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Abstract
The addition of white noise to an image has been shown to

increase the perceived sharpness of the image’s blurred regions

under certain conditions. Additive white noise has also been

shown to increase the visual quality a compressed image, a find-

ing which has been attributed, in large part, to the noise’s ability

to simulate textures that have been lost via the compression. To

explore the perceptual underpinnings of this enhancing effect, in

this paper, we tested whether the noise can be tuned based on

properties of the source texture to provide even greater improve-

ments in quality as compared to white noise. We used a paramet-

ric texture-synthesis algorithm to generate statistically and spec-

trally shaped noise patterns, which were scaled in contrast and

then added to corresponding compressed texture regions. Subjects

reported both the optimal contrast scaling factors and the associ-

ated quality improvement scores relative to the distorted regions.

Our results indicate that the addition of the shaped noise can pro-

vide markedly greater quality improvements compared to white

noise, a finding which cannot be explained by the mere presence

of high-frequency content. We discuss how the optimal contrast

scalings might be predicted, and we examine the performances of

existing quality assessment algorithms on our enhanced images.

Introduction
Nearly every digital image/video viewed by today’s con-

sumers has undergone some form of lossy compression, and

thus contains some form of compression distortions. When bit-

rate constraints and/or uncorrectable communication errors force

these distortions into the visible regime, the only hope for im-

provement is to attempt to restore or otherwise enhance the de-

compressed image. To this end, numerous artifact reduction tech-

niques have been proposed to reduce the visibility of blocking

artifacts and/or aliasing artifacts [1] and/or attempt to enhance the

appearances of degraded edges (e.g., [2]). Even more general

image restoration techniques have been proposed, and although

these techniques are not specifically designed for compressed im-

ages, some have demonstrated the ability to partially reverse the

blurring and aliasing caused by compression. Yet, despite all of

this previous work, very little effort has focused on improving the

visual qualities of the texture regions.

During compression, it is most often the textures that are the

first to be degraded (usually via blurring), whereas edges tend to

remain relatively intact, even under moderate compression. Thus,

a technique focused on improving the appearances of the textures

could potentially yield substantially greater quality improvements

than what is currently possible. Achieving this goal requires a

better understanding of the perceptual factors that underlie human

judgments of texture quality in an enhancement context.

A clever but lesser-known technique of improving the qual-

ity of textures in a compressed image is to add a subtle amount of

white noise to the image. Kayargadde and Martens were the first

to demonstrate that adding noise to a blurred image can improve

the perceived sharpness of the image [3]. In [4], Kashibuchi et al.

demonstrated that additive white noise can improve the perceived

sharpness in printed photographs. In [5], Kurihara et al. inves-

tigated the influence of additive noise on the perception of both

sine-wave patterns and textures; Kurihara et al. demonstrated that

white noise added only to the texture regions consistently yields

an increase in the perceived sharpness, though further hypothesis

regarding the underlying perceptual factors for this improvement

were not explored in [5]. In a follow-up study, Wan et al. investi-

gated how the addition of noise affects the perceived sharpness of

various natural textures [6]. Wan et al. proposed that the noise in-

creases the high-frequent content in the image, thus boosting the

perceived sharpness. The prevalence of high-frequency content

has also been employed by several no-reference image sharpness

estimators (e.g., [7]). Wan et al. also demonstrated that the pres-

ence of noise facilitates the subject’s ability to recall the texture

from memory, thus boosting the perceived sharpness.

In the context of compression, in [8], Chandler et al. demon-

strated that additive noise can improve the visual quality of im-

ages subjected to wavelet-based compression. Chandler et al.

proposed that the noise has two additional effects on quality: (1)

the noise helps to masks the compression artifacts; and (2) the

noise helps to synthesize some of the details lost in the textures.

Original Distorted (Compressed)

Distorted + White Noise Distorted + (Filtered) Syn. Texture(Filte d) S

Figure 1. Demonstrative example of the potential of additive, filtered syn-

thesized texture to improve the visual quality of a compressed image to a

greater extent than additive white noise.

