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Abstract
Visual attention refers to the cognitive mechanism that al-

lows us to select and process only the relevant information arriv-
ing at our eyes. Therefore, eye movements will have a significant
dependency on visual attention. Saliency models, trying to sim-
ulate visual gaze and consequently, visual attention, have been
continuously developed over the last years. Color information
has been shown to play an important role in visual attention, and
it is used in saliency computations. However, psychophysical ev-
idence explaining the relationship between color and saliency is
lacking. The results of the experiment will be presented aiming at
studying and quantifying saliency of colors of different hues and
lightness specified in CIELab coordinates. In the experiment, 12
observers were asked to report the number of color patches pre-
sented at random locations on a masking gray background. Eye
movements were recorded using an SMI remote eye tracking sys-
tem and being used to validate the reported data. In the presenta-
tion, we will compare the reported data and visual gaze data for
different colors and discuss implications for our understanding of
color saliency and color processing.

Introduction
It was shown that our eyes receive between 108-109 bits of

data every second [1]. Most of this data is irrelevant, and if our
brain processed it would drastically decrease brains efficiency.
Processing and storing only the most relevant information; allows
us to save energy. Human visual attention plays a major role in
the selection of the information.

Visual attention is affected by two different but at the same
time related groups of mechanisms: top-down and bottom-up at-
tentional controls [2]. The top-down mechanism is voluntary and
drives attention to certain features, depending on the task, knowl-
edge and expectations of the observer. On the other hand, bottom-
up mechanisms rely on the characteristics of the stimuli and their
salient locations. Bottom-up attention is fast, involuntary, and
most likely feed-forward. The two mechanisms are considered
independent [3], but they are fully coordinated with each other
when it comes to define the eye gaze of a specific observer in a
particular visual scene.

In the recent decades, many computational models have tried
to achieve an understanding of the visual attention, mainly from
the characteristics of the visual scene (bottom-up) [4]. These
models calculate saliency maps, which represent the regions and
points of a visual scene which are more likely to catch out the
attention. To extract the salient areas from a visual scene, the in-
formation is separated and analyzed for different features. Orig-
inally, these features were the three proposed by the feature in-
tegration theory (FIT) [5]: color, intensity, and orientation. Later
on, other features have been added, such as motion, skin hue, face,
horizontal line, wavelet, gist, center-bias, curvature, spatial reso-

lution, optical flow, flicker, multiple superimposed orientations
(crosses or corners), entropy, ellipses, symmetry, texture contrast,
depth, or local center-surround contrast.

Computational saliency models are of a high importance and
have a broad range of applications in computer vision and robotics
such as image quality assessment, segmentation, compression,
scene classification, object recognition and detection and many
others. Therefore, it is crucial to have a robust and accurate
saliency computational model, agreeing with the human visual
behavior.

It has been shown that color plays an important role in the
visual saliency [6], but there is a lack of psychophysical evidence
showing how color characteristics differently affect our attention.
This work aims to overcome the lack of evidence with an exper-
iment designed to understand how different color characteristics
affect our way to analyze and observe a scene. In this experiment,
we use a signal detection paradigm and eye-tracking techniques
while observers are asked to detect and report color targets.

Background
This section reviews related work and background informa-

tion important for the present study. Firstly, we describe the
workflow of the basic cognitive visual attention models and their
computation of the color saliency. Secondly, we review several
psychophysical experiments described previously, which focus
on achieving a better understanding of the processes involved in
color attention.

The computational saliency models try to predict the points
and areas of a visual scene that will likely attract visual attention.
The first saliency model, proposed by Koch and Ullman [7], was
based on the FIT; it described the input scene according to three
different features: color, intensity, and orientation. Lately, a com-
plete implementation and verification of this model was proposed
by Itti et al. [8].

The model extracts and analyzes independently the infor-
mation for each feature, computes their relative saliency to cre-
ate corresponding conspicuity maps, and combines them together
into a final saliency map. The extraction of the color saliency
is inspired by the processing in the early human visual system,
where light of different wavelength is detected by the different
retinas cones and is processed using a center-surround shape of
the neuronal receptive fields in opponent color channels.

Ittis model takes an rgb image and extracts four different
channels for color information: red (R), green (G), blue (B), and
yellow (Y ). These four colors correspond to the different combi-
nation of cones in the ganglion and bipolar cells, then these cells
form a neural on-center off-surround field contrasting the oppo-
nent colors. Hence, to simulate this process the model creates a
central field with different sizes c ∈ {2,3,4} and a surround field
s = c+δ where δ ∈ {3,4}. Then it computes the center-surround
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contrast between the opponent colors.

