
Methods and measurements to compare men against machines
Felix A. Wichmann1,2,3, David H. J. Janssen1, Robert Geirhos1, Guillermo Aguilar4,5, Heiko H. Schütt1,6, Marianne Maertens4,5,
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Abstract
Recent advances in computational models in vision science

have considerably furthered our understanding of human visual
perception. At the same time, rapid advances in convolutional
deep neural networks (DNNs) have resulted in computer vision
models of object recognition which, for the first time, rival hu-
man object recognition. Furthermore, it has been suggested that
DNNs may not only be successful models for computer vision, but
may also be good computational models of the monkey and hu-
man visual systems. The advances in computational models in
both vision science and computer vision pose two challenges in
two different and independent domains: First, because the lat-
est computational models have much higher predictive accuracy,
and competing models may make similar predictions, we require
more human data to be able to statistically distinguish between
different models. Thus we would like to have methods to acquire
trustworthy human behavioural data fast and easy. Second, we
need challenging experiments to ascertain whether models show
similar input-output behaviour only near “ceiling” performance,
or whether their performance degrades similar to human perfor-
mance: only then do we have strong evidence that models and
human observers may be using similar features and processing
strategies. In this paper we address both challenges.

Introduction
Successful visual perception constitutes a remarkable com-

putational achievement, a complex inference in which we convert
high-dimensional sensory input into meaning. As vision scientists
we would like to understand the algorithms and computational
principles used by the visual system when we perceive the world.
Computational models of vision are essential tools in this endeav-
our, allowing and forcing us to precisely specify and subsequently
test our hypothesized algorithms and computational architectures.

An early example of a ground-breaking—and both influen-
tial as well as inspirational—computational model in vision is the
Reichardt-detector as a model of motion detection [1]. In recent
years more complex models in vision have greatly expanded the
scope of modelling in vision science because they are able to op-
erate on arbitrary images, and are thus not limited to abstract and
often one-dimensional parametric stimulus families (see, e.g. the
successful early vision model of Goris and colleagues, limited to
inputs specifying (putative) spatial frequency channel activities
rather than image intensities [2]). Examples of successful mod-
els in vision science applicable to arbitrary images are the mod-
els of peripheral vision and crowding [3, 4], or the image-based
model of early vision capable of predicting a large number of clas-

sic psychophysical findings developed in the Neural Information
Processing group in Tübingen [5].

In computer vision the pace of the advances in the last few
years has arguably been even faster: since the seminal work by
Krizhevsky, Sutskever & Hinton [6], convolutional deep neural
network (DNNs) models have proven superior to previous com-
puter vision models in virtually all domains they have been ap-
plied to—and frequently not only by a small margin. DNN mod-
els of object recognition, e.g. rival human performance for the
first time in history [7].

But even in the non-applied vision sciences DNNs have en-
tered the limelight: it has recently been suggested that DNNs
might not only be astounding tools for solving computer vision
problems, but may also be good models for the neural architec-
ture and algorithms of human core object recognition [8, 9, 10],
possibly due to converging man and machine solutions to the
same basic problem: “which objects are present in this scene?”
[11]. Human observers are thought to achieve this feat via fast
and presumably largely feedforward processing, allowing them to
reliably identify objects in photographs of natural scenes in the
central visual field within a single fixation in less than 200 ms
[12, 13, 14, 15].

Obviously, we wholeheartedly welcome the recent advances
in computational models of vision, both in vision science as well
as in computer vision. Remarkable as they are, they pose two
challenges in two different and independent domains, however:

First, because the latest computational models have a much
improved prediction performance compared to previous ones, we
are likely to require more human data to be able to statistically
distinguish between different models. Thus we would like to have
methods to acquire trustworthy human behavioural data easy and
fast. Second, we need behaviourally challenging experiments to
test the more successful models against human data. This is re-
quired to ascertain whether the latest computational models show
similar input-output behaviour only for tasks for which they are
near “ceiling” performance, or whether their performance de-
grades similar to human performance if challenged: only then do
we have strong evidence that models and human observers may
be using similar features and processing strategies.

