreme difficulties to traditional 
psychophysical testing methods. The common methods of viewing, 
comparing, and rating video clips of 10-20 sec duration put the 
viewer in a completely different state of mind than when actually 
watching and following the story. Examples of the latter are 
numerous in cases where those involved in the professional 
workflow of content notice far more details relating to their craft 
than the consumer viewer. Rather than assuming what the viewer 
does not notice is not important, the presumption is that the net 
total of experience with the craft affects the viewer in a number of 
ways, e.g. honing their attention to specific attributes. These highly 
trained observers may be unaware of this impact. For example, 
those in the craft readily use vertical camera angle placement to 
show dynamics of character subordination/ dominance [5], but 
how many consumer viewers notice such changes? Another 
example occurs for studies of discomfort, such as for stereoscopic 
displays or virtual reality, where the viewer may not notice signs of 
impending discomfort until it is too late.  

Rather than use traditional psychophysical testing (whether 
industrial or academic), physiological measurements can be used. 
They can allow for the studying naturalistic viewing, as well as the 
subthreshold region. Turn-key research equipment now enables 
eye-tracking, EEG measurements, galvanic skin responses, facial 
thermal emission imaging, and visible facial expression and 
reaction imaging. Such techniques are now currently being used to 
assess levels of emotional engagement as a result of technical 
display differences [6] or in causing stress on the oculomotor 
visual system, see Section Colett et al, below. 

Detection of Compression Artifacts on 
Laboratory, Consumer, and Mobile Displays 
Y. Zhang, Y. Yaacob and D. M. Chandler 

As outlined above, a range of parameters have been evaluated 
in threshold-based approaches to quality assessment (using forced-
choice procedures and calibrated displays). However, practitioners 
often find that such thresholds are much lower than commonly 
visible in many applications, particularly when display 
characterization is not performed, see Wilcox et al below. In 
addition to the impact of the task demands, three candidates for 
such discrepancy are the display, the signal, and the viewing 
distance/angle. In the case of the display, factors such as contrast 
loss due to tonescale variations, ambient light and display 
reflectivity, motion blur due to temporal response, loss of high 
frequencies due to spatial MTF, and dynamic range variations are 
considered the most likely. Regarding the signal, the content’s 
noise level and texture are the primary suspects in elevating 
thresholds due to masking. Lastly, psychophysical thresholds have 
strong frequency dependence, so viewing distance miscalibration 
can shift expected frequencies to higher values where the 
thresholds are generally higher. Off-angle viewing can 
significantly lower the contrast displayed with LCD technologies, 
thus lowering the contrast of the distortion from that expected 
using threshold data. 

Consequently, it remains unclear whether such thresholds are 
valid when measured for true broadband compression distortions in 
actual images/videos presented on mobile and consumer-grade 
displays. In this section, we discuss our explorations of the display 
portion of the issue. Specifically, we asked: 

1) Can thresholds measured on mobile devices yield the same 
results as those measured on laboratory and desktop displays 
when viewing conditions and display EOTFs (Electrical to 
Optical Transfer Functions) are kept constant? 

2) How are the thresholds affected when EOTFs change on 
mobile displays, and do such changes agree with model 
predictions? 

3) How do the variabilities in thresholds due to (1) and (2) 
compare to the variability across subjects, content, and gaze 
location? 

Here, we present some preliminary findings of a pilot 
experiment designed to shed light on these issues. We measured 
contrast detection thresholds for HEVC compression distortions in 
small images using a mobile device (Apple iPad), and a forced-
choice procedure. We discuss how these thresholds compare to 
similar thresholds measured on other displays, on the same display 
but with different display settings. 

 
Figure 2 Stimuli used in the study—original and HEVC-compressed image 
segments from the CSIQ image quality and masking databases[7]. 
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Effect of Display Type: Mobile vs. Desktop vs. 
Laboratory 

Contrast detection thresholds for High Efficiency Video 
Coding (HEVC) [8] compression distortions were measured for 
crops from two images from the CSIQ masking database [7]; 
images Shroom and SunsetColor (see Figure 2). The compressed 
images were generated by using the reference HEVC encoder and 
by adjusting the QP value from 1-51. 

The thresholds were measured on three displays: 
 a Display++ LCD monitor from Cambridge Research 

Systems, 
 a consumer-grade LCD monitor from I-O Data, and 
 an Apple iPad Air 2. 

All three displays were adjusted to have similar EOTFs and 
identically sized stimuli (3x3 degrees). The EOTFs were measured 
by using a DataColor Spyder5 in a darkened room. Figure 3 shows 
the measured EOTFs. The solid lines denote fits of the function: 

 
to the measured data. Here, L denotes luminance, and denotes 

8-bit pixel value; the measured parameters are shown in the legend 
of Figure 3 for each display. 

 
Figure 3: EOTFs of the three displays on linear and logarithmic luminance 
scales. 

The contrast thresholds were measured by using a three-
alternative forced-choice procedure guided by a Quest staircase 
with a fixed 48 trials, a 10 ms time-limit per stimuli presentation, 
and audio feedback. Three trained male adults with normal or 
corrected-to-normal vision (YZ, YY, and DC, the three authors of 
this section) served as subjects in the experiment. 

Figure 4 shows the resulting thresholds. For subjects YZ and 
YY, an ANOVA revealed that the display type had a non-
significant effect on the thresholds (YZ: p = 0.1822; YY: p = 
0.08596). For subject DC, the effect of the display type was 
significant at the 0.02 level, but non-significant at the 0.01 level (p 
= 0.0155). For all three subjects, the effect of the image was 
significant (p < 0.01). The suggestion is that, for a given subject on 
a given image, there is just as much variation in the thresholds 
between different trials as there is between the different monitors. 
Moreover, these variations are all much less than the variation 
between subjects. For image Shroom, the standard deviation across 
displays was approximately 1.5 dB (averaged across subjects); 
whereas the standard deviation across subjects was approximately 
3 dB (averaged across displays). For image SunsetColor, the 
standard deviation across displays was approximately 2 dB 
(averaged across subjects); whereas the standard deviation across 
subjects was approximately 1 dB (averaged across displays). 

These results suggest that thresholds measured in the 
laboratory setting (either by using a specialized display or a 
modern desktop monitor) are still fruitful when the content is 
viewed on an iPad. Similarly, for the stimuli used in this study, 
thresholds can be measured directly on a mobile display. These 
suggestions, of course, assume that viewing conditions and EOTFs 
remain similar. 

 

 
Figure 4: Contrast detection thresholds on different displays. Error bars 
denote ±1 standard deviation of the mean. Note that the vertical axis is 
reversed, and thus taller bars represent lower thresholds. 

Effect of Display Setting 
The ability to measure thresholds directly on a widely used 

mobile device such as the iPad, enables the possibility of 
measuring thresholds via crowdsourcing. However, subjects might 
erroneously adjust the iOS “Brightness” setting, thereby affecting 
the EOTF and ultimately the affecting the thresholds. Similarly, 
subjects might mistakenly perform the experiment in a non-
darkened room, thereby affecting the thresholds. 

Thus, in a follow-up pilot experiment, we measured 
thresholds on the iPad under three iOS “Brightness” settings: 0%, 
50%, and 100%; and at 50% in a room lit by daylight (as opposed 
to a darkened room). The stimuli and procedures were identical to 
the previous experiment. Only the third author of this section (DC) 
participated in this pilot experiment. 