RG (c,s) = |(R(c)−G(c))	 (G(s)−R(s))|
BY (c,s) = |(B(c)−Y (c))	 (Y (s)−B(s))|

(1)

Contrast of the different center and surround sizes are normal-
ized by the function N (.), promoting unique and strong peaks
of saliency. Afterwards all the color contrast maps are combined
into the conspicuity map.

C =
4
⊕

c=2

c+4
⊕

s=c+3

[
N (RG (c,s))+N (BY (c,s))

]
(2)

Finally the saliency map of the scene will be the result of averag-
ing the conspicuity maps of the three features: color (C ), intensity
(I ), and orientation (O).

S =
1
3

(
N (C )+N (I )+N (O)

)
(3)

Ittis et al. [8] computation of color saliency is replicated in the
vast majority of cognitive saliency models proposed by others.

The computation of the salient information of the color fea-
ture assumes and uses equal weighting when computing the con-
trast between the opponent colors (1), when combining the differ-
ent center-surround contrasts (2), and when combining the three
features into the final saliency map (3). Neither of these equalities
is supported by a psychophysical experimental evidence.

Moreover, data from several studies contradict the color
computation process utilized by Itti et al [8]. Thus, color features
were found to have a higher contribution to the visual attention
than intensity features [9]. It was demonstrated in an experiment
where two stimuli were shown to participants simultaneously on
the same shared background. The background was formed by
a random distribution of pixel colors controlled in the CIELAB
color space. The central portion of the two stimuli was defined
by different color distributions, having a predominant deviation
along either of the three axes in the color space. The participant
was reporting each time which of the two centers over the com-
mon background was more apparent or salient. After testing all
the possible combinations for both backgrounds and centers, it
was shown that the centers with large deviations along the chro-
matic axes (a∗ and b∗) were reported as significantly more salient
than the centers with the similar deviation on the lightness axis
(L∗). The second experiment validated the findings; a modifi-
cation of the color saliency computational method was proposed
giving more importance to the changes in color than the changes
in intensity. The accuracy of the proposed method and the Ittis
method was calculated and compared using eye tracking data as a
ground truth to show the 17.05% increase in accuracy.

Wool et al. [10] compared the saliency of unique and non
unique hues in a visual search task. They found that yellow tar-
gets had an advantage in terms of detection when compared to
the blue targets. In their experiment a set of stimuli was created
as random binary distributions containing both, unique and non-
unique colors with the varying number of patches of one of the
colors. Participants task was to count and report the number of
patches they could detect. The saliency of different patches was
measured by the reaction time (RT) and the number of saccades.
Results did not find any advantage in the search task for unique

Mean and Standard Deviation of the Stimuli Possible Back-
ground Distributions

B1 B2 B3 B4

L̄∗ 50 50 25 75

σ(L∗) 25 1 1 1

hues, but it did find an overall advantage for yellow patches; RT
was significantly shorter and the number of saccades lower when
counting yellow patches compared to the blue ones.

Methodology
In the previous section, there were presented discrepancies

between the computation of color saliency and psychophysical
findings. In our work, an experiment is presented which aims to
study the contribution of specific colors to the visual attention. In
the following section, all the details of the experiment are pre-
sented.

Design of stimuli
The stimuli is composed of random distribution patterns, to

avoid showing any familiar shape or object, so only bottom-up
mechanisms are employed during the experiment. Both mean and
standard deviation of these patterns are controlled under CIELAB
color space. The random distribution is formed at a pixel level.
The stimuli are set to be a square of 1440 × 1440 pixels, corre-
sponding to 28.98o × 28.98o visual angle degrees for the partic-
ipant’s view. The range of colors used to form the distributions
is limited to have the same availability of chromas C∗ for each
specific hue angle ho and lightness L∗.

The background of the stimuli is set to have a random dis-
tribution pattern with always mean in the center of the chromatic
axes (a∗ = 0 and b∗ = 0), and lightness mean variates depend-
ing on the case. The observer faces four different kinds of back-
ground lightness distributions; in the first instance (B1) the distri-
bution covers all the possible L∗ values, meanwhile the other three
background cases (B2,B3,B4) are be limited to lightness values
L∗ ∈{25,50,75}, respectively. Therefore, each of the background
will have an specific lightness mean L̄∗ and standard deviation
σ(L∗) (see table 1). The reason for selecting these background
is to be able to study if there is a difference when average light-
ness changes (B2 - B3 - B4) or when the average is fixed but the
standard deviation changes (B1 - B2).