Methods for the fast and agreeable acquisi-
tion of trustworthy human behavioural data

In general, better methods for measuring human perfor-
mance includes improvements in experimental stimuli as well as
experimental protocols. Both aspects receive continuous atten-
tion in the vision sciences. An example of the former is the ei-
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dolon factory recently presented by Koenderink and colleagues
[16]), which we believe will prove very useful to assess models of
crowding as well as object and material property recognition. An
example of the latter is the strict protocol to test metamerism for
image-based models [17].

However, here we are seeking methodological improvements
at an even more basic level, and we are interested in improvements
allowing us to gather high-quality data faster and more intuitively.
Ideally, we would like to find experimental paradigms suitable
for experiments using naı̈ve observers rather than highly-trained
psychophysicists.

Quantifying human behaviour dates back to at least 1860,
when the experimental physicist Gustav Theodor Fechner pub-
lished Die Elemente der Psychophysik in which he argued to ap-
proach the mind using the rigorous measurement approach so suc-
cessful in the natural sciences [18]. The year 1860 is now widely
regarded not only as the year of birth of the scientific discipline of
psychophysics, but as the beginning of the quantitative, scientific
study of psychology.

Quantitative analysis of behaviour is limited to a triad of pos-
sible measurements [19]:

1. The open behavioural response—be it a response and its as-
sociated “correctness” or “subjective equality”, or a judge-
ment of appearance or magnitude.

2. The time it took to make the open behavioural response, i.e.,
the response or reaction time (RT).

3. The degree of belief in the accuracy of the response, i.e., the
meta-cognitive feeling of certainty in the accuracy or appro-
priateness of one’s response.

Even within the measurement of the open behavioural re-
sponse there are two distinct traditions, however: One concerned
with thresholds or just noticeable differences (JNDs), i.e. with
measuring the minimal stimulus difference an observer can dis-
criminate. The other one is instead concerned with the subjective
magnitude of an observer’s experience, e.g. with perceived bright-
ness, length, size or depth, to name but a few. Some authors refer
to the first tradition as a sensory discrimination tradition, and to
the second tradition as one of sensory judgement [20]. Attempts
to relate stimulus appearance to discriminability date back to the
roots of psychophysics [18]. However, thus far the link has proven
extraordinarily difficult to forge, and a unified psychophysical law
is not yet in sight. For overviews and details of the debate the
reader is referred to the work of Gescheider [21], Krueger [22]
and Ross [23]).

To compare computational models to human vision, the open
behavioural response of the JND-type is typically what models are
assessed on: e.g. what is the percentage of correct object classifi-
cations for a model or a human observer? 1

From a purely methodological point of view this reliance on
JND-style experiments and data is reasonable: JND-style data,
particularly if collected using the method of forced-choice, have
been shown to yield the most reliable and robust estimates of hu-
man behaviour [24, 25, 19]. Forced-choice JND data are “good”
data.

1Except in the important case of perceptual image or movie quality
assessment, when the perceived quality is of interest, very much in the
sensory judgement tradition.

However, collecting forced-choice JND data is neither fast
nor agreeable: First of all one typically requires dozens if not hun-
dreds of trials to obtain a reliable and robust estimate of thresh-
old (the JND). Second, being presented with two almost indis-
tinguishable images next to each other or in quick succession,
and being asked to indicate which one is the “target” or “sig-
nal” image is not intuitive; in our experience many observers
do not find it particularly agreeable either. Typically observers
require hundreds if not thousands of training trials before one
can be certain that the measured threshold represents indeed the
limit of an observer’s visual system [25]. Thus within the field
of psychophysics many experimenters rely on so-called trained
observers, and conducting a psychophysical study is often a time-
consuming undertaking.

Maximum likelihood difference scaling and stimulus dis-
criminability

Contrary to JND-style methods, maximum likelihood differ-
ence scaling (MLDS) is a method for the estimation of percep-
tual (difference) scales based on the judgment of clearly visible
or supra-threshold differences in stimulus appearance [26, 27].
Furthermore, the method can be used together with the method of
triads, when observers are presented with three different stimuli
and have to indicate which of two are more different to the third.
In our experience both naı̈ve as well as seasoned observers find
the method of triads with supra-threshold stimuli very intuitive
indeed. They require less training and find such experiments to
be (almost) fun.