 
Figure 5: EOTFs of the iPad with different iOS “Brightness” settings and in 
darkened vs. daylight room settings on linear and logarithmic luminance 
scales. 

Figure 5 shows the EOTFs of the iPad under these different 
settings. Observe that the iOS “Brightness” setting primarily 
affects the slope on a linear luminance scale (vertical offset on a 
logarithmic scale); this is captured in the fits by the parameter k. 
However, the “Brightness” setting also has a small effect on the 
minimum brightness (parameter a). Similarly, changing the room 
illumination from a darkened room to a room lit by daylight 
primarily raises the low end of the curve with negligible effects for 
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larger luminances; this is captured by changes to parameters and a 
and b. 

 
Figure 6: Contrast detection thresholds on the iPad under different 
settings/room illuminations. Error bars denote ±1 standard deviation of the 
mean. Note that the vertical axis is reversed, and thus taller bars represent 
lower thresholds. 

The resulting thresholds are shown in Figure 6. Lowering the 
iOS “Brightness” setting to 0% raised the thresholds for both 
images (p = 0.031). We suspect that this effect is due to noise 
masking (increased variance of the internal decision variable): The 
reduced range and contrast of the display made it difficult to see 
the both the distortions and image [9]. Although the reduced 
visibility of the image may very well have reduced the amount of 
contrast masking, for correlated distortions, oftentimes the mask 
(image) and target (distortions) are visually captured as a single 
percept, and therefore subjects often look for mangled content 
rather than for separate distortions [10, 11]. Thus, a 0% 
“Brightness” setting generally made everything harder to see; thus 
giving rise to greater noise (internal) masking. 

Going from 50% to 100% “Brightness” did not have a 
significant effect on the thresholds. Again, we attribute this finding 
to the fact that subjects often look for mangled content rather than 
for separate distortions. At 100% “Brightness,” the images are 
capable of greater contrast masking, but also greater visibility of 
mangled features (i.e., greater ability to see the effects of the target 
on the mask). 

A bit surprisingly, when comparing the thresholds measured 
at 50% “Brightness” in a darkened vs. day lit room, the effect was 
not significant (p = 0.12). Additional trials and subjects are needed 
before any conclusions can be drawn. 

Summary 
A longstanding unknown in regards to quantifying visual 

losslessness in compressed images and videos is the applicability 
and reliability of such measurements, especially in regards to 
mobile displays. In this preliminary work, we have shown that 
contrast detection thresholds for HEVC distortions in 8-bit images 
are similar when measured (via a forced-choice procedure) on an 
iPad Air 2 as compared to when measured on desktop and 
laboratory displays. This finding assumes that the EOTFs are 
similar; however, for the limited stimuli used in this study, the 

thresholds are surprisingly robust to reasonable variations in the 
iOS “Brightness” setting and/or room illumination.  

Business Perspectives on Visually Lossless 
and Lossy Quality 
S. Daly 

One of the key factors in favoring an accurate visually 
lossless descriptor as opposed to a wider ranging quality descriptor 
is the maturity of the technology used in the business. Businesses 
with mature technologies have products that are often extremely 
high quality, with no distortions noticeable in their product. 
However, they still do not want to waste effort or incur higher 
costs delivering a physical quality higher than visually noticeable. 
On the other hand, businesses with developing technologies have 
products where distortions are visible, but the customer accepts 
that due to other factors such as convenience, expectation level, 
cost, etc. In general, the developing businesses are continuously 
improving their technology and ramping up their quality, and need 
to keep track of quality improvements that are nevertheless still in 
the visually lossy realm. As mentioned in the background, the need 
for visually lossless assessment or wide ranging quality assessment 
will affect the distribution of stimuli, as well as the methodology, 
such as two alternative forced choice, paired comparisons, or 
comparative rating via scales. In addition to those methodology 
choices, the way the imagery is presented to the viewer for 
comparison is critical. For convenience of discussion, this section 
will use the term video to include digital video, digital cinema, as 
well as still imagery.  

Different methods of video comparison 
Three key video comparison methods are sequential 

comparison, simultaneous comparison, and oscillation. 
‘Simultaneous’ is more generally referred to as side-by-side (SBS), 
and oscillation is more generally referred to as toggling (also as 
flicker). For completeness in encompassing all the methods of 
quality assessment, a fourth could be included, which is no 
comparison. That is, a single stimulus presentation (with no 
reference). Visually lossless in the truest sense cannot be done with 
single stimuli. Some distortions can indeed be assessed in a single 
stimulus presentation if their appearance looks entirely synthetic 
(e.g., blocking artifacts) or violate laws of physics (e.g., contains 
scene lighting incongruences due to image compositing [12]). 
These cases can be generalized to where the distortions’ 
spatiotemporal statistics are inconsistent with the reference 
imagery statistics. However, many other distortions that are 
consistent with the reference imagery statistics cannot be assessed 
without a comparison. Examples of these include blur, contrast, 
color and texture. If someone’s hat changes from cyan to green as 
a result of a tonescale compression algorithm, the viewer would 
not be able to detect that difference without a comparison image, 
since both colors are plausible to a third-party viewer. A better 
term than visually lossless for the indistinguishable distortions as 
assessed by single stimulus testing is plausibly lossless  
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For the traditional test video clips of 10-15 sec duration, it is 
known that it is much easier to see differences when the video clips 
are shown side-by-side than when they are shown sequentially. A 
recent study verified this by directly comparing the two 
methods[13]. The experiment was identical for both cases, 
including display, stimuli, and task. The experiment tested one 
parameter of display capability: maximum luminance for HDR 
(high dynamic range). In the sequential testing, one Dolby 
professional reference display (Pulsar) was used. For the side-by-
side testing, two Pulsar displays were used. The resolution of each 
was full HD (1920x1080), the diagonal was 42”, the bit-depth was 
12 bits RGB, the color gamut of the signal was 709, the black level 
remained constant at 0.005, and the ambient was 20 lux. A hidden 
upper anchor was used for each comparison. The viewer’s task was 
to rate the quality (according to their own personal preference) of 
each of the two stimuli shown using a Likert scale. The maximum 
luminances tested were 100, 400, 1000, and 4000 cd/m2 (nits). Six 

different HDR video clips were used, where two different max 
luminances were compared in each trial. The main point of the 
results (shown in Figure 8) is that sequential comparisons are more 
difficult that the side-by-side. This shows up both in terms of the 
confidence intervals and the shape of the curves. The confidence 
intervals are clearly seen to be on average 2x larger for the 
sequential comparison task, and the range of quality is reduced. 
For example, there is not a significant distinction between the 400 
and 1000 nits versions in the sequential testing, while there is a 
clear distinction across all four tested stimuli parameters in the 
side-by-side methodology. 

To better understand why the side-by-side comparisons gives 
more pronounced quality distinctions, it is worth noting that any 
image comparison requiring a viewer’s response is a task, 
involving various stages of visual memory and mental mapping. 
Figure 7 shows some of the key processes for the rating 
comparisons as used in the mentioned experiment.  Both of the 

Figure 8: Comparison between sequential (L) vs. side by side (R) comparisons for the same stimuli, displays, and subjective task (preference). The 
sequential testing results were conducted by the EBU while the side-by-side were conducted by EPFL.