The stimuli contain a fixed number of patches, which are
also random distribution patterns. The lightness distribution of
the patch will be at the same mean and σ as the background, and
the means C∗ and ho will be specified for each case; this selection
of values is made trying to cover the entire CIELAB color space
(4).

L̄∗P = L̄∗B
C̄∗P ∈ {1.3,1.675,2.05,2.425, . . . ,9.925}1×24

h̄o
P ∈ {10o,30o,50o,70o, . . . ,350o}1×18

(4)

In that way, a given patch P will be a random distribution pattern
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Figure 1. Diagram example of the creation of patches process for the 24

chromas of the specific hue ho = 210o and the background case B2.

with the same lightness mean as the background, one of the 24
possible values C̄∗P as a mean chroma and one of the 18 possible
hue angles h̄o

P as a mean hue. The patchs spatial shape is a cir-
cle with smoothed edges. Therefore, there is no abrupt change
between the patch and background, avoiding the patch being de-
tected by the shape or edge detection mechanisms, and presum-
ably only allowing a color detection. The patch was made to have
a diameter of 98 pixels on the screen, which corresponded to 2o

of the visual angle for the observer.
Each stimulus contains eight patches of the same hue value

but a different chroma. The 24 possible chromas for a specific
hue and lightness are distributed into three stimuli (see figure 1).
Patches are placed in random locations within the stimuli with
a constraint that two patches cannot be closer than 2o one from
another.

Consequently, all the specified chroma values for a partic-
ular hue and lightness are contained in the three stimuli. This
process was randomized for each hue, each lightness, and each
observer; as a result, there was never a repeated stimulus pattern
shown. This randomization allowed to reduce many of the biases
that could be produced by the patches locations.

Participants
A total number of 12 observers participated in the experi-

ment (seven female and five male observers). They had an aver-
age age of 24.14 years with the standard deviation of 1.23 years.
All the participants were students at Rochester Institute of Tech-
nology. They all had normal or corrected-to-normal visual acuity.
Due to the character of the experiment, participants’ color vision
was tested before the experiment by completing the Farnsworth-

Cabinet

Participant Monitor

Eye Tracking Device

Instructor Monitor 1 & 2

Participant

Chinrest

Instructor

Figure 2. Illustration showing the set up in the room where the experiment

was conducted.

Munsell 100 Hue color vision test, only allowing to participate
observers with the normal color vision. None of the subjects
knew the precise goal of the experiment. They were only told that
we are interested in understanding how people perceive different
colors. The Institutional Review Board at Rochester Institute of
Technology approved the recruitment of participants and the ex-
perimental procedure.

Apparatus
Stimuli were presented using a calibrated LCD monitor Col-

orEdge CG277 manufactured by EIZO, Inc., using their backlight
illumination of a wide-gamut LED. The monitor operated at 2560
× 1440 pixels, with the screen’ physical size of 59.7 × 33.6 cm
and a pixel size of 0.233 × 0.233 mm. The display was placed at
the 65 cm distance from the participant.

The monitor was calibrated using an external spectrora-
diometer i1 Pro 2 profiler manufactured by X-Rite, Inc. The spec-
troradiometer had a spectral range of 380 - 730 nm reporting in
10 nm steps. It uses a geometry 45o/0o with an aperture of 4.5
mm. The monitor was calibrated to a D65 white point. The three
primaries measured had xy coordinates [0.6876,0.3063] for red,
[0.2069,0.7059] for green, and [0.1483,0.069] for blue; produc-
ing a gamut wider than both sRGB and AdobeRGB standard pro-
files. The monitor was set to have a luminance of 80 cd/m2 and a
gamma of 2.2 for each of the three primaries.

The experiment was conducted under a controlled lighting
environment, with a temperature of 6500 K and a lightness level
of 55.81 lux. The participant sat in a cabinet with neutral gray
walls, where no chromatic reflection has occurred.

Eye movements of the participants were recorded using the
eye tracking device RED250 manufactured by SMI, Inc. The eye
tracker technology is an image based pupil with corneal reflection.
It had a temporal resolution of 250 Hz, calibrated with a 9 points
matrix, a spatial resolution of 0.03o and a gaze accuracy of 0.4o.
The eye tracker was placed below the monitor at the distance of
65 cm from the observer’s eyes.

An illustration of the experimental set up can be seen in Fig-
ure 2.
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Procedure
Before the experiment, participants adapted to the controlled

environment lighting (6500 K) during 15 minutes. Afterward,
they conducted the Farnsworth-Munsell 100 Hue color vision test;
it was a computer-based test done on the same calibrated display
in which the experiment was run. The subject sat in the cabinet
and placed his/her chin in a chin-rest, 65 cm from the monitor.
During the experiment, the instructor was situated outside the en-
closure controlling the experiment via the second computer. The
participant was introduced with the task and was shown three ex-
ample stimuli. After the observer confirmed the understanding of
the procedure, the test started.

