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Abstract
Blind image quality assessment (BIQA) of distorted stereo-

scopic pairs without referring to the undistorted source is a chal-
lenging problem, especially when the distortions in the left- and
right-views are asymmetric. Existing studies suggest that simply
averaging the quality of the left- and right-views well predicts the
quality of symmetrically distorted stereoscopic images, but gen-
erates substantial prediction bias when applied to asymmetrically
distorted stereoscopic images. In this study, we propose a binoc-
ular rivalry inspired multi-scale model to predict the quality of
stereoscopic images from that of the single-view images without
referring to the original left- and right-view images. We apply
this blind 2D-to-3D quality prediction model on top of ten state-
of-the-art base 2D-BIQA algorithms for 3D-BIQA. Experimen-
tal results show that the proposed 3D-BIQA model, without ex-
plicitly identifying image distortion types, successfully eliminates
the prediction bias, leading to significantly improved quality pre-
diction performance. Among all the base 2D-BIQA algorithms,
BRISQUE and M3 archive excellent tradeoffs between accuracy
and complexity.

Introduction
Objective quality assessment of stereoscopic images/videos

is a challenging problem [1], especially when the distortions are
asymmetric, i.e., when there are significant variations between
the types and/or degrees of distortions occurred in the left- and
right-views. Recent subjective studies suggested that in the case
of symmetric distortions of both views, simply averaging state-
of-the-art 2D image quality assessment (IQA) measures of both
views provides reasonably accurate quality predictions of stereo-
scopic images [2]. Compared with the case of symmetric distor-
tions, quality assessment of asymmetrically distorted stereoscopic
images is much more difficult. It was reported that there is a
large drop in the performance of both Full-reference (FR) 2D-IQA
and 3D-IQA models from quality predictions of symmetrically to
asymmetrically distorted stereoscopic images [3].

No-reference (NR) or blind image quality assessment
(BIQA) approaches predict perceived quality of a test image with-
out referring to an original image that is assumed to have pristine
quality [4]. BIQA is highly challenging not only because of the
difficulty in accurately estimating human behaviors in evaluating
image quality across different visual content, distortion types and
distortion levels, but also because real-world applications such
as online quality monitoring often require the image and video
streams to be evaluated at high speed, ideally in real-time. There-
fore, 3D-BIQA is an even more challenging problem, especially
when the distortions in the left- and right-views are asymmetric.

Table 1 reports Pearsons linear correlation coefficient
(PLCC) and Spearmans rank-order correlation coefficient
(SRCC) between 3D image quality mean opinion scores (3DIQ-

MOS) and averaging some state-of-the-art 2D-BIQA estimations
of both views on LIVE 3D Image Database Phase II [3], Waterloo-
IVC 3D Image Database Phase I [5] and Phase II [12]. The ten
tested state-of-the-art 2D-BIQA algorithms include Blind Image
Quality Index (BIQI) [13], BLind Image Integrity Notator using
DCT-Statistics II (BLIINDS-II) [14], Blind/Referenceless Image
Spatial QUality Evaluator (BRISQUE) [15], Codebook Represen-
tation for No-Reference Image Assessment (CORNIA) [16], Dis-
tortion Identification-based Image Verity and INtegrity Evaluta-
tion (DIIVINE) [17], Local Pattern Statistics Index (LPSI) [18],
M3 [19], Naturalness Image Quality Evaluator (NIQE) [20],
Quality-Aware Clustering (QAC) [21] and Distortion Type Clas-
sification and Label Transfer (TCLT) [22]. Among them, BIQI,
BLIINDS-II, BRISQUE, CORNIA, DIIVINE, M3, TCLT are
opinion-aware BIQA methods that require subject-rated images
for training, and are trained using all images from LIVE Image
Quality Assessment Database Release 2 [26]. LPSI, NIQE and
QACS are opinion-free BIQA methods, and are tested directly
with their default parameters.

It can be observed from Table 1 that for most of the tested
2D-BIQA methods, simply averaging 2D-BIQA measures of both
views provides reasonably accurate image quality predictions of
symmetrically distorted stereoscopic images but there is a signifi-
cant drop in the performance for asymmetrically distorted stereo-
scopic images on all tested 3D databases, which is consistent with
the trend we have observed with the FR 2D-IQA methods [12].