Figure 7: Key memory and mapping stages for an SBS rating task (left), a sequential rating task (middle) and an SBS visually lossy detection task (right). 
Note: sequential is referring to viewing one entire test video clip, followed by another one (the other half of a pair with differing parameters). 
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compared stimuli cannot be foveated at the same time1, so in the 
side-by-side method (leftmost plot), saccadic eye movements are 
required to compare the Left and the Right stimuli. Iconic memory 
is the term for the portion of visual memory that integrates imagery 
across saccades and enables us to build up a mental picture of the 
world having a wider field of view (FOV) than the fovea’s mere 4-
6 degrees[14, 15]. In the side-by-side methodology, the iconic 
memory is used for an additional purpose than building up a 
mental image; it is also used for comparing similar image regions. 
Regardless of its end purpose, it is still limited to be less than 1 
second. These visible differences are registered in the Visual 
Short-Term Memory (VSTM), and its duration limits come into 
play [16, 17]. These can be considered to hold the visible 
representations in the range from about 1 sec to 30 seconds. This 
upper limit suggests why video clips of duration less than 15 secs 
are preferred in the testing community. The visible differences, 
∆V, are noted from those in the VSTM. To go from these visible 
differences to a subject’s numerical rating, these visible differences 
must be mapped into that rating range. This requires memory of 
previous stimuli being shown, which would have occurred further 
back in time than the limits of the VSTM. In addition, if upper or 
lower anchors are not used (the experiment in Figure 8 had only an 
upper anchor), long term memory of video quality over perhaps 
years or decades may be involved. Further, individual preferences 
on which image features are more important (contrast vs. color vs. 
sharpness vs. texture, etc.) act as biases on the long-term memory. 
Lastly, from this internal range of magnitude of visible differences, 
visual quality must be mapped into a numerical scale. This 
involves higher level cognition than the previous steps, and is 
susceptible to even greater subject variability. To no surprise, the 
higher accuracy memory functions have the shorter durations. So 
in terms of accuracy, the iconic is best, followed by VSTM, and 
then long-term2. The case for sequential comparison is shown in 
the middle. The temporal delta would be greater than 10-15 sec for 
typical video quality testing. That methodology deprives the visual 
system of the iconic memory being able to input localized visible 
comparisons to the VSTM, because many foveations to different 
portions of the image would have occurred before the other paired 
stimuli is seen. That is the most likely source of the larger 

                                                                 
1 And thus a reason to use the term side-by-side over the term 
simultaneous 
2 Excluding rare eidetic individuals 

confidence intervals and range compression in Figure 8 for the 
sequential method.  

Let us now consider the simpler task of assessing visual 
fidelity (i.e., whether something is visually lossless or lossy), as 
shown in Figure 7 for a side-by-side comparison (right). Since 
there is no rating required, a simple yes or no response can be 
given. Thus the task removes the inaccuracy and biases of long 
term memory, as well as individual variations in mapping their 
visual memory to a rating scale. Fortunately, for the businesses 
where visually lossless is the most relevant criteria, their use of 
experiments designed around a visually lossless criterion are able 
to obtain much more consistent and accurate data. 

The third approach mentioned, toggling, reduces the internal 
processing and memory load of the viewer even further. Toggling 
has been used since digital imaging systems with frame buffers 
were available in the late-seventies. The term comes from a toggle 
switch, and the technique is still commonly used by image 
processing algorithm developers to look for differences in their 
resulting images. It is generally used for still images. It has also 
been used for video clips as well, but with less success. The two 
images to be compared are displayed in register (i.e., to the exact 
pixel position) on the screen, and the viewer toggles3 as desired 
between the two images. The change occurs in-place and with no 
interstimulus interval, or blanking field which might cause 
masking. Spatial and amplitude differences thus pick up an 
additional temporal modulation. Differences that would previously 
be below threshold using just side-by-side comparisons often 
become visible. This occurs for several reasons. One is that 
detecting visible differences in an image requires a search over the 
two compared images for differences. It can take a substantial 
amount of time to scan and foveate an entire image, particularly for 
detailed imagery that may be displayed with a FOV as large as 67 
degrees (4k display viewed at the specified distance of 1.5 picture 

                                                                 
3 In current systems, left or right keyboard arrows are often used to 
swap (or toggle) images being displayed, as well as the spacebar. 
The toggle switch traditionally had two positions and allowed 
instantaneous swapping of its inputs, and these features are 
preserved with the newer methods, such as using a keyboard. 
Occasionally, toggling is referred to as sequential when still 
images are toggled, but the majority of work in this field doesn’t 
use sequential to refer to the rapid alternation used in oscillation or 
toggling.  

Figure 9: Spatiotemporal CSF (at ~light adaption level of 10 cd/m2) showing the general effect in a surface plot (left) and more specific changes in sensitivity 
in the contour plot for the oscillation techniques (right). Contours deltas are 0.25 log10 in sensitivity. task (preference).
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heights). The imposed temporal modulations caused by toggling 
enables better detection in the periphery (which while having 
poorer spatial resolution, has better temporal bandwidth and 
sensitivity than the fovea), aiding the viewer to find and then 
foveate regions formerly in the near or far periphery. So the 
toggling substantially aids the search task. In addition, the lack of 
needed eye movements for SBS comparisons (once a region 
having difference is found) aids in the detection of small spatial 
phase shifts that would be lost across a saccade. A third reason is 
that even in the fovea, the addition of temporal modulation at the 
right frequency can improve detection. Shown in Figure 9 is the 
spatiotemporal CSF (contrast sensitivity function). The temporal 
frequencies caused by toggling can shift the spatial frequencies of 
the distortion to a more sensitive part of the CSF as compared to 
what occurs with a static image comparison (shown in general on 
the left). While the highest spatial frequencies do not change that 
much between the two cases, there is a noticeable change at the 
frequencies near the peak, and a substantial change for spatial 
frequencies that are lower.  

While toggling was originally an ad hoc technique, it has 
recently been made more rigorous [18] by removing the viewer’s 
control and having the images automatically oscillate in place at a 
specific frequency. For the CSF at the light adaptation shown in 
Figure 9, it can be seen how an oscillation of 5 Hz maximizes the 
sensitivity to all visible spatial frequencies, as compared to a static, 
or still image comparison. Since the eye does not hold steady when 
foveating a region (there are always drift eye movements), the 
temporal frequencies for a static image comparison are not at zero 
Hz. An estimate of the temporal frequencies involved for static 
image viewing is shown as around 0.11 Hz in the diagram, 
although it is better to describe these drift eye movements in terms 
of velocity. The difference between the 5Hz and the 7.5 Hz as 
suggested in [18] are relatively minor and a change in CSF light 
adaptation level going upward in cd/m2 would likely put the 7.5 Hz 
value on the CSF peak and ridge. A related approach for imposing 
motion on distortions to make them more salient has been used for 
studying amplitude quantization by phase shifting the quantization 
interval as a function of time [19]. These techniques result in the 
best ability of the visual system to see differences, and can also 
speed up the search time, but may not be relevant to the business 
application as will be described later.  