The task of the observer was to report the number of patches
perceived for each stimulus. The reporting was done by saying the
number out loud. The instructor was recording the number and
operating the presentation program to display the next stimulus.
There was no time limit, and the stimuli were shown in random
order with respect to hues and lightness backgrounds. In between
the stimuli, three seconds of a dark screen with the central cross
was shown; pause was done to reduce a possible adaptation issue
and to avoid the appearance of afterimages.

A total number of 216 stimuli were shown to each observer.
After stimuli number 72 and 144 the observer was offered a break
which lasted around 5-10 minutes. Before each part of the ex-
periment started, and every time the observer moved his head out
of the chinrest, an eye tracking calibration was done. The cali-
bration was a 9 point matrix of crosses where the subject had to
fixate the gaze. The experiment was controlled from a second
monitor running MATLAB (MathWorks, Natick, MA) with the
Psychophysics Toolbox [11] and was connected to the calibrated
display. The eye tracking device was also connected to the in-
structor’s computer, so it could be controlled by the same script in
MATLAB.

The total time required to conduct the experiment, includ-
ing adaptation, color vision test and running the experiment was
approximately 80 minutes.

Results
The relative salience of a specific patch depends on the dif-

ference between the patch itself and the background. In our case,
each patch has a distribution differing from the rest in either light-
ness, hue or chroma. The design of the stimuli and the task per-
formed allows investigating saliency of each color characteristic.

Data recorded from both the participant’s report (number of
patches reported and time taken to report) and the participant’s eye
movements is analyzed depending on the hue angle and lightness
values of the patches.

Hue angle
Patches of 18 different hues were displayed to the observer.

For each hue, the participant saw the same number of patches and
with the same set of lightness and chroma values. Therefore the
probability of a specific hue patch being reported or fixated is a
referent of saliency, the more a hue catches our visual attention,
the higher the chance of the patches of this hue being reported.
The results of computing the different probabilities (see figure 3)
were calculated by using all the patches from various chroma and
lightness values, but sharing the same hue angle.

The probability of reporting changes significantly for differ-
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Figure 3. Probability of a patch being reported (top) and being fixated

(bottom) by each patch hue angle. Error bars denote the standard error of

mean (SEM).

ent hues; ANOVA test shows p < 10−12. Both red and blue hues
have the highest probability; meanwhile, the lowest probability is
in yellow hues. Comparing the specific hues used in the process
of color opponency shows no significant difference between red
and green hues (p= 0.12) but significant difference is found when
comparing yellow and blue patches (p < 0.0014). The probabil-
ity of fixating differs from the patterns previously seen. In this
case, red hues are less fixated than the rest; meanwhile, the op-
ponent green hues, are the most fixated. The difference between
the two hues is significant (p < 10−4). No significance appears
between yellow and blue hues (p = 0.869). The overall differ-
ence of probability of fixation for different hues is also significant
(p < 10−4). In the previous results, it could be seen a clear dif-
ferentiation between reporting and fixation probabilities. Greens
appear to be more fixated than reds, but this does not seem to af-
fect the reporting process. In contrast, blues are more reported
than yellow, while their probability of fixation is not significantly
different. Notably the pronounced differences are found for the
opponent hues (red, green, yellow and blue). At the same time
the rest of hues (orange and cyan) appear to be within the average
value range, except for the magenta hue which has a high number
of fixations yet is less reported than rest.

Chroma is the variable that influenced the detection of the
patch. The lowest chroma value was not reported for any of the
stimuli. At the same time, the highest chroma value was always
reported. Therefore, the probabilities of reporting and fixating for
different hues depending on chroma values were analyzed sepa-
rately (see figure 4). The probabilities of reporting have a cumu-
lative Gaussian shape; the 0.5 percentile is at chroma values 4.28
for red, 4.67 for green, 4.16 for blue, and 4.78 for yellow. It can
be observed that the probabilities of fixation never reach 0 or 1.
Since observers were performing a search task, they could poten-
tially randomly fixate an area where a non-perceived patch was
located. Therefore, the probability of a patch being fixated by a
random fixation was calculated (Prand = 0.29) and represented as
the gray area in the plot (figure 4). It can be seen that the patches
with the low reporting probability have a considerably higher fix-
ation probability. The fact of no patches with probability of fixa-
tion equal to 1 might be due a non-necessity of a precise fixation
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Figure 4. Probability of report (dashed line) and probability of fixation (solid

line) by different chroma values. The plots are comparing green vs red (top)

and blue vs yellow (down). The gray area represents the probability of a

patch being detected by a random fixation.

centered on the patch in order to detect and report it. This effect is
more predominant for high chroma values, where the probability
of fixation is lower than for the mid-range chroma values.