Recently MLDS has also been used successfully to esti-
mate near-threshold discrimination performance in the context of
the watercolour effect [29]. To achieve this link between JND-
style stimulus discriminability and supra-threshold appearance
the authors assumed a standard signal detection theory (SDT) [30]
model with equal-variance Gaussian noise on the internal sensory
scale (see [29] or [28] for details, as well as Figure 1, top panel).

Using MLDS as a psychophysical method for sensitivity es-
timation is potentially appealing, because, first, it is more intuitive
and appealing to observers, and observers require less training
prior to the commencement of the experiment proper. In addition,
MLDS has been reported to need less data than forced-choice pro-
cedures [28].

Through computer simulations and a real psychophysical ex-
periment in which observers’ thresholds for slant-from-texture
was measured, Aguilar and colleagues [28] showed that the
thresholds recovered by both methods are indeed comparable, as
shown in Figure 1, bottom panel. Particularly in the middle of the
scale—typically in the middle of the stimulus range—both meth-
ods’ point estimates are in good agreement.

Figure 1, bottom panel, shows a substantial difference, how-
ever, in the size of the confidence intervals around the estimated
thresholds as returned by the respective software packages. The
difference is particularly clear to see in the top panel of Figure 2:
2AFC confidence intervals are often a factor of two, three or
four larger than those obtained from MLDS. The Bayesian confi-
dence intervals—technically credible intervals—of the simulated
forced-choice data were obtained using psignifit 4, a software
thoroughly tested to calculate correct confidence intervals [31].
Thus we have no reason to doubt their adequate coverage, i.e.
that, in a frequentist setting, approximately 95% of replications
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Figure 1. Comparison of MLDS and forced-choice thresholds using sim-

ulated data. Top: Difference scale for a simulated MLDS experiment using

an accelerating internal scale as found, e.g. for slant-from-texture. The pro-

cedure to read out thresholds is illustrated by arrows. Here we read out the

threshold (Θ̂|MLDS) for a standard of 0.6 (vertical grey line) at a performance

level of d′ = 1 for comparisons above (red arrow) and below (blue arrow) the

standard. Bottom: Thresholds derived with each methods are plotted against

each other. They are expressed relative to the standard (st = 0.6) for com-

parisons above (red colours) and below (blue colours); error bars indicate

95 % confidence intervals as returned by the respective software packages.

(Adapted from Figure 3 in [28])

will fall within the 95% confidence interval. The bottom panel of
Figure 2 shows the coverage of MLDS for three levels of inter-
nal noise (the internal noise is estimated by the MLDS package
together with the scale). The dashed line in the figure indicates
the correct coverage of 95%. Clearly, the confidence intervals
returned by the MLDS package are too narrow, and thus do not
achieve adequate coverage. Furthermore, coverage is neither in-
dependent of the amount of internal noise, nor constant along the
scale: it is particularly poor towards the end where the internal
scale was estimated to be shallow.

One should not forget that MLDS was not designed as a tool
for sensitivity estimation—but it does remarkably well outside
the bounds it was designed for. Aguilar and colleagues found it
to return reasonably accurate threshold estimates from fewer tri-
als than traditional forced-choice methods, at least for the tested
slant-from-texture task. The confidence intervals around thresh-
old should not be trusted, however, but for large scale compar-
isons between computational models and human observers there
may well be scenarios where it is more important to obtain the
thresholds from many naı̈ve observers quickly.

Challenging methods for comparing DNNs
and human observers

DNNs in computer vision are designed to accomplish high-
level vision tasks, most notably object recognition, and they have
undoubtedly proven their usefulness in the domain they were de-
veloped for.