Calibration to the display 
Calibration is needed because while it is possible to determine 

the contrast required for detection of a given frequency component 
of a distortion, the contrast per code value depends on the 
luminance calibration (generally referred to as the display’s EOTF, 
electro-optical transfer function). Increasing a display’s contrast 
and using the same signal quantization results in an increase in the 
contrast per code value. If that increase is large enough, a 
previously subthreshold frequency will become visible. A recent 
example of this is that the increased dynamic range of HDR 
displays required an increase from the previously acceptable 8 
bits/color to 10 bits for consumer usage and 12 bits for 
professionals. Similar phenomena also occur for the other image 
and perceptual dimensions listed above. Of the various visual 
behavior relating to thresholds, masking is the most impervious to 
lack of calibration, since once it rises above absolute threshold 
(i.e., no masking) it almost follows a linear SNR behavior. For 
systems where color, dynamic range, resolution, frame rate, etc. 
are approximately fixed, then prediction of masking can provide a 

strong visual foundation for quality prediction, such as shown by 
uncalibrated models [20-22]. However, most display ecosystems 
are moving away from that situation and are trending toward more 
variability along these key display capability dimensions. At 
present, current visual models that can be calibrated to calibrated 
displays [23-25] have been shown to perform better in cases where 
display capabilities are not fixed, such as HDR[13]. 

While there were many businesses unable to design for 
visually lossless quality, there were niche applications where it was 
indeed possible to quantify most of these parameters, or at least 
limit them to specific ranges. This particularly occurred in closed 
systems where the product included the display, the proprietary 
image format, and the encoding. Examples of these include some 
defense imaging systems (e.g., aerial image analysis), some 
medical systems, high-end graphic arts WYSIWYG systems, and 
cinematic post-production. In other applications, while there were 
some unknown calibration dimensions, visually lossless criteria 
could be used in the design by assuming standardized specs and 
ideal or worst-case parameters (such as 3 picture height viewing 
and a specified EOTF for HDTV[26]). For handling the unknowns 
of display reflectivity and ambient light, which have a strong 
interaction on the black level, techniques like the Pluge signal were 
developed. 

Fortunately, the current trends are that the display is 
becoming more knowable and quantifiable, and thus enabling 
closer adherence to visually lossless goals. For one, the displays 
are much more stable than they have been in the past, especially 
TVs which had much thermal drift causing color and convergence 
errors in the CRT era. More importantly, there are standardized 
pathways for the display to communicate its capability to the 
delivery system. As an example, EDID metadata that is exchanged 
from a display to a graphics card (and advanced OTT delivery 
services) contains information about the display’s primaries, its 
tonescale EOTF (electro-optical transfer function [27], of which 
gamma is a legacy example [28]), and its pixel resolution. More 
advanced metadata is now being used in a number of applications 
where these values are augmented by the minimum and maximum 
luminances, bit-depth, and other parameters of the content[29]. 
Further, dynamic metadata is being used to pass essential signal 
information to the display in order to aid tone-mapping and gamut 
mapping algorithms, motivated because the color volume of 
displays can now vary so substantially [30]. Ambient light sensors 
are becoming more advanced, having V sensitivity to match the 
eye, and can be used for display’s internal algorithms to tailor the 
signal to the resulting black level changes. Even the key weakness 
in spatial calibration, i.e., the viewing distance, has a pathway to be 
solved with presence detectors (motivated by energy conservation) 
and depth sensors (motivated by interactivity) which are making 
continual headway into display products. Finally, the burgeoning 
HMD displays for VR have the fortunate advantages that the 
viewing distances are exactly known (as designed for in the optics) 
and the ambient can be easily controlled (generally kept dark). 
Thus, the video content delivery system can tailor the signal sent to 
the display so that the advanced visual model approaches aiming 
for visually lossless quality, which require such calibration, can 
finally be used to their theoretical intention. 

Business considerations 
A famous sign in many service businesses is “Cheap, Fast, 

Good – Pick Any Two”. It is likely obvious to any reader that 
increasing quality comes with a cost. In display hardware, there is 
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a general struggle against physics to increase quality, offered 
initially at a higher cost, and then gradually the manufacturing 
efficiencies and scale of production can bring the costs down. 
Similar constraints are involved in the compression and video chip 
business. Rarely does one see a quality improvement and a cost 
reduction being introduced at the same time. For those wanting 
both, they must wait and essentially be late adopters. In this 
section, we will start with an anecdotal example so that concrete 
details can be discussed, and then we will describe some general 
issues. 

The plot in Figure 8 was from an experiment [13] to provide 
data on whether the TV industry should develop a new ecosystem 
for High Dynamic range (HDR). There are a number of key 
attributes involved in HDR, including bit-depth, black level, local 
contrast, mid-tone contrast, compression technique, average 
luminance level, and maximum luminance. While high dynamic 
range includes increasing the range at the dark end as well as the 
bright end, one of the unique attributes of high dynamic range is 
more accurate rendering of highlights than traditional video. Such 
highlights include both specular reflections as well as emissive 
objects (visible light sources) and can require very high maximum 
luminance [31]. A study was designed to specifically probe this 
aspect in comparison to existing TV standards, known as standard 
dynamic range (SDR), and standardized in ITU-R Rec BT.709[32], 
with an EOTF subsequently defined in ITU-R Rec BT.1886 [26]. 
Most viewers watching SDR see only 8bits/color video that is 
compressed. One aspect of HDR is that it requires a higher bit-
depth than SDR, and details of whether 10 or 12 bits/color are 
needed depend on viewing conditions. Currently in television 
systems, HDR is generally bundled with an increase in spatial 
resolution and color gamut as well, for example to going from the 
BT.709 (sRGB) color gamut to the DCI P3 gamut or even wider 
with the ITU-R Rec. BT.2020 gamut [33]. But in order to focus 
solely on the parameter of maximum luminance, the study used 
uncompressed videos at 12 bits, all with a BT.709 color gamut and 
an HDTV pixel dimensions (1920x1080). Four maximum 
luminance values were studied. They were placed approximately 
on a logarithmic luminance scale based on general visual system 
properties. The four luminances were 100, 400, 1000, and 4000 
cd/m2. Deviations from strict logarithmic spacing were motivated 
by practical existing television systems and displays. 

The existing SDR TV system was designed for ~ 100 cd/m2 
as the maximum4 and in calibrated studios, the reference monitors 
are set very close to this value. This is true for both episodic and 
live broadcast video content, and is the maximum luminance that is 
seen by individuals involved in the approval process 
(cinematographer, colorist, director, producer for episodic content, 
and the video shader and producer for live content) before 
distribution occurs. The ambient lighting followed the industry 
production specs of producing a surround of 5 cd/m2 to 10 cd/m2. 
The next value, 400 cd/m2, was selected as a typical higher-end 
consumer TV max luminance at the time of the study. As a 
reminder, the content seen at 100 cd/m2 by the approvers is 
generally stretched upwards in most TVs. The value of 1000 cd/m2 
was selected to represent the capability of the first generation of 
consumer HDR TVs. Lastly, the 4000 cd/m2 value was selected 

                                                                 
4 In many systems, Reference White, which is generally the diffuse 
white maximum luminance is set to 100 cd/m2 and the peak 
luminance (the maximum luminances) is set to 120 cd/m2.  

because that was the maximum luminance capability of the 
professional HDR displays used in the experiment. 