IS&T International Symposium on Electronic Imaging 2017
Human Vision and Electronic Imaging 2017 97

https://doi.org/10.2352/ISSN.2470-1173.2017.14.HVEI-123
© 2017, Society for Imaging Science and Technology



Still, beyond these explanations, a deeper investigation of the re-

lations between additive noise and its potential for visual quality

enhancement remains relatively unexplored.

Assuming that the addition of noise helps to synthesize lost

details, it should be possible to achieve even better quality im-

provements (and perhaps also higher perceived sharpness) by us-

ing “noise” that has been shaped to better synthesize the lost de-

tails (see Figure 1). To test this hypothesis, in this study, we mea-

sured quality improvement ratings for regions of compressed im-

ages enhanced via the addition of spectrally shaped synthesized

textures. Specifically, we used a popular parametric texture syn-

thesis algorithm [9] to shape the noise such that its pixel statistics

and local and joint wavelet statistics matched those of the original

texture; furthermore, we used only the middle and high frequency

bands during the texture synthesis because these are the bands that

are the most affected during compression/blurring. As a control

condition, we also measured quality ratings for these same com-

pressed images containing additive white noise. In each case, the

subjects were allowed adjust the contrast of the texture or noise to

maximize the perceived quality improvement. To further investi-

gate the spectral influences, we measured quality improvement

ratings for these same image regions enhanced via three more

control conditions: (1) noise that was white in terms orientation,

but matched to the texture in terms radial frequency information;

(2) noise that was white in terms of radial frequency, but matched

to the texture in terms of orientation; and (3) noise whose full 2D

magnitude spectrum matched the texture, but as with (1) and (2)

still had a random phase spectrum.

Based on these results, we propose a semi-automated ap-

proach for enhancing compressed images via the addition of syn-

thesized textures. Our approach requires a texture segmentation

map and sample textures from the original image (prior to com-

pression), from which statistical parameters can be measured and

transmitted as side-information. After decompression, the sam-

pled textures can be synthesized (and spectrally shaped), scaled

in contrast, and then added to the compressed image. Toward this

application, we provide preliminary results of a feature-based ap-

proach for predicting the optimal contrast scaling factors, and a

preliminary analysis of the performances of various quality as-

sessment algorithms in predicting the quality improvements.

This paper is organized as follows. Details of the experimen-

tal methods are provided in Section 2. Results of the experiment

are provided in Section 3. A discussion and preliminary efforts

towards using the results to guide enhancement and quality as-

sessment are provided in Section 4. Conclusions are provided in

Section 5.

Methods

Our aim was to investigate the differences in visual quality

afforded by the addition of synthesized textures vs. white noise.

To this end, we used as the additive test patterns: white noise,

synthesized texture, and three hybrid versions which were par-

tially white and partially synthesized. Each of these test patterns

was scaled in contrast and added to individual texture regions of

HEVC-compressed images. The preferred contrast scaling fac-

tors and the associated quality improvement scores were collected

from the subjects.

Stimuli
Original and Distorted Images

Fifteen images were selected from the various categories of

the McGill Image database [10] for use as original images in

the study. The images were selected such that they contained at

least one relatively large texture region. The images were then

hand-segmented to isolate different textures and to merge percep-

tually similar textures (i.e., those from the same source material

at roughly the same spatial scale), even if the regions were non-

contiguous. Thus, each image was segmented into 1-7, possibly

non-contiguous textures regions. We refer to these regions as the

source textures. The images were resized in Matlab by using bicu-

bic resizing to sizes of either 768×576 or 576×768 pixels.

Let Xi, i ∈ [1,15], denote the ith source image. Let M
j
i denote

a binary mask corresponding to the jth source texture of Xi, where

j ∈ [1,J], and J ∈ [1,7] denotes the total number of source textures

for a given image.

Distorted versions of the images were created by using

HEVC single-frame compression (BPG format) to obtain roughly

medium-low-quality images as judged by the first author. Specifi-

cally, we used quantization scaling factors ranging from 33 to 40,

resulting in bit-rate ranging from 0.03 to 0.36 bpp. In all cases,

the textures were largely blurred, but still recognizable given the

context. Let X̂i denote the distorted (decompressed) version of Xi.