Their success as algorithmic solutions for object recognition
has generated substantial interest in DNNs within the vision sci-
ence community. However, the usefulness of DNNs as models of
human vision is not yet as clear. On the one hand, there is a grow-
ing number of studies reporting to find similarities between DNNs
trained on object recognition and properties of the monkey or hu-
man visual system [9, 32, 10]. At the same time, however, there
are, e.g., the well-known discrepancies as indicated by so-called
adversarial examples. That is, it is possible to minimally perturb
images such that they are misclassified by most DNNs but not by
human observers [33, 34].

Thus we aim to obtain a better understanding of the similar-
ities and differences in overt classification behaviour—and thus,
very likely, computation—between DNNs and human vision. To
this end we performed standard and straightforward object iden-
tification experiments with DNNs and human observers on ex-
actly the same images under conditions favouring single-fixation,
purely feed-forward processing to ensure a fair comparison be-
tween men and machines.

We chose to perform a contrast reduction experiment, be-
cause processing and perception of contrast is a fundamen-
tal and comparatively well understood aspect of human vision
[35, 36, 37, 38, 39, 40]. Furthermore, we know that scene classifi-
cation in animal and non-animal images is very robust to contrast
reduction [41]. Thus we believe that comparing DNNs to human
object recognition using contrast manipulations is an ideal task to
to assess the degree of similarity between the tested DNNs and
human observers, that is, to investigate to what degree the tested
DNNs are good models for human vision.
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Figure 2. Top: The width of confidence intervals derived from 2AFC and

MLDS are plotted against each other for multiple simulations at one standard

stimulus value (standard value 0.4). Bottom: Coverage of confidence inter-

vals of MLDS at different standard levels, and for three different simulated

noise levels (σ ). Ideally, the coverage should be 95% (shown as a black

dashed line) and independent of both σ and the standard value. (Adapted

from Figure 5 in [28])

Figure 3. Response screen. Categories row-wise from top to bottom:

knife, bicycle, bear, truck, airplane, clock, boat, car, keyboard, oven, cat, bird,

elephant, chair, bottle, dog. Icons modified from the MS COCO website.

Methods
We used three DNNs for our comparisons between men and

machines: AlexNet [6], GoogLeNet [42] and VGG-16 [43]. All
three networks were specified within the Caffe framework [44]
and acquired as a pre-trained model. VGG-16 was obtained from
the Visual Geometry Group’s website; AlexNet and GoogLeNet
from the BLVC model zoo website. We reproduced the respective
specified accuracies on the ILSVRC 2012 validation dataset in
our setting.

The images serving as psychophysical stimuli were extracted
from the training set of the ImageNet Large Scale Visual Recog-
nition Challenge 2012 database [45]. This database contains mil-
lions of labeled images grouped into 1,000 very fine-grained cat-
egories (e.g., the database contains over a hundred different dog
breeds). If human observers are asked to name objects, however,
they most naturally categorize them into many fewer so-called
basic or entry-level categories, e.g. dog rather than German shep-
herd [46]. The Microsoft COCO (MS COCO) database [47] is an
image database structured according to 91 such entry-level cate-
gories, making it an excellent source of categories for an object
recognition task. Thus for our experiments we fused the care-
fully selected entry-level categories in the MS COCO database
with the large quantity of images in ImageNet. Using WordNet’s
hypernym relationship (x is a hypernym of y if y is a ”kind of”
x, e.g., dog is a hypernym of German shepherd), we mapped ev-
ery ImageNet label to an entry-level category of MS COCO if
there was such a hypernym relationship, retaining 16 clearly non-
ambiguous categories with sufficiently many images within each
category (see Figure 3 for a iconic representation of the 16 cate-
gories; the figure shows the icons used for the observers during
the experiment).

In our psychophysical experiments all stimuli were presented
on a VIEWPixx LCD monitor (VPixx Technologies, Saint-Bruno,
Canada) in a dark chamber. The 22” monitor had a spatial reso-
lution of 1920× 1200 pixels and a refresh rate of 120 Hz. All
stimuli were presented with a resolution of 256× 256 pixels at
the center of the screen, subtended an area of 3×3 degrees of vi-
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sual angle at our viewing distance of 123 cm. Stimulus presenta-
tion and response recording were controlled using MATLAB (Re-
lease 2016a, The MathWorks, Inc., Natick, Massachusetts, United
States) and the Psychophysics Toolbox extensions version 3.0.12
[48, 49] along with in-house routines. Responses were recorded
using a standard computer mouse.