Initial attempts at using the BT500 5-point rating scale 
(excellent, good, fair, poor, bad) in pilot studies were inconclusive 
because a majority of viewers rated the lowest capability value 
(100 cd/m2) as excellent, and there was no headroom on the scale 
to indicate higher quality than that. This was partially due to their 
inexperience seeing uncompressed 12-bit video, as well as a 
reference display (such as having lower noise, better uniformity, 
etc.). As a result of lack of useful guidance from the BT500 
document, it was decided the experiment needed to explore testing 
options as well as the maximum luminance parameter. Two key 
comparison methodologies were agreed upon, a sequential and a 
side-by-side comparison. Video clips of 10-15 seconds were used 
based on common video testing, so the sequential method meant 
that one version of a video clip was shown, followed by a version 
with a different max luminance, all being shown on a single HDR 
reference display, and then followed by the viewer’s rating. For the 
side-by-side testing, two identical displays were arranged so that 
viewers could compare both at the same time and arranged so each 
was seen with an approx. orthogonal viewing angle to the display 
screen. This approach has traditionally been avoided for rigorous 
studies in the past due to difficulties in getting two displays to have 
the same color, tonescale, and black level. However, modern 
digitally driven reference displays with internal light sensors, 
thermal regulation, and compensatory image processing can enable 
such displays to appear identical. Randomization of the various 
content with known parameters was used in case there might be a 
small physical bias, despite being physically immeasurable. After 
presentation of the video test pair, the viewer was asked for a 
preference rating comparison. For the side-by-side testing, the 
Likert scale shown below was used. For the sequential testing, it 
was modified to replace L and R with A and B, where A was 
explained to be the first instance of the sequentially shown pair, 
see Figure 10.  

 
Figure 10: Spatiotemporal CSF (at ~light adaption level of 10 cd/m2) showing 
the general effect in a surface plot (left) and more specific changes in 
sensitivity in the contour plot for the oscillation techniques (right). Contours 
deltas are 0.25 log10 in sensitivity. 

The results have been discussed earlier in this section with the 
side-by-side having better confidence intervals than the sequential, 
as well as having a larger range of preference. What visual 
memory and cognitive processes are involved in each methodology 
have also been discussed. Let us now discuss some key business 
aspects. For a new television ecosystem, both the televisions and 
the video signals need to be updated. These involve two key 
different industries: the television set manufacturers and the 
broadcasters. For television makers’ customers, the majority of TV 
sales involve side-by-side viewing of competing TV products 
arranged in a store at the time of the purchasing decision. Some 
customers may be influenced by written ratings, descriptions, and 
recommendations in either mainstream or more technical press, but 
most of the time, a side-by-side viewing is involved. The 
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broadcasters have a different situation since it is generally not 
possible for their consumers to view their service compared to a 
competitor’s (e.g., a different network) in a side-by-side manner. 
Rather, comparison is made by the consumer in a sequential 
manner by changing the channel.  

The plot shows the viewers using sequential comparisons 
were not able to show preference differences for the 400 and 1000 
cd/m2 parameters confidently. This is very important for business 
considerations in 2015-2017, as HDR TVs are being introduced. 
SDR TVs are typically 300-500 nits, and the 1st generation of HDR 
TVs is typically around 1000 nits. The sequential testing doesn’t 
give any confidence to the preference of the new 1000 nits HDR 
TVs over the current SDR TVs, while the side-by-side testing does 
give substantial confidence. The sequential results directly relevant 
to the broadcasting business would not be able to indicate with 
confidence that a change to a 1000 cd/m2 system would be 
worthwhile, whereas the side-by-side results that are directly 
relevant to the TV set makers does conclude with confidence that 
change would be preferred to the viewer. However, both 
businesses involved in the ecosystem need the other business to 
agree to a similar upgrade. Assuming the trend of increasing 
maximum luminance can continue, and ranges closer to 4000 nits 
will eventually be reached, a future-oriented decision might be for 
both business segments to agree to move forward with HDR. 
Another way to look at the results, however, is that the side-by-
side gets closer to the true perceptual experience of the viewer, 
whether or not they can see the comparisons directly. Of course, a 
critical customer of many broadcasters is the advertising industry, 
and their professional viewers would likely be able to see side-by-
side comparisons in a production suite. As a result of these many 
factors, the broadcasting industry in several key regions decided to 
go ahead with HDR transmission. It is not clear if it was the future 
capability considerations or the benevolence to the viewer that was 
the dominating factor. 

General business considerations regarding visually lossless or 
lossy quality are specific to the business. For example, visually 
lossless criteria are relevant for mature businesses already 
delivering a high quality, with examples being those that have a 
six-sigma defect strategy. Visually lossless is also relevant for 
businesses with high-end products and high cost ranges. Examples 
in printing and video include most of the production workflow. An 
example of visually lossless compression includes what is known 
as mezzanine compression, having low compression ratios below 
2-3:1 and yet still use advanced techniques like wavelet or DCT. 
Businesses where visually lossy quality ratings are more relevant 
include newly developing businesses, developing products offering 
new features and conveniences, and businesses specializing in 
lower-cost products. For example, new businesses arising to 
compete with mature businesses usually begin with a lower quality 
and increase it as they expand their market. Streaming is a good 
example of a service business that initially had very low quality 
(circa 2006) whose quality weaknesses included not only the 
customers’ bandwidth but also color and tone miscalibration. Now 
however, there are streaming services of the highest quality, with 
4k resolution at 10 bits/color and visually lossless performance for 
three pictures heights. 

For the businesses where visually lossless is the most 
relevant, each of the three comparison methods are suited toward 
different applications. Toggling (in particular the automatic 
alternation techniques known as flicker), is most suited to imaging 
applications that are information-task based, where small features 

and minute phase shifts may be important, and the localization 
shortcut aspect of toggling can be a surrogate for a strenuous 
search process. Particularly when it is unknown which elements of 
the imagery are most critical to the task. Examples include 
products and services for forensic, histology, aerial imaging, 
scientific visualization, medical, etc. A special case is for products 
within the video path where the customer is a technical person that 
uses such a toggling technique for assessment, even if the end 
customer of the entire video path is a non-expert consumer. 
Applications where results from side-by-side testing are most 
relevant include products that are generally purchased in stores, 
and competitor products are available. Televisions fall in this 
category, as well as mobile displays to a lesser degree. Lastly, 
applications where sequential testing methodology is most suited 
include most consumer services, such as broadcast, cable, and 
internet delivery (OTT) of video. However, particular companies 
aiming for the highest levels of quality may decide on one of the 
other methods if their philosophy is to deliver the best quality to 
their customer (even if the customer doesn’t notice it; see 
physiological testing discussion in the background for such 
motivations). 