A more straightforward way to examine the relationship be-
tween the perceptual quality of stereoscopic images and that of
its single-view images is to perform subjective test on both 2D
and 3D images [5]. It was found that for symmetrically dis-
torted stereoscopic images, directly averaging the 2D image qual-
ity mean opinion scores (2DIQ-MOS) of both views provides ex-
cellent 3D image quality predictions, while for asymmetrically
distorted stereoscopic images, a similar performance drop as of
those in objective methods is observed [5]. The performance drop
is largely due to the significant prediction bias that could lean to-
wards opposite directions (either overestimate or underestimate
image quality), depending on the distortion types and levels [5].
In [12], a binocular rivalry inspired multi-scale model to predict
the quality of stereoscopic images from that of the single-view
images was applied to 2DIQ-MOS scores and different base 2D-
IQA measures. The experimental results showed that the quality
prediction performance is significantly improved for most base
2D-IQA methods as well as with 2DIQ-MOS scores. Unfortu-
nately, the model proposed in [12] requires access to the pristine
reference stereopairs, which are not available in the case of 3D-
BIQA.

In this work, we aim to develop an objective 3D-BIQA pre-
dictor. We take advantage of the previous findings on the rela-
tionship between the perceptual quality of stereoscopic images
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Table 1 Performance comparison of 2D-BIQA models on LIVE and Waterloo-IVC 3D image database
LIVE 3D Phase II Waterloo-IVC Phase I Waterloo-IVC Phase II

PLCC SRCC PLCC SRCC PLCC SRCC

2D-BIQA Symm. Asym. Symm. Asym. Symm. Asym. Symm. Asym. Symm. Asym. Symm. Asym.

Average 2DIQ-MOS N/A N/A N/A N/A 0.9801 0.8572 0.9657 0.8471 0.9799 0.8418 0.9696 0.8501

Proposed N/A N/A N/A N/A 0.9801 0.9460 0.9657 0.9324 0.9799 0.9433 0.9696 0.9302

Average IDW-SSIM 0.9368 0.7365 0.9229 0.6874 0.9638 0.7607 0.9480 0.7214 0.9377 0.7509 0.9056 0.7454

Proposed 0.9369 0.8593 0.9232 0.8517 0.9638 0.9283 0.9480 0.9042 0.9377 0.8859 0.9054 0.8660

Average BIQI 0.8350 0.6794 0.8278 0.6247 0.8674 0.7820 0.7965 0.7582 0.7343 0.6089 0.6239 0.5795

Proposed 0.8351 0.7455 0.8276 0.6971 0.8671 0.8864 0.7957 0.8528 0.7344 0.7695 0.6239 0.7071

Average BLIINDS-II 0.6649 0.5520 0.6243 0.5334 0.7583 0.5545 0.6766 0.5850 0.7774 0.4747 0.7586 0.5962

Proposed 0.6649 0.6146 0.6237 0.6011 0.8061 0.7925 0.6913 0.5854 0.8223 0.7389 0.7829 0.5951

Average BRISQUE 0.8688 0.6993 0.8491 0.6670 0.9371 0.8012 0.9102 0.7800 0.9293 0.6577 0.9022 0.7957

Proposed 0.8575 0.7513 0.8493 0.7365 0.9371 0.8873 0.9096 0.8339 0.9293 0.8780 0.9023 0.8627

Average CORNIA 0.8748 0.7026 0.8748 0.6778 0.9097 0.8252 0.8638 0.8150 0.9370 0.6490 0.9160 0.7877

Proposed 0.8749 0.7567 0.8752 0.7398 0.9096 0.8847 0.8635 0.8470 0.9369 0.8762 0.9164 0.8535

Average DIIVINE 0.7835 0.6035 0.7808 0.5536 0.5872 0.3974 0.5753 0.3261 0.6512 0.4449 0.6234 0.3920

Proposed 0.7697 0.6764 0.7806 0.6196 0.5872 0.4937 0.5753 0.4269 0.6513 0.5905 0.6238 0.4910

Average LPSI 0.7611 0.4898 0.7483 0.4051 0.7642 0.5512 0.7165 0.5891 0.7526 0.5859 0.7809 0.6076

Proposed 0.7611 0.6056 0.7488 0.4979 0.7642 0.6118 0.7165 0.6353 0.7526 0.7092 0.7809 0.7207