Our goal was to measure classification performance in man
and DNN as a function of the type and amount of image
manipulation—we show a manipulation of image contrast here,
but used additional manipulations in our experiments (see [50]).
We report data for the contrast-experiment using four contrast lev-
els: 100%, 10%, 5% and 3% of the original contrast. In each trial
the images were shown for only 200 ms, immediately followed
by a full-contrast pink noise mask (1/f spectral shape) of the same
size. Participants had to choose one of 16 categories by clicking
on a response screen (Figure 3), shown for 1500 ms. The surround
of the screen was set to the mean grayscale value of all images in
the dataset.

Our experimental protocol—short presentation times fol-
lowed by a high contrast noise mask, fast-paced responding us-
ing a fixed temporal rhythm of the trial sequence not under the
observer’s control—was chosen to allow the fairest possible com-
parison between human behaviour and DNNs as models of the
human visual system for core object recognition.

At each level we randomly chose 10 images per category
from the pool of images without replacement for a total of 160
trials per contrast level per observer (i.e., no observer ever saw
an image more than once. Within each category, all conditions
were counterbalanced). Figure 4 shows, for illustration purposes,
three images drawn randomly from the pool of images used in the
experiment at various contrast levels.

Five observers took part in our experiment, one of them an
author of this paper (RG). All participants except the author were
either paid e 10 per hour for their participation or gained course
credit. All observers were students of the University of Tübingen
and reported normal or corrected-to-normal vision. Thus the
human psychometric function shown in Figure 5 is based on
5x4x10x16 = 3200 trials, and each confusion matrix in Figures 6
and 7 is based on 800 trials.

Results
Accuracies for the contrast-experiment ranged from 93%

(VGG-16 and GoogLeNet) and 84− 86% (AlexNet and human
average) for full contrast to near chance performance ( 1

16 =
6.25%) for 3% contrast. Figure 5 shows that AlexNet’s and
GoogLeNet’s performance dropped rapidly with decreasing con-
trast, whereas VGG-16’s decrease in performance for lower con-
trast levels was slower. Error bars in Figure 5 indicate the
range of DNN accuracies resulting from seven repetitions on non-
overlapping sets of images, with each run consisting of the same
number of images per category and condition that human ob-
servers were exposed to. This serves as an estimate of the variabil-
ity of DNN accuracies as a function of the images in ImageNet.

Figure 5 shows that human observers outperform all DNNs
in the low contrast regime, despite that human observers
have a lower performance at 100% contrast than VGG-16 and
GoogLeNet. Thus a plot of the relative decrease of performance
with decreasing contrast would show an even larger human con-
trast invariance as that exhibited by DNNs. (Error bars for human

Figure 4. Three example stimuli at various contrasts; experimental data

reported in this paper used only four contrast levels, 100%, 10%, 5% and

3%. Because of the inaccuracies inherent in printing and displaying low con-

trast stimuli we show a number of additional contrast levels for illustrative

purposes. Three images (categories bicycle, dog and keyboard) were drawn

randomly from the pool of images used in the experiment.
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Figure6. Averagehumanconfusionmatrixforfull-contrastimages.

DNNsarealreadygoodmodelsforhumanventralstreamprocess-
ing,wenotonlyexpectsimilaroverallclassificationperformance,
butweexpecthumanobserversandDNNstomakeerrorsonsim-
ilarcategories:theyshouldusesimilarcomputationstoarriveat
theircategorizations.Bothpredictionsarebornoutinthedatawe
havepresentedthusfarinFigure5anddiscussedaboveinrelation
toFigure6.

Itshouldbenoted,however,thatthesimilarityinthecon-
fusionmatricesbetweenDNNsandhumanobserverswerecal-
culatedfornearceilingperformance:Allmodelsandhumanob-
servershaveonaverage84–93%ofallresponsesonthemaindi-
agonal,sotherearesimplynotmanyresponsesthatcoulddif-
fer.Thusitmaybemoreinstructivetolookatconfusionmatrices
wherelessentrieslieonthediagonal,i.e.forlowercontrastswhen
categorizationismorechallenging.