The issues of viewer variability (both from viewer-to-viewer 
as well as individual consistency) are discussed in more detail in 
other sections of this paper. One business aspect related to viewer 
variability is the customer market segment. As mentioned, vision 
science analyzes the JND and psychometric function per subject, 
but industry must extend the JND concept to the overall 
population. In industry, one JND corresponds to 50% group 
detectability and is thus considered not advertisable, and it has 
been suggested that 2 JNDs is the minimum for advertising quality 
differences [3]. However, this ignores market segmentation and 
specialty products where the market being sought after is already 
known to be a subset of the overall population. For example, 
tuning a visually lossless product to the average viewer’s 
sensitivity essentially means that half of the populations will see 
the distortion, and half will not. That is a significant loss of 
potential market, so some engineering criteria include analysis of 
cumulative distribution functions and aim for a more demanding 
viewer/customer than the average observer. For example, a design 
might be tuned so that all but the upper 10% most critical sensitive 
viewers would experience visually lossless quality. 

Subjective assessment and the criteria for 
visually lossless compression 
L. M. Wilcox, R. S. Allison and J. Goel 

Objective metrics of image quality have the advantage of 
repeatability and are suitable for automatic assessment and 
monitoring of image quality. Such metrics are in high demand, 
given the increasing requirements for real-time image compression 
needed to deal with the bandwidth requirements of high-resolution 
image transmission [21, 34]. However, it is clear that while 
subjective testing is labor intensive and costly, it remains the only 
reliable means of evaluating the impact of image compression and 
the visibility of artefacts. As described in preceding sections 
(Background, Zhang et al and Daly), a wide range of qualitative 
methodologies are available: both threshold and suprathreshold 
methods have been widely employed to assess image quality (and 
the success of compression algorithms). Forced-choice threshold 
methods are often used to establish if a compression algorithm is 
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visually lossless as they are sensitive measures of the visibility, 
that are less impacted by bias and amenable to statistical analysis. 

In 2015, ISO/IEC published evaluation protocols based on 
forced-choice procedures that could be used to evaluate images 
across display platforms. Their protocol describes two variants: 
one normative (Annex A) and the other (Annex B) based on a 
flicker paradigm proposed by Hoffman and Stolitzka [18]. In the 
normative approach the original image is presented as a reference 
and, in another part of the display, the observer is presented both 
the original image and the processed image side-by-side (randomly 
ordered) and required to choose which of these pair matches the 
reference image. This is a classical forced-choice procedure 
intended to measure sensitivity to artefacts in the processed image. 

However, there are several issues that suggest that other 
procedures might be more appropriate. First, while there may be 
salient artefacts in the image observers may not know where to 
look. Until attention is brought upon these areas, the literature 
suggests that even large changes in the image are often not seen 
[35, 36]. This issue is partly addressed in the ISO/IEC protocol 
because instead of using large full screen images, the stimuli are 
crops of a pre-defined size that can be selected to include 
potentially problematic sub-regions. Techniques to highlight the 
changes could make for more sensitive and efficient detection (see 
Section by Colett et al below). Also important use cases involve 
dynamic detection of visibility. For instance, in video or interactive 
content frame-to-frame differences in quality might be noticeable. 
The second variant described in ISO/IEC 29170-2:2015 (Annex B) 
uses direct temporal comparison in a flicker/toggle paradigm [37] 
(see also Section by Daly above). In this procedure, two image 
sequences are shown side-by-side as illustrated in Figure 11 On 
one side of the display the original image is shown alternating with 
the processed image (at a rate of 5Hz), while on the other side the 
original image alternates with itself (i.e. does not change).  

  
Figure 11: Illustration of the ISO/IEC 29170-2:2015 flicker protocol (Annex B). 
To the left is the observer’s view of the stimuli, illustration of the image 
alternation (5Hz). The reference location is randomized on each trial, viewers 
have 4 sec. to view the image sequences and are given feedback. 

In this procedure the reference is provided sequentially in the 
same location as the processed image and thus the image 
differences should be extremely salient due to sensitive motion and 
change detectors in the visual system. The flicker paradigm is also 
relevant to cases where transient image artefacts may occur such as 
video and interactive content. 

In a large scale trial (N=120) conducted at York University 
we implemented the ISO/IEC 29170-2:2015 flicker protocol [37] 
to assess the qualitative effectiveness of the Video Electronics 
Standards Association (VESA)5 display stream compression 

                                                                 
5 the Video Electronics Standards Association, is an active industry trade 
group in the video display industry. (www.vesa.org) 

standard (DSC1.2) using a wide range of image content, including 
known challenges to the algorithm (see Figure 12 below).  

 

  
Figure 12: Thumbnails of images used in the assessment of VESA DSC1.2. A 
wide range of compression parameters were applied to each image (chroma 
subsampling, lines per slice, bits per channel).  

As specified by the ISO/IEC protocol, in addition to the test 
conditions of interest, a number of obviously degraded control 
conditions were evaluated. These ‘control’ conditions provided 
encouragement to participants and who otherwise were performing 
at threshold most of the time. In addition, performance on these 
trials was used to exclude observers who were not paying 
attention; observer data was only included if an individual scored 
>= 95% on control trials. Each condition was tested multiple times 
to arrive at a detection probability for each stimulus condition. For 
each observer, and each condition, the proportion correct detection 
was calculated. The ISO/IEC standard recommends reporting of 
summary graphs in the format shown in Figure 13. Here the mean 
proportion correct is plotted across observers with ± 1 standard 
deviation and symbols indicating the best and worst performing 
observers (downwards and upwards oriented triangles 
respectively).  

 
Figure 13: The graph shows the proportion correct for a given image 
(thumbnail to left) under different compression conditions (coded as numbers 
1-5). Open squares represent the group average, error bars indicate ± 1 
standard deviation and downward and upwards triangle symbols indicate the 
best and worst performance. Each data set represents a different level of 
compression. 

As discussed above, the criterion used to define visually 
lossless is critical and is under debate. Given that the ISO/IEC 
29170-2:2015 standard is based upon detection; a detection 
threshold approach is used. Following psychophysical convention, 
a 75% correct criterion (midway between guessing and perfect 
responses in the two-alternative task) is recommended. 
Specifically, the standard proposes that lossless performance 
occurs when no observer detects the compressed reference on 
greater than 75% of the trials (although the standard allows for 
modification of the criterion). In our study, the large majority of 
test conditions met these strict criteria for visually lossless (see 
Figure 13 above). However, in some instances this criterion may 
result mis-categorization of reference conditions as lossy. The 
results shown in Figure 14 illustrate this phenomenon. In this 
graph, under all compression conditions average observer 
performance is clearly at chance (50% for this two alternative 
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task); however in condition 3 one observer detected the flicker on 
more than 75% of the trials. 

 

 
Figure 14: As in Figure 3, results are shown for here for 6 compression 
conditions for the image shown in the inset. Open squares represent the 
group average, error bars indicate ± 1 standard deviation and downward and 
upwards triangle symbols indicate the best and worst performance.  

It is clear that this criterion places considerable emphasis on 
potential outliers in the data set. In their original implementation of 
the flicker protocol Hoffman and Stolitzka identified and 
selectively tested a set of 19 (out of 35) highly sensitive observers 
in their data set [18]. They suggest that given the potential impact 
of such observers that the criterion for lossless could be increased 
to 93%, but just for these sensitive individuals. However, this 
approach introduces a potential bias to the test protocol: it is left to 
the experimenter to define the sensitive observers who will be held 
to a different standard. Another approach would be to consider the 
results of all observers, but to adopt a visually lossless criterion 
based on their average performance and the associated standard 
deviation (for example using the estimated 95th percentile rather 
than the sample maximum). Statistical techniques based on the 
variance could be used to identify highly sensitive observers or 
outliers, and, if appropriate for the use-case, remove them from the 
data set [38]. 