Average M3 0.8512 0.7136 0.8480 0.7126 0.9418 0.8265 0.9147 0.8114 0.9114 0.7618 0.8713 0.7553

Proposed 0.8329 0.7695 0.8476 0.7668 0.9418 0.9154 0.9147 0.8942 0.9114 0.8644 0.8717 0.8399

Average NIQE 0.7801 0.7383 0.7592 0.7120 0.8276 0.7871 0.6395 0.6617 0.7429 0.6468 0.5282 0.5758

Proposed 0.7801 0.7751 0.7585 0.7557 0.8276 0.8311 0.6395 0.6596 0.7429 0.7656 0.5284 0.6103

Average QACS 0.8821 0.7388 0.8727 0.6960 0.8077 0.7627 0.5620 0.6448 0.7715 0.7125 0.5305 0.6567

Proposed 0.8822 0.8169 0.8728 0.7858 0.8077 0.8291 0.5620 0.6456 0.7716 0.7994 0.5303 0.6757

Average TCLT 0.8252 0.6961 0.7972 0.6564 0.8609 0.6624 0.7632 0.6245 0.8135 0.6075 0.7099 0.5735

Proposed 0.8253 0.7093 0.7981 0.6845 0.8609 0.8438 0.7620 0.7612 0.8136 0.7558 0.7098 0.7177

and that of its single-view images. We assume that existing suc-
cessful 2D-BIQA methods are reliable for evaluating single-view
images, and what is missing is an effective blind 2D-to-3D predic-
tion model to combine single-vew quality scores, so as to elimi-
nate the prediction bias for asymmetric distortions. Therefore, we
opt to use a two-stage approach. The first stage builds a binocu-
lar rivalry inspired multi-scale 2D-to-3D quality prediction model
without referring to the original images. In the second stage,
this quality prediction model is applied to combine state-of-the-
art 2D-BIQA estimations of both views, resulting in a 3D image
quality estimation.

Blind 2D-to-3D Quality Prediction
Motivated by existing vision studies on binocular rivalry [6,

7], where it was found that for simple ideal stimuli, an increase
in contrast enhances the predominance of one view against the
other [8, 9, 10, 11], we showed that the strength of view domi-
nance in binocular rivalry of stereoscopic images is related to the
relative energy of the two views [12]. However, the computation
of the relative energy involves the original left- and right-view im-
ages [12], which are not available in the case of 3D-BIQA. In this
work, to overcome the problem, we apply a divisive normalization
transform (DNT) [23, 24, 25] to the distorted left- and right-view
images, and then estimate the strength of view dominance from
DNT domain representations.

A DNT is typically built upon a linear image decomposi-
tion, followed by a divisive normalization stage [27]. The linear

transformations may be discrete cosine transform or wavelet-type
of transforms. Here, we assume a wavelet image decomposition,
which provides a convenient framework for localized represen-
tation of images simultaneously in space, frequency (scale) and
orientation. The DNT image representation of the image is then
calculated by dividing each wavelet coefficient by a local energy
measure based on its neighboring coefficients. The DNT image
representation is not only an effective way to reduce the statistical
redundancies between wavelet coefficients [27], but is also highly
relevant to biological vision [28]. In [29], a divisive normalization
framework was applied to develop a computational model that
trades off between binocular rivalry and suppression, and the pre-
dictions were confirmed with psychophysical tests. This binocu-
lar perceptual relevance of divisive normalization representation
leads us to design a multi-scale and multi-orientation DNT do-
main 2D-to-3D prediction model without referring to the original
left- and right-view images.

Let (Id,l , Id,r) be the left- and right-view image pairs of the
distorted stereoscopic images. To compute the DNT representa-
tion of Id,l and Id,r, we first apply a 3-scale, 2-orientation steerable
pyramid wavelet transform [30] to decompose Id,l and Id,r into 6
oriented subbands (2 for each scale) and a highpass and a lowpass
residual subbands, respectively.

At the i-th oriented subband, for each center coefficient yc,
we define a DNT neighboring vector Y that contains 11× 11 co-
efficients from the same subband (including the center coefficient
itself). As such, the corresponding DNT center coefficient ỹc at
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the i-th normalized subband is computed as

ỹc =
yc

∑ |Y |+ c
, (1)

where c = 1.
For each divisive normalized subband, we estimate its en-

ergy by computing the local variances at each spatial location,
i.e., the variances of local patches extracted around each spa-
tial location from the DNT coefficients are computed, for which
an 11× 11 circular-symmetric Gaussian weighting function w =
{wi|i = 1,2, · · · ,N} with standard deviation of 1.5 samples, nor-
malized to unit sum (∑N

i=1 wi = 1), is employed. The resulting
mean energies for the i-th normalized subband in the Id,l and Id,r
are denoted as Ei,l and Ei,r, respectively. The overall energy esti-
mations in both views are computed as the sum of the energies of
all divisive normalized subbands

gl =
6

∑
i=1

Ei,l and gr =
6

∑
i=1

Ei,r , (2)

Here gl and gr are estimations of the level of dominance of the
left- and right-views, respectively. Given the values of gl and gr,
the weights assigned to the left- and right-view images are given
by

wl =
g2

l
g2

l +g2
r

and wr =
g2

r

g2
l +g2

r
, (3)

respectively.
Finally, the overall prediction of 3D image quality is cal-

culated by a weighted average of the left- and right-view image
quality:

Q3D = wlQ
2D
l +wrQ2D

r , (4)

where Q2D
l and Q2D

r denote the 2D image quality of the left- and
right-views, respectively.

Validation
We use three 3D image quality databases to test the proposed

algorithm, which are the Waterloo-IVC 3D Image Databases
Phase I and Phase II and the LIVE 3D Image Database Phase
II. All these databases contain both symmetrically and asymmet-
rically distorted stereoscopic images. The parameters of the pro-
posed blind 2D-to-3D quality prediction method are selected em-
pirically when working with Waterloo-IVC database Phase I, but
are completely independent of Waterloo-IVC database Phase II
and the LIVE database Phase II.

Blind 2D-to-3D quality prediction with 2DIQ-MOS
We first test the proposed blind 2D-to-3D quality prediction

model on all 3D images in Waterloo-IVC database by applying
it to the ground truth 2DIQ-MOS scores. The PLCC and SRCC
values between 3DIQ-MOS and the predicted Q3D value for all
stereoscopic images and for each test image group are given in Ta-
ble 2 (refer to Table 3 for categories of Waterloo-IVC database).
The comparison results with our FR 2D-to-3D quality prediction
model [31] are also given in Table 2. The corresponding scatter
plots are shown in Figure 1. From Table 2, it can be observed that

Table 2 Performance comparison of 2D-to-3D quality predic-
tion models (direct average, FR [31], and the proposed blind
prediction model), where the single-view quality is given by
ground truth 2DIQ-MOS

Waterloo-IVC Phase I Waterloo-IVC Phase II

Group Method PLCC SRCC PLCC SRCC

All

Average 0.8835 0.8765 0.8763 0.8820

FR [31] 0.9561 0.9522 0.9568 0.9477

Proposed 0.9509 0.9413 0.9507 0.9382

Symm.

Average 0.9801 0.9657 0.9799 0.9696

FR [31] 0.9801 0.9657 0.9799 0.9696

Proposed 0.9801 0.9657 0.9799 0.9696

Asym.

Average 0.8572 0.8471 0.8418 0.8501

FR [31] 0.9522 0.9452 0.9511 0.9424

Proposed 0.9460 0.9324 0.9433 0.9302

3D.1

Average 0.9801 0.9657 0.9799 0.9696

FR [31] 0.9801 0.9657 0.9799 0.9696

Proposed 0.9801 0.9657 0.9799 0.9696

3D.2

Average 0.6613 0.5433 0.6121 0.5874

FR [31] 0.9286 0.9160 0.9414 0.9497

Proposed 0.9370 0.9141 0.9459 0.9482

3D.3

Average 0.9666 0.9164 0.9471 0.8898

FR [31] 0.9714 0.9307 0.9602 0.9318

Proposed 0.9772 0.9427 0.9665 0.9380

3D.4

Average 0.9223 0.8271 0.9225 0.8798

FR [31] 0.9656 0.9357 0.9549 0.9320

Proposed 0.9664 0.9366 0.9652 0.9496

the proposed blind model performs as well as the FR 2D-to-3D
quality prediction model [31]. The proposed model outperforms
the direct averaging method in almost all cases, and the improve-
ment is most pronounced in the case of strong asymmetric distor-
tions (Group 3D.2) or when all test images are put together (All
3D image case). By comparing different columns of Figure 1,
we observe the impact of the proposed blind 2D-to-3D predic-
tion model on each image distortion type. For different distortion
types, although the direct averaging method produces different
distortions and levels of quality prediction biases, the proposed
method, which does not attempt to recognize the distortion types
or give any specific treatment for any specific distortion type, re-
moves or significantly reduces the prediction biases for all distor-
tion types. Moreover, for the mixed distortion case that provides
the strongest test on the generalization ability of the model, the
proposed method maintains consistent performance.

Blind 2D-to-3D quality prediction with 2D-BIQA
Before applying the proposed blind 2D-to-3D quality predic-

tion model on the base 2D-BIQA methods, we first examine these
2D-BIQA methods’ abilities in predicting 2DIQ-MOS scores of
single-view images in Waterloo-IVC 3D Image Database. Ta-
ble 4 reports PLCC and SRCC values between 2DIQ-MOS scores
and 2D-BIQA estimations. From Table 4, it can be seen that
BRISQUE, CORNIA and M3 archive the highest correlations
with subjective data among all tested 2D-BIQA methods.

We then test the proposed blind 2D-to-3D quality prediction
model by applying it to different base 2D-BIQA approaches on
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Figure 1. 3DIQ-MOS versus predictions from 2DIQ-MOS of 2D left- and right-views. First column, predictions by direct averaging the 2DIQ-MOS scores of

both views on Waterloo-IVC Phase I; Second column, predictions by the proposed model on Waterloo-IVC Phase I; Third column, predictions by direct averaging

2DIQ-MOS scores of both views on Waterloo-IVC Phase II; Fourth column, predictions by the proposed model on Waterloo-IVC Phase II.
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Table 3 Categories of test images on Waterloo-IVC 3D Image
Database

Group Description

2D.0 Pristine single-view images

2D.1 Distorted single-view images

3D.0 Pristine stereopairs

3D.1 Symmetrically distorted stereopairs with the same dis-

tortion type and distortion level

3D.2 Asymmetrically distorted stereopairs with distortion on

one view only

3D.3 Asymmetrically distorted stereopairs with the same dis-

tortion type but different levels

3D.4 Asymmetrically distorted stereopairs with mixed distor-

tion types and levels

Table 4 Performance comparison of 2D-BIQA models on
Waterloo-IVC 3D image database (Single-view Images)

Waterloo-IVC Phase I Waterloo-IVC Phase II

2D-BIQA PLCC SRCC PLCC SRCC

BIQI 0.8694 0.7790 0.7098 0.5798

BLIINDS-II 0.8169 0.5977 0.5436 0.6752

BRISQUE 0.9223 0.8912 0.9238 0.8892

CORNIA 0.9260 0.8861 0.9306 0.8934

DIIVINE 0.5943 0.5804 0.5660 0.5631

LPSI 0.7537 0.6679 0.7478 0.6962

M3 0.9353 0.9040 0.9038 0.8534

NIQE 0.8423 0.6685 0.7384 0.5616

QACS 0.7920 0.5543 0.7692 0.5452

TCLT 0.8471 0.6977 0.7900 0.6345

all three databases. Note that exactly the same blind 2D-to-3D
quality prediction model obtained from 2DIQ-MOS and 3DIQ-
MOS scores with Waterloo-IVC 3D image database Phase I is
used and thus this blind 2D-to-3D prediction model is completely
independent of any base objective 2D-BIQA approaches. Table 1
reports PLCC and SRCC values between 3DIQ-MOS and the pre-
dicted Q3D value with the direct averaging method and the pro-
posed blind 2D-to-3D quality prediction model. Note that the
cases of using 2DIQ-MOS and Information content and Distor-
tion Weighted Structural SIMilarity (IDW-SSIM) [31], a highly
competitive FR 2D-IQA method, are also included for compari-
son.

From Table 1, it can be seen that the proposed method signif-
icantly improves most base 2D-BIQA methods on both databases.
On the Waterloo-IVC 3D Image Database, BRISQUE, CORNIA
and M3 perform better than all competing 2D-BIQA methods
with both the direct averaging and the proposed prediction model,
which is consistent with their performance on single-view im-
ages. Interestingly, the performance of these 2D-BIQA methods
approximates that of IDW-SSIM, which gives the most accurate
prediction among FR 2D-IQA methods on both Waterloo-IVC 3D
and LIVE 3D database [12]. This suggests that a good 2D-BIQA
method can predict symmetrically distorted stereoscopic images
with good accuracy, and when properly combined with a 2D-to-
3D quality prediction model, can also well predict asymmetrically
distorted stereoscopic images.

On the LIVE 3D Image Database Phase II, the proposed
method achieves the best performance in the case of using QAC
and also pronounces competitive performance with BRISQUE,
CORNIA and M3. However, there is a large gap when compared
with the FR IDW-SSIM’s prediction performance. This suggests
that there is still potential to further improve 2D-BIQA methods
in terms of robustness and generalizability.

We have also compared the proposed method with state-of-
the-art 3D-BIQA approaches [32, 3, 33, 34] on the LIVE 3D im-
age database Phase II. The PLCC and SRCC values are reported
in Table 5. From Table 1 and Table 5, it can be seen that the
proposed method, when combined with QAC, performs better
than [32, 33, 34] but not as good as [3], which is a training-based
method and the results reported here are median performance of
1000 trails, each using 80% of the data in LIVE 3D Phase II
database for training and the remaining 20% for testing.

Table 5 Performance comparison of 3D-BIQA models on LIVE
3D image database Phase II

PLCC SRCC

3D-BIQA Symm. Asym. Symm. Asym.

Akhter [32] N/A N/A 0.4200 0.5170

Chen [3] N/A N/A 0.9180 0.8340

Gu [33] 0.0994 0.2271 0.1760 0.1141

Shao [34] 0.9119 0.5651 0.8966 0.5244

Computational complexity analysis
Speed is another important performance factor in evaluating

a BIQA method. We use program running time in the test stage of
all competing methods as an estimate of computational complex-
ity. The average processing time for a single-view image and for a
stereopair on Waterloo-IVC database Phase II and LIVE database
Phase II is summarized in Table 6. The system platform is In-
tel(R) Core(TM) i7-3770 @3.40GHz, 16.0 GB RAM and Win-
dows 7 64-bit version. All methods are tested with the MATLAB
R2015a software. Note that the resolutions of the single-view im-
ages are 1920 × 1080 and 640 × 360 for Waterloo-IVC database
Phase II and LIVE database Phase II, respectively. Also, the av-
erage running time for the proposed 2D-to-3D quality prediction
model is 1.8079s for Waterloo-IVC database Phase II and 0.2175s
for LIVE database Phase II. The total processing time for a stere-
opair should be computed as twice of the processing time for a
single-view image plus the time for 2D-to-3D prediction. From
Table 6, it can be seen that BLIINDS-II and DIIVINE are the
slowest, while LPSI and M3 are the fastest. Generally speaking,
BRISQUE and M3 achieve excellent tradeoffs between accuracy
and complexity.

Conclusion and Discussion
We propose a binocular rivalry inspired multi-scale model to

predict the quality of stereoscopic images from that of the single-
view images without referring to the original left- and right-view
images. We apply the proposed blind 2D-to-3D quality predic-
tion model to ten state-of-the-art base 2D-BIQA measures for
3D-BIQA. Experimental results show that the proposed blind
model, without explicitly identifying image distortion types, suc-
cessfully eliminates the prediction bias observed in direct averag-
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Table 6 Complexity comparison of 2D-BIQA models on 3D im-
age databases based on average running time (seconds)

2D-BIQA Waterloo 2D Waterloo 3D LIVE 2D LIVE 3D

BIQI 0.7211 3.2501 0.4539 1.1253

BLIINDS-II 435.1705 872.1489 48.4902 97.1979

BRISQUE 0.5219 2.8517 0.1510 0.5195

CORNIA 3.9315 9.6709 2.4399 5.0973

DIIVINE 86.1006 174.0091 11.8495 23.9165

LPSI 0.1220 2.0519 0.0130 0.2435

M3 0.3095 2.4269 0.0347 0.2869

NIQE 1.3471 4.5021 0.1181 0.4537

QACS 0.4539 2.7157 0.0483 0.3141

TCLT 8.7635 19.3349 1.1605 2.5385

ing method, leading to significantly improved quality prediction
of stereoscopic images. Among all the base 2D-BIQA methods,
BRISQUE and M3 achieve excellent tradeoffs between accuracy
and complexity.
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