Test Patterns
The following test patterns were used in the experiment:

1. White noise: White in terms of the magnitude across radial

frequency and orientation; random phase spectrum.

2. Synthesized texture: A synthesized version of the original

(uncompressed) texture, generated via a parametric texture-

synthesis algorithm, but omitting the coarse subbands dur-

ing the synthesis (see the Stimuli section for details).

3. Hybrid R: A partially synthesized and partially white texture

that was matched to the synthesized texture in terms of the

magnitude across radial frequency, but white in terms of the

magnitude across orientation, and white (random) in terms

of the phase spectrum.

4. Hybrid O: A partially synthesized and partially white tex-

ture that was matched to the synthesized texture in terms of

the magnitude across orientation, but white in terms of the

magnitude across radial frequency, and white (random) in

terms of the phase spectrum.

5. Hybrid 2D: A partially synthesized and partially white tex-

ture that was matched to the synthesized texture in terms

of the magnitude spectrum, but had a white (random) phase

spectrum.

Although color images were used in the experiment, each of

the test patterns was defined in terms of grayscale and was added

only to the grayscale component of the images.

The synthesized textures were generated via Portilla and Si-

moncelli’s parametric texture-synthesis algorithm [9]. Thus, each

source texture was analyzed prior to compression to obtain the

algorithm’s required statistical parameters. For these analyses,

we employed a steerable pyramid with three scales and four ori-

entations, and we recorded the full five sets of parameters: (1)

Marginal statistics of each subband; (2) auto-correlation of low-

pass bands at each scale; (3) cross-correlation of magnitudes be-
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Distorted Distorted+Noise Distorted+Synthesized Distorted+Hybrid R Distorted+Hybrid O

Source Textures
head horn head horn head horn head horn

White Noise Synthesized Hybrid R Hybrid O
head horn

Original

Test 

Patterns:

head horn

Hybrid 2D

Distorted+Hybrid 2D

Figure 2. An example of the stimuli used in the experiment for one texture of one image (cropped for display purposes). First row: Source textures and test

patterns. Second row: Original, distorted, and enhanced images.

tween scales; (4) cross-correlation of magnitudes between orien-

tations; (5) cross-scale relative phase.

Synthesized versions of the source textures, equal in size to

each source image, were then created. However, we did not use

the low-frequency information (coarsest scale) during the synthe-

sis. During our pilot experiments, we found that more realis-

tic results were obtained by synthesizing only the medium- and

high-frequency components. Low-frequency information made

the restored textures look unnatural and in most cases resulted in

blotchiness. We attribute this finding to the fact that the com-

pression leaves intact the lower-frequency information, and thus

adding a synthesized texture with more of this lower-frequency

information leads to over-enhancement in this band. Thus, in this

study, the synthesized textures were all zero-mean textures and

devoid of the lowest-band content.

Figure 2 shows some examples of the noise- or texture- en-

hanced conditions. The Hybrid R shaped-noise patterns exhibit

matched amounts of content across radial frequency, but they con-

tain a flat distribution across orientation. The Hybrid O shaped-

noise patterns exhibit matched amounts of content across orien-

tation, but they contain a flat distribution across radial frequency.

The Hybrid 2D shaped-noise patterns exhibit matched amounts

of content across both radial frequency and orientation. All of

the noise conditions (white noise and shaped-noise patterns) re-

tain their random phase spectrum; thus, they lack spots, lines, and

edges that manifest as a result of phase coherence.

Additive Enhancement Process
Let T

j
i denote the test pattern (white, synthesized, hybrid)

generated for the jth source texture of the ith image. The enhance-

ment of this jth texture in the distorted image X̂i was performed

as follows:

Y
j

i = X̂i + c
j
i T

j
i M

j
i (1)

where Y
j

i denotes the version of the compressed image with only

the jth texture enhanced, and where c
j
i denotes the contrast scaling

factor of the synthesized texture required to achieve the highest

possible visual quality under the constraints of this enhancement

process. In Experiment 1, we measured these quality-maximizing

contrasts. Let c̄
j
i denote the quality-maximizing contrast for the

jth source texture of the ith image averaged across all subjects.