Another factor that contributes to the sensitivity of the 
ISO/IEC protocol is the extent to which practice on a limited 
image set can, over time, contribute to the creation of highly 
trained observers. Such observers could learn to attend to specific 
image regions, and as a result be able to better detect artefact-
related flicker. As noted in previous sections, side-by-side 
presentation makes it more likely that observers will make direct 
comparisons between reference and original image regions, 
improving detection rates. Furthermore, in the paradigm 
implemented here, cropped rather than full screen, image regions 
are viewed. At the recommended viewing distance each image is 
within highly sensitive foveal vision, which further enhances the 
probability of detecting the flicker created by alternating the 
reference and original images. These factors, combined with the 
sensitivity of the human visual system to spatio-temporal variation 
within this range, will draw attention to compression-related 
distortions. Over time and trials viewers will be attuned to specific 
regions and artefacts that would otherwise be undetectable. These 
training effects could be reduced by using a large pool of observers 
on a limited set of conditions, but reduction of test content will in 
turn reduce the generalizability of the evaluation.  

The results of our evaluation of VESA DSC1.2 using the 
ISO/IEC 29170-2015 flicker protocol show that this forced-choice 
paradigm is a highly effective means of evaluating sensitivity to 
image differences [37]. The design of this test protocol and the 
visually lossless criterion applied is extremely sensitive, and in 
particular emphasizes the most sensitive viewers. It is arguable that 
this protocol is too sensitive, and that the results of the side-by-side 
flicker task highlight artefacts that would not ever be visible under 
‘normal’ viewing conditions. As outlined elsewhere in this paper, 

there are other candidate approaches to the assessment of image 
quality. We argue that the appropriate methodology depends on the 
objectives and the use case. For example, if the goal is to 
conservatively evaluate the possibility that a compression artefact 
might be visible under any situation, then the flicker paradigm is a 
viable approach as it highlights differences between images 
regardless of whether they are noticeable in the absence of a 
reference. 

Usage perspectives on visually lossless and 
lossy quality and Assessment 
H. Colett, J. Knopf, P. Corriveau and S.-N. Yang,  

The display industry today struggles to distinguish between 
visually lossy and lossless encoding, as visual experiences are 
determined by various factors such as usages, form factor and 
content. The debate becomes even further entangled when one tries 
to define and quantify visually lossless based on empirical 
measurements, when the chosen measurement protocol and stimuli 
can critically impact the outcomes.  

As outlined in the previous section Wilcox et al, VESA has 
presently adopted a testing protocol and procedure for evaluating 
visually lossless encoding. From a practical perspective, this is 
only one particular way to investigate whether a process or 
algorithm can potentially produce a result that is truly visually 
lossless. Such a specific approach was reasonable when research 
first started on this topic, as the problem space in which we needed 
to investigate was clear, and the usages and context for the 
definition could be clearly carved out. However, the increasingly 
complex ecosystem in electronic displays warrants a re-
investigation and re-definition. 

Innovations in testing methods, and their underlying theories, 
open the possibility of using different types of techniques, such as 
gaze tracking, to potentially augment and improve existing 
methodologies by emphasizing the visual functions in specific 
usages.  

The proposed research emphasizes the need of refining the 
definitions of visually lossless and delineating the testing 
procedure based on the usages and viewing context. 

Classical visually lossless (VL) compression of display 
content is defined as the loss of image quality induced by the 
compression algorithm that can’t be perceived by a user [39]. This 
definition by its nature is very vague, as the quality of perceived 
image can be affected by individual visual characteristics, viewing 
conditions and display apparatus. Thus, there is no unified position 
on what the definition of visually lossless truly is. Conversely, in 
the display industry it has been deemed that each company, 
organization or institution can set thresholds based on their 
products and desired experiential delivery. What this means at its 
core is that the statistical requirements for user studies can be set at 
different levels and different means of detection. To develop a 
commonly accepted definition of visually lossless, it becomes 
necessary to provide a unified principle of assessing these 
outcomes that takes into considerations of the above factors. 

In 2014, VESA published a new standard that uses visually 
lossless image compression to increase the rate of data 
transmission carried by a display interface data rate, thus saving 
power while maintaining viewer’s experiences[37]. As part of the 
new standard, visually lossless with regard to visual psychophysics 
requires that any content distortion caused by compression be 
below the threshold of conscious detection. Therefore, visually 
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lossless can be defined as any loss of data due to file compression 
that is not detectable to a ‘typical’ user on a ‘typical’ display under 
‘typical’ viewing conditions. This has been implemented as a side-
by-side comparison of control (original to original) and target 
(original to compressed) images alternating (flickering) at 2.5 Hz. 
A user. is asked to discern the target image from the control image 
within 30 seconds of viewing. Outcomes of such method can be 
affected by factors such as viewing distance, screen luminance, 
pixel density and viewer’s visual acuity, etc. 

Not surprisingly, the use of the ambiguous term ‘typical’ has 
been proven problematic when it comes to verification testing. The 
definition and assessing methods of visually lossless compression 
has been guided by the ecology of display industry. When the first 
discussions of visually lossless compression began, the ecosystem 
of media was relatively simple as the usage did not vary and the 
form factor uniform. With the pervasiveness of media content in 
the world today, the fundamental definition of visually lossless or 
“lossy” needs to be examined at a contextual level. When one 
moves from consumption of content on a phone to a large format 
TV or to new AR/VR environments, the nature of the changed 
viewing environments dictates that the definition of visually 
lossless will need to be expanded from passive perception of visual 
environment to active visuomotor interaction with it. 

With the adoption and deployment of virtual reality devices, 
the issue becomes even more complex due to the artificial 
binocular delivery of the stimuli to the visual system. With it 
vision is not just the result of stimulus-derived representations, but 
also that of interaction between visuomotor processes. Many feel 
that this will cause the visual experiences to be different in 
different usages and the definition of lossless vision to be 
bifurcated between monocular and binocular devices. These would 
suggest a need of different methodologies for testing visually 
lossless compression according to involved visual imagery as well 
as underlying visuomotor functions. 

In the previous section it is mentioned that the definition of 
visually lossless has been left to the manufacturer of the devices, 
which opens an interesting competitive angle in determining who 
has the best performance and who will or will not claim 
performance based on any given standard implementation. The 
authors feel that as the definition of visual experiences has 
evolved, there is a large grey area that needs to be explored around 
performance in order to have contextually-correct definitions. 
There is still room for debate around what could be standardized 
versus not and whether there are more generalized testing methods 
based on not specific devices but utilized human visuomotor 
processes. 

Copious research has demonstrated that human vision is not a 
replica of the visual world, but an outcome of interactive 
visuomotor processes [40]. Scientists have commonly identified 
two types of human vision: featural and spatial [41, 42]. Features 
such as shape, color and complex object categories are encoded in 
the ventral aspect of human cerebral brain [43], whereas different 
spatial representations such as retina- and body-centric ones are 
encoded in the dorsal aspect. Featural perception dominates the 
conscious vision and is generated as much by bottom-up visual 
stimuli as by top-down insertion and creation of visual imagery. 
The spatial information is utilized by the brain for forming 
perception and guiding complex actions, but is not directly 
accessible to the perception [44, 45]. When viewers process 
displayed visual content, much information is utilized by the brain 
but not consciously identified. Visual attention serves to combine 

the two types of vision and makes some aspect of it available to 
visual consciousness [44, 46]. Hence, functionally lossless vision 
should be defined as unimpeded visuomotor processes in 
maintaining such interactive representations of visual world. The 
purpose of the visual tasks, the predominant context (static or in 
motion) and the level of focused attention determine the threshold 
of lossy vision.  