Doingthis,weobservethatthesimilaritybetweenhuman
observersandDNNsprogressivelyvanishesifthecontrastislow-
ered:Figure7showsconfusion-differencematrices,thatis,the
confusionmatrixofaDNN—hereVGG-16—minustheconfu-
sionmatrixofaveragehumanperformanceatagivencontrast
level. WechosetoshowVGG-16becauseofallthethreeDNNs
tested,itseemstobethemosthumanlike(seeFig.5);forAlexNet
andGoogLeNetthedifferenceswouldbeevenstarker.Positive
numbers,showningreen,indicatethatVGG-16respondedmore
frequentlyinagivencellthanhumanobservers.Negativenum-
bersinredshowtheopposite.Saturatedcoloursthusindicate
systematicdifferencesbetweenVGG-16andhumancategoriza-
tionperformance;saturatedcoloursoffthemaindiagonalshow
systematicdifferencesintheerrorsmadebyVGG-16andhuman
observers,saturatedcoloursonthemaindiagonalshowsystem-
aticdifferencesincorrectcategorization.InspectionofFigure7
showsthatforcontrastsof10%VGG-16beginstoclassifymany
ofthepresentedimagesasboats,andby3%itvirtuallyalways
respondswithboat,exceptforclocksandbottleswhichitstill
classifiesreasonablycorrectlyandbetterthanhumanobservers.
BothothernetworksshowasimilarpatterntoVGG-16,butthey
“home-in”ondifferentcategories:Atlowcontrast—densefog—
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Figure 7. Confusion difference matrices between VGG-16 and average

human performance for 10% (top) and 3% (bottom) contrast images; see

text for details.

AlexNet mainly sees a world full of bears, GoogLeNet sees only
birds, bears and airplanes. Contrary to such degenerate error pat-
terns in DNNs for low contrast images, human observers show
much more distributed and “reasonable”pattern of errors.

Discussion
DNNs and human observers exhibit roughly similar clas-

sification performance and similar confusion matrices for non-
degraded (“easy”) images under experimental conditions believed
to result in single fixation, feedforward-only processing in hu-
man observers. If image contrast is reduced, however, we observe
three effects: First, human observers’ performance is more robust
to contrast reductions. Second, for difficult low contrast object
categorization all DNNs degenerate in a very non-human way:
they begin to lump objects in one or very few categories only—a
behaviour not shown by any of our human observers. Third, we

find GoogLeNet and VGG-16 are equally good at categorising
full-contrast images despite large architectural differences; how-
ever, for intermediate contrast images (10%) VGG-16 is clearly
superior to GoogLeNet. Thus not only for comparisons of DNNs
to human observers, but also for comparisons between different
DNN architectures, it appears useful to include very challenging
stimuli in one’s benchmark dataset.

Implications for computer vision
Object recognition from ImageNet-like images as a com-

puter vision problem is currently being almost considered
“solved” because of the truly remarkable progress within the last
five years in this area. As a result more and more researchers
are turning their attention to even more difficult challenges such
as learning from video sequences, 3D vision and unsupervised
learning (to name but a few). Here we report evidence that de-
spite excellent performance under “normal viewing conditions”,
all three investigated DNNs are yet to achieve human-level robust-
ness under more difficult low contrast conditions. That human
observers outperform DNNs when the signal gets weaker is also
consistent with our more extensive exploration of additional im-
age manipulations weakening the signal: added visual noise and
eidolon-distortions [50]. This indicates that, from a computer vi-
sion perspective, DNNs do not yet show a similar level of robust
object recognition under challenging conditions as that shown by
the human visual system.

We do not think that the inferior contrast robustness of the
three evaluated DNNs is insurmountable: Perhaps it would al-
ready be enough to include low contrast images into the training
data to allow networks to acquire more contrast invariance and
thus overcome the problem. In vision science, divisive (contrast)
normalization [51, 52] is well-known, and part of almost all mod-
els of the early stages of the visual system (e.g. [38, 