Following the main experiment, we performed a follow-up

quality-rating experiment in which we measured subjective qual-

ity scores for the distorted images and for the enhanced images

with all source textures simultaneously enhanced. Let Yi denote

the version of X̂i with all source textures enhanced, obtained via

Yi =
J

∑
j=1

X i + c̄
j
i T

j
i M

j
i . (2)

Procedures
We measured two values for each source texture: (1) the con-

trast scaling factor required to achieve the highest possible local

visual quality; and (2) the local visual quality improvement rating

relative to the distorted image.

The subjects were presented with an interface in which the

distorted and enhanced images were shown side-by-side. For each

texture, the subjects were instructed to adjust a slider that varied

the value of c
j
i such that the enhanced texture appeared as high

in quality as possible. Subjects then continued this process for

the next texture of the same image, with all prior enhancements

still intact, and this process was repeated until all source textures

were enhanced. Subjects were instructed to move the slider below

and above their choices (to avoid hysteresis effects), and to read-

just prior slider values after all textures were enhanced (to take

into account quality-level-based contextual effects). After all tex-

tures were enhanced, the subjected were asked to provide a quality

score, on a scale from 0-10, for each restored texture, where 10

denoted perfect quality.

Thus, for each texture of each image, we obtained from each

subject a quality-maximizing contrast (c
j
i ) and an associated qual-

ity improvement score (∆Q
j
i ) relative to the distorted image. Note

that, during the experiment, the original (uncompressed) images

were not shown to the subjects.
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Apparatus and Subjects
The stimuli were displayed on an I-O Data LCD-MF276XD

27-inch LCD monitor set to a resolution of 1920× 1080 pixels.

The screen had minimum and maximum luminances of 0.3 and

222 cd/m2, respectively; and a luminance gamma of 2.0. Subjects

viewed the stimuli in a dark room (following a brief period of

darkness adaptation) with normal pupils. The viewing distance

was 60 cm, resulting in stimuli which subtended 22.5× 17.0 (or

17.0×22.5) degrees of visual angle.

Five people, including the three authors (YY, YZ, and DC),

served as subjects in the experiment. YZ and DC had previous

experience in viewing compressed images and in rating image

quality; the other subjects were new to image-quality tests, and

the non-author subjects were naive to the purpose of the experi-

ment. Also note that subjects YZ and DC had no knowledge of the

original images. Considering the highly subjective nature of this

experiment, we acknowledge that this subject pool is extremely

limited; at this point, any findings from this work should only be

interpreted as preliminary suggestions. Still, the

Results
Table 1 lists the average contrast factors and quality improve-

ment scores for each texture enhanced with each of the test pat-

terns. The per-subject quality improvement scores were first con-

verted to standardized scores (z-scores), then averaged across sub-

jects, and then rescaled to span the range [0,10]. Observe that,

as expected, the average contrast factors differed from texture to

texture. One obvious explanation for this finding is due to the

different perceived contrasts of the synthesized textures. Gener-

ally, synthesized textures with lower perceived contrasts required

lesser contrast factors as compared to textures with higher per-

ceived contrasts to achieve the maximum quality improvement.

Another partial explanation for this finding is due to the different

masking capabilities of the source textures. Some source textures

were better than others at reducing the visibility of an additive

texture, thus resulting in larger contrast factors in order to achieve

the maximum quality improvement.

In regards to the quality improvement scores, as reported in

previous studies, observe that the addition of white noise, in all

cases, improved the quality of each respective texture to at least

some extent. On average, the noise provided a quality improve-

ment of 2.5 (on a scale from 0-10). However, in many cases, the

addition of synthesized texture improved the perceived quality to

a greater extent than the addition of white noise. On average the

synthesized textures provided a quality improvement of 3.5. As

we mentioned in Section , it has been argued that white noise

improves quality in part via the addition of extra high-frequency

content, thereby improving the perceived sharpness which coun-

teracts the blurring caused by compression. However, this argu-

ment cannot fully explain our findings because a spectral analysis

of the enhanced regions indicated that the synthesized textures al-

ways added lesser high-frequency content than the white noise.

Clearly, and perhaps not surprisingly, the improvement in qual-

ity is due to influences beyond just the amount of high-frequency

content.

The highest per-texture quality improvements relative to the

distorted textures were observed for very stochastic textures (e.g.,

rocks and carpet/synthetic fur). These textures also received the

highest mean-opinion contrast scaling factors (c
j
i ). We suspect

Table 1: Average contrast factors and quality improvements

Contrast Factor c̄
j
i Quality Improvement ∆̄Q

j
i

Image Segment Noise Synth Hyb R Hyb O Hyb 2D Noise Synth Hyb R Hyb O Hyb 2D

Apples

Background 1.7 1.9 1.8 2.0 1.8 2.2 3.3 3.1 2.5 3.1

Bags 0.8 0.7 0.9 1.0 0.7 1.9 2.3 2.0 2.3 2.4

Foreground 2.6 2.7 2.5 2.8 2.6 2.9 4.7 4.4 3.1 4.5

Umbrella 1.6 0.7 1.2 0.9 0.9 2.1 2.0 2.3 2.3 2.1

Bark Bark 1.3 2.7 1.8 2.0 1.5 2.0 3.6 2.8 2.3 2.8

Bird
Bird 0.9 0.9 0.8 1.2 0.7 2.5 4.8 2.6 3.1 3.8

Hand 1.0 0.6 0.8 0.9 0.6 2.0 2.6 2.1 2.3 1.7

Bison

Body 1.8 2.3 2.5 3.2 2.8 2.3 5.5 4.2 3.1 4.9

Hair 2.0 2.5 2.2 2.3 2.3 2.1 2.9 2.6 2.3 2.5

Head 2.4 3.4 2.6 3.0 2.5 2.9 5.8 3.4 4.0 3.5

Horn 1.7 2.0 2.3 2.0 2.2 3.4 5.4 4.7 3.4 5.3

Nose 1.5 1.5 2.0 2.0 2.3 2.4 2.5 2.8 3.1 2.8

Field

Cloud 0.4 0.4 0.5 0.4 0.3 1.7 1.9 2.0 2.0 1.7

Grass 2.4 3.2 2.9 2.6 2.4 3.4 5.3 4.4 3.9 4.6

Mountain 0.7 0.6 0.7 0.9 0.5 2.1 2.4 2.0 2.0 2.4

Background 0.5 0.4 0.4 0.6 0.3 1.9 1.9 1.8 1.8 2.1

Sky 0.4 0.5 0.5 0.6 0.4 1.2 1.2 1.3 1.3 1.7

Trees 2.4 2.5 2.2 2.1 1.7 2.5 2.7 2.3 2.5 1.7

Flower

Flower 1.3 1.0 0.9 1.4 0.9 3.1 4.5 3.6 3.6 3.5

Leaves 1.0 0.8 0.7 0.9 0.7 1.9 1.9 2.0 1.8 2.1

Pistil 2.4 1.5 2.3 2.2 2.6 2.1 3.2 2.6 3.1 2.8

Tip 2.4 3.1 2.9 2.6 2.5 2.1 2.8 3.0 2.8 3.5

Gate

Gate 2.5 3.3 3.6 3.3 3.0 2.4 2.9 2.5 2.3 2.1

Left object 1.9 2.0 2.1 2.1 1.9 2.3 3.6 2.6 2.3 2.1

Right object 2.5 2.8 2.0 2.3 2.1 4.0 7.2 6.0 4.4 5.6

Hydrant

Back snow 1.4 1.6 1.5 1.5 1.5 2.7 5.2 4.1 3.4 3.9

Fore snow 1.0 1.0 1.3 1.4 1.0 2.5 2.6 2.8 2.8 2.4

Hydrant 2.1 2.0 2.1 2.0 1.9 2.1 3.1 2.3 2.0 1.7

Pole 1.8 1.3 1.3 1.5 1.7 1.6 2.0 2.3 2.5 2.7

Leaf
Leaf 1.2 1.0 1.1 1.4 0.7 2.1 2.6 2.0 1.8 2.8

Shadow 1.9 2.1 2.5 2.7 2.6 1.5 2.0 2.0 1.8 2.8

Pumpkin

Back shadow 2.2 2.9 2.3 2.6 2.7 1.6 2.6 1.5 2.0 1.7

Burlap 1.6 1.8 1.5 1.8 1.4 2.4 2.9 2.0 2.8 2.1

Pumpkin 0.7 0.4 0.8 0.9 0.5 2.3 2.0 2.0 2.3 2.1

Shadow 1.0 1.2 1.2 1.7 1.3 1.2 1.2 1.3 1.3 1.7

Stem 3.1 4.2 3.2 3.6 3.6 2.9 3.6 2.5 2.8 2.4

Rocks Rocks 2.5 3.7 3.4 2.9 3.6 3.0 5.4 4.6 4.1 5.2

Teddy

Bench 1.5 2.5 1.9 2.5 2.1 2.3 3.6 2.6 3.7 3.2

Pole 1.9 1.5 1.7 2.1 1.5 2.3 3.5 3.1 2.8 3.1

Teddy 3.7 3.5 3.7 4.2 3.9 3.6 8.2 6.3 4.7 6.4

Valve

Deck 1.9 3.3 2.2 3.6 3.0 4.2 6.8 4.7 5.0 4.9

Gold valve 1.8 1.9 2.2 2.3 1.5 2.9 3.1 3.6 2.8 2.7

Green hose 2.8 3.7 3.4 3.8 3.3 1.9 3.1 1.5 1.8 2.5

Hose 1.6 1.4 2.0 2.2 1.9 2.1 1.9 1.8 1.8 1.7

Rusts 2.3 2.1 2.3 2.2 1.8 2.2 2.8 3.4 2.3 2.8

Silver valve 1.9 1.6 1.9 2.5 2.0 2.3 2.5 3.6 3.1 3.5

T-joint 1.5 1.3 1.6 2.0 1.6 3.2 3.7 3.9 3.4 3.9

Angel Angel 2.2 2.1 2.2 2.4 2.2 3.6 4.7 4.7 3.1 4.7

Cat
Cat 3.0 2.4 2.6 3.2 2.8 4.6 7.0 6.5 5.0 6.0

Ground 1.5 1.0 1.2 1.6 1.2 3.2 4.6 3.9 3.4 4.3

Average 1.8 1.9 1.9 2.1 1.8 2.5 3.5 3.0 2.8 3.1

that this finding can be partially attributed to the subjects unfa-

miliarity with the mask (entropy masking [11]) and partially at-

tributed to the subjects’ tolerances of perturbations of the mid-to-

high-frequency bands.

The lowest per-texture quality improvements relative to the

distorted textures were observed for the highly regular textures,

and more generally for textures which the synthesis algorithm

could not yield what would generally be considered a visually

faithful representation of the source texture. Some textures re-

quired strict alignment of edges in order to be enhanced; these

textures thus resulted in very low contrast scaling factors in or-

der to avoid an artificial appearance. Nonetheless, the contrast

scaling factors were always greater than zero, and always resulted

in a visually detectable positive change in quality, suggesting that

even minor improvements are possible given the limitations of the

current enhancement technique.

The results of the hybrid test patterns indicate that the spec-

tra of the synthesized textures play large roles in the quality im-

provements, but the relative importances of radial frequency infor-

mation vs. orientation information is indeed texture-dependent.
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Not surprisingly, for textures containing a rather stochastic mix-

ture of orientations (e.g., the teddy bear or rocks), equal improve-

ments in quality could be obtained by using noise with a match-

ing radial frequency spectrum, but with a white orientation spec-

trum, and with a random phase spectrum. For textures containing

clearly dominant orientations, (e.g., the bison’s hair), equal im-

provements in quality could be obtained by using noise with a

matched orientation spectrum, but with a white radial frequency

spectrum, and with a random phase spectrum.

Discussion and Applications
Previous studies have shown that the addition of a sub-

tle amount of noise can improve the perceived sharpness/quality

of blurred/compressed images. In this study, we investigated

whether further statistical and spectral shaping of the noise could

lead to even greater quality improvements (i.e., by using the mid-

and upper-frequency synthesized versions of the source textures).

Discussion
The results of our first experiment revealed that, for the 50

texture segments tested here, approximately 35 (70%) were bet-

ter improved via the addition of synthesized texture than noise.

Of these successful cases, subjects reported both an increase in

the perceived sharpness and the presence of additional structure

which had been lost by the compression. Although the noise also

helped in these regards, it did so to a much lesser extent due to

the fact that too much noise resulted in a grainy appearance. In

all cases, the noise had more high-frequency energy than the syn-

thesized texture, suggesting that the presence of additional high-

frequency content alone cannot fully account for the ability of

noise to increase the perceived sharpness of a blurred region.

For the cases in which noise yielded better improvements,

subjects reported that the addition of synthesized texture resulted

in a fake appearance. Upon further examination of these un-

successful cases, we found that either: (1) the synthesized tex-

tures themselves appeared to be poor visual representations of

the source textures—i.e., they were failure cases for the texture-

synthesis algorithm; or (2) the synthesized edges lined up with

the distorted image’s texture is a way that appeared artificial. Yet,

despite this fact, the subjective contrast factors were always above

zero, indicating that even the subtle addition of a mismatched tex-

ture is better than nothing.

As with noise, the hybrid test patterns can be considered low-

risk (in terms of inducing a fake appearance) because they lack

edges due to their random phase spectra. For the Hybrid R con-

dition, subjects reported that the matched radial frequency spec-

tra gave rise to the same visually pleasing clusters as the source

texture, but, as designed, lack orientation. For the Hybrid O con-

dition, subjects reported that the matched orientation spectra gave

rise to similar overall “brush angle” appearances as the source

textures, but with a very fine brush that lacked medium- and high-

contrast edges. For some textures, either of these attributes alone

yielded equivalent or even better quality improvements than the

synthesized textures. The Hybrid 2D condition yields greater

quality improvements than Hybrid R and Hybrid O, again, ow-

ing to the fact that there is less of a chance of improperly aligned

edges that might appear artificial.

The fact that synthesized texture can yield equal or better

quality improvements (and perceived sharpness) than white noise

suggests that a key reason for the increase in quality/sharpness

found in previous experiments is due to the fact that the noise

helps to synthesize lost details, and in many cases the synthesized

textures did a better job at this task. Furthermore, the results of

the second experiment suggest that the synthesis need not be ex-

plicit; rather, the additive pattern can facilitate the HVS’s ability

to perform its own synthesis of the missing details (what we will

call “perceptual synthesis”). This conclusion is related to the no-

tion of memory texture proposed by Wan et al. [6], though our

“perceptual synthesis” may also or alternatively be driven by sim-

pler statistical inferences. Furthermore, it would seem that this

perceptual synthesis makes use of or is otherwised influenced by

radial frequency and/or orientation information.

Predicting the Subjective Contrast Factors

In order to use additive synthesized textures (or shaped

noise) in an actual enhancement algorithm, it is necessary to pre-

dict the mean-opinion contrast factors for the to-be-enhanced tex-

tures. Specifically, we seek an automated means of determining

the value c̄i in Equation (2) for any given texture segment. Here,

we provide the preliminary results of our current technique for

predicting these contrast factors.

We assume that the contrast factors are low when the syn-

thesis is itself is a poor perceptual match to the source texture,

and high when the synthesis is a good perceptual match to the

source texture. To this end, we use two simple features: (1)

The Kullback-Liebler divergence between histogram-of-oriented-

gradients for the source vs. synthesized; and (2) a texture-

regularity measure applied only to the source texture (under the

assumption that the synthesis is best for stochastic, highly irregu-

lar textures). These features are briefly defined as follows:

• Divergence in HoGs: Let horg and hsyn denote the HoG vec-

tors for the source texture and synthesized texture, respec-

tively. Our first feature, f1, is defined as the logarithm of the

KLD between horg and hsyn.

• Source Texture Regularity: We use the algorithm by Anwar

et al. [12] to obtain a numerical estimate of the regularity of

the source texture. This regularity algorithm was designed

for larger textures, and thus we applied the algorithm in a

block-based fashion (16×16 blocks) and combined the per-

block regularities into a single overall scalar via a 4-norm.

Our second feature, f2, is defined as this scalar.

We performed a linear regression using standardized ver-

sions of f1 and f2 as regressors, and using the standardized mean-

opinion contrast factors as the dependent (to-be-predicted) vari-

able. Table 2 lists the standardized regression results. The regres-

sion demonstrates that both factors are statistically significant,

and that the regularity measure has 2-3× more weight toward the

overall prediction. Note, however, that the regression was per-

formed on the entire dataset, and thus this analysis is not meant

to be indicative of the performance of this approach on other tex-

tures. Instead, this analysis demonstrates that the features show

promise in predicting the contrast factors. For reference, the re-

sults of a 50%-50% train-test support-vector-machine regression

using the same factors yields a correlation coefficient of R = 0.68.

The correlation drops, but still demonstrates promise under this

more realistic setting. The performances are still well below that
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Table 2: Standardized regression results (c̄
j
i on f1 and f2)

R = 0.74; Std. Error = 0.688; 50 samples

Coefficient p-value

Standardized KLD of HoG (standardized f1) -0.667 1.9E-08

Standardized Regularity (standardized f2) -0.265 9.9E-03

Table 3: Performances of various IQA algorithms in predicting

the MOS values for the distorted and enhanced images

Distorted images Enhanced images All 30 images

Algorithm SROCC CC SROCC CC SROCC CC

PSNR [13] 0.13 0.19 0.37 0.27 0.36 0.25

SSIM [14] 0.61 0.61 0.11 0.07 0.20 0.19

MS-SSIM [15] 0.62 0.73 0.16 0.14 0.24 0.25

VIF [16] 0.63 0.66 0.41 0.32 0.12 0.21

MAD [17] 0.36 0.37 0.06 0.05 0.41 0.37

DIIVINE [18] 0.25 0.25 0.13 0.03 0.44 0.45

C-DIIVINE [19] 0.17 0.19 0.15 0.07 0.62 0.64

BLIINDS-II [20] 0.10 0.00 0.08 0.14 0.67 0.70

BRISQUE [21] 0.11 0.18 0.03 0.04 0.61 0.64

DESIQUE [22] 0.27 0.28 0.51 0.38 0.79 0.76

obtained when using one subject’s contrast factors to predict the

average of the other subjects’ contrast factors (R > 0.9).

Predicting the Quality Improvements and Full-
Image Quality Scores

We have not yet explored techniques for predicting the per-

segment quality improvements. However, we did obtain MOS

values for the distorted and fully-enhanced images (with all seg-

ments restored via the proposed technique) obtained in a full-

reference setting, where the original images served as the refer-

ence images. Thus, there were 15 distorted images and 15 en-

hanced images, and their associated mean opinion scores (MOS)

ranging from 0 to 10.

Here, we briefly report our preliminary survey of using six

full-reference and five no-reference image quality assessment al-

gorithms in predicting these MOS values. Due to space limita-

tions, we summarize the results only via Table 3. Not surpris-

ingly, the full-reference techniques can perform reasonably well

when given only the distorted images, but the enhanced images

appear to confuse most algorithms. Only the no-reference tech-

niques can cope with the two sets as a whole (last columns), sug-

gesting that only the no-reference approaches can begin to predict

the enhanced images as being of higher quality than their respec-

tive distorted versions.

Conclusions

This paper presented a study designed to provide insights

into the effects that additive white noise and other related test

patterns have on the visual quality of compressed (blurred) im-

ages. We found that the use of the statistically and spectrally

shaped noise can lead to markedly greater quality improvements

as compared to white noise, despite the fact that the textures en-

hanced with the shaped noise patterns, when scaled to their opti-

mal contrasts, contained equal or lesser high-frequency content.

This finding suggests that the improvements provided by noise

and its related shaped variants are due in large part to their ability

to synthesize details lost by the compression/blurring.
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