We suggest it is useful but insufficient to simply compare 
compressed images to uncompressed ones for determining lossless 
vision. Such outcomes need to be obtained in a realistic task 
consistent with the form factor and usage, in which the task goals 
determine what should be attended and at which conscious level. 
Visually lossy should then be defined as either the detection of 
visual degradation or impeded execution of visual tasks.  

To discern lossy vision, we propose to utilize a well-
recognized method of gaze-contingent image degradation (GCID). 
GCID is achieved by switching between an original image and 
degraded image during eye fixations or saccadic eye movements. 
The perception of stable visual world is the result of visuomotor 
integration across eye fixations, where relevant visual percepts are 
maintained and unrelated features discarded. Instead of comparing 
side-by-side flickering images, in GCID the original image was 
switched to the compressed ones during eye fixation or saccades. 
The visuomotor performance and eye behaviors during selected 
eye fixations with control (original to original) and target (original 
to compressed) images are compared. This allows the effect of 
difference in visual imagery to be separated from artificial 
stimulation such as by persistent image flickering. Since the 
switched image is always processed with foveal vision, the effect 
of visual attention is assured and maximum visual acuity is utilized 
regularly by the viewer. Furthermore, as the eye movements are 
guided by internal processes to search for and utilize necessary 
visual information, impeded vision is readily identified with a 
change in eye movement pattern [18, 37]. Lossy vision is present 
when the visuomotor process is slowed or altered, as determined 
by increased eye fixation duration, reduced saccade length and 
higher frequency refixation when the compressed image was 
present during eye fixation. 

Our preliminary data has demonstrated the effectiveness of 
such a paradigm. The data was obtained with a single switch 
between original and degraded (blurred) image at 100ms after the 
onset of eye fixation, Figure 15 shows that the location of degraded 
image (subtle blur) was detected at a level beyond chance (93%). 
In addition, the fixation duration (or latency of saccadic eye 
movements) near the blurred areas were significantly increased 
(250 to 269 ms) and saccade amplitude decreased (3.05 to 2.71 
degrees). Figure 16 shows that saccade initiation probability was 
reduced when a blur was present, suggesting impeded visuomotor 
processing. Such eye movements and eye behaviors are tightly 
linked to the task on hand and the stimulus being process. 
Therefore, this method can be useful to assess lossless images by 
measuring the proper baseline responses and change in them 
caused by lossy images. Such a paradigm can be utilized to 
evaluate lossy vision involving different ocular demands (e.g., 
performing a visual task at a close distance) or methods of image 
rendering (e.g., VR/AR displays). 
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Figure 15: Example original (left) and degraded images (right, subtle blur). 
Human subjects were asked to survey the image and reported the area of blur 
image. The degraded image was present for alternate fixation by switching the 
images during fixation at 100ms after fixation onset. Human subjects were 
also to detect the blur despite of the subtle change (93%). 

To conclude, the authors propose that there is a need for 
several methodologies that complement each other in evaluating 
visually lossless compressions. The expansion of usages and the 
fact that the same compression algorithms will be deployed across 
products and platforms lead to the involvement of different 
visuomotor processes. A method for utilizing eye tracking and 
contextual response feedback from users is proposed to assess both 
conscious and unconscious vision. Further results will be published 
once the implementation is complete and testing is done in 
comparison to the standard VESA testing. 

  
Figure 16: Saccade probability calculated from the change in fixation duration 
using hazard function analysis. For fixations with degraded (blurred) images, a 
large proportion of saccades were delayed. The detection of blurred image 
(subtle blur, square symbols) has a latency of 200 msec. (i.e., 100 msec. after 
image switch), when the saccade probability began to be reduced compared 
to without image degradation (same image, triangle symbols).  

Panel discussion 
The special session also included a panel discussion 

moderated by Prof Kjell Brunnström, Acreo Swedish ICT AB, 
Kista, Sweden. The panel consisted of 
 Associate Prof. Damon Chandler, Shizuoka University, 

Hamamatsu, Shizuoka, Japan 
 Scott Daly, Dolby Laboratories, , USA 
 Adjunct Prof. Phil Corriveau, Intel Corp, Santa Clara, CA, 

USA & Pacific University  
 Prof. Edward Delp, Purdue University, West Lafayette, 

Indiana, USA 
 James Goel, Qualcomm, Display Video Processing Group, 

Markham, Canada 
 Prof Laurie Wilcox, York University, Toronto, Canada 

The discussion was mainly focused around the standardized 
flicker protocol by ISO/IEC and VESA[37]. A strong opposing 
view was given by Dr Andrew Watson, saying that the flicker 
paradigm is very sensitive, measuring something that is may be 
irrelevant when measuring visibility of artifacts that never ever 
occur in still images, because still images do not flicker. 

It was explained, mainly by James Goel, that one industrial 
use of visually lossless compression is in the final stage in the 
mobile devices where just before sending the pixel information to 
the display internally compression is performed and at the display 
the pixel data is decompressed. Since this compression stage needs 
to be very conservative not to introduce additional artifacts, the 
industry has adopted this overly strict method. He also asked 
whether this would be more relevant when looking at applications 
such as image scrolling. 

Scott Daly pointed out that there is engineering usage for the 
paradigm for instance for debugging purposes when there is a need 
to find areas where algorithms give different results, see also 
Daly’s Section above. 

The audience and panel members also discussed the definition 
of the term visually lossless. It was suggested that structural 
lossless may be a better definition, since a small difference in a 
complex texture may not be possible to notice. A countering view 
was that such small differences can be important for certain 
applications (such as relating to information-task, like medical 
imaging), and that one must be careful in generalizing across 
different businesses.  Quantifying individual variations and their 
effect on visually lossless criteria is important and may also be 
dependent on the specific business. Another suggestion was that 
we really need to talk about visually experience lossless. 

Bernice Rogowitz was surprised that the problem was solved 
with a subjective paradigm rather than using objective metrics. It 
was pointed by Scott Daly that perhaps HDR-VDP2.2 and HDR-
VQM [24, 25], could do it, but they are still to computationally 
expensive to use. 

Conclusions 

The main conclusion from this special session is that visually 
lossless is not yet clearly defined. It can be very different 
depending on what the usage would be for the imagery. For 
example, it is crucial for in medicine that all relevant details are 
there to make a correct diagnosis, but on the other hand for video 
consumption on a smart phone will tolerate quite substantial 
differences. 

IS&T International Symposium on Electronic Imaging 2017
Human Vision and Electronic Imaging 2017 131



 

15 

Although the research area has had a long tradition, the 
current interest from the mobile industry has put renewed focus on 
the topic. It may be that rather than converging on a single 
definition of visually lossless, industry will instead adopt criteria 
and methodologies that best suit their use cases and objectives.  
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