There is an increase in reporting red patches compared to the
green patches, although it was shown not to be significant. Green
patches were significantly more fixated overall than red ones, but
this effect is only observed for high chroma patches; while for the
low chroma patches, there is no significant difference.

Regarding blue versus yellow hues, a significant advantage
in reporting blue patches was found. Although the overall proba-
bility of fixations for blues compared to yellow hues did not show
any significant difference, the viewing behavior changes notice-
ably for low and high chroma values. The advantage of blue
against yellow remains in the fixation probability of low chroma
values; nevertheless in high chroma values yellow appear to have
a higher probability of fixation.

Lightness value
The stimuli presented to the observer had four different cases

of lightness distributions: three of them with the same lightness
standard deviation but variating in mean (B2, B3, and B4) and two
with a common mean but changing in standard deviation (B1 and
B2). In a given stimulus both background and patches shared the
same lightness distribution.

Results for each Lightness Distribution Case

B1 B2 B3 B4

Prob. Report
0.589 0.686 0.662 0.647

0.0068 0.0064 0.0066 0.0066

Prob. Fixate
0.623 0.616 0.612 0.611

0.0095 0.0096 0.0096 0.0096

T. Report (s)
31.82 26.36 27.41 28.78

1.105 0.936 0.96 0.922

T. Fixate (ms)
335.6 332.9 319.5 347.7

8.281 8.117 8.995 7.936

# of Fix.
13.7 12.79 12.15 12.82

0.435 0.453 0.543 0.457

Bold numbers represent the mean and italic numbers
the standard error of mean (SEM).

The probabilities of reporting and fixating, the time taken to
report the stimuli, the dwell time of fixations and the total number
of fixations for each stimulus were calculated for each lightness
distribution (see table 2).

B1 compared to B2 has a significantly lower probability of re-
porting (p < 10−9) and significantly longer time needed to com-
plete the task (p < 10−4). The probability of fixation, the total
number of fixation per stimuli, and the dwell time of fixation do
not show significant differences. When comparing the different
lightness means (B2 - B3 - B4), a significantly higher probability
of report is found for B2 against B3 (p < 0.0442) and B4 (10−4).
The rest of analysis do not show significant differences, although
it can be seen that less time is needed to complete the task when
B2.

Conclusions
The goal of the experiment was to study the detection and

the viewing behavior in the process of visual attention to specific
colors, which so far were not taken into account when computing
color saliency (1) – (3).

The results showed a clear discrepancy between the reported
stimuli and the eye tracking data. The highly fixated patches are
not necessarily reported, and vice versa. These results suggest the
presence of two different mechanisms. First one is an unconscious
detection of the patch, where the physical stimuli catches the at-
tention of the eye, but the observer is not aware of it. The sec-
ond one is the awareness of the detection, when the observer con-
sciously identifies and reports the patch. The existence of these
types of mechanisms has been previously proposed [12, 13]. Our
data can be considered as an experimental confirmation with re-
spect to color detection.

The patches for all the hues used in the experiment showed
that the fixations occurred for the lower chroma than the chroma
for reporting. Significant differences are found for blue and yel-
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low hues: blues are more fixated without being reported, but
the tendency changes for the conscious detection with reporting,
where yellow is easily fixated (a similar behavior is present for
red vs. green hues). High chroma values is where the highest dis-
crepancies between reporting and fixating are found: the highly
reported hues have a lower fixation rate. As previously suggested,
this can be due to the no need of a precise fixation to report highly
salient patches.

Therefore advantages of some hues over others are found for
both unconscious detection and aware reporting. None of these
facts are taken into account when computing color saliency in ex-
isting models, where all hues contribute to color saliency in an
equal weight.

The lightness level of the color it has also shown to affect
the color saliency: where same color distances in different light-
ness level differ in their contribution to visual attention. Colors
with a lightness mean L∗ = 50 and no deviation were more eas-
ily reported than when either mean or deviation changed; these
advantages are not present when looking into the fixation data.

As a future work, we propose to create a computational
model that distinguish between the two mechanisms: detection
and awareness. The model should apply different weighting to
each hue corresponding to the results found. Furthermore, this
model should adapt to both scenarios: unconscious attention (eye
tracking data) and aware detection (observer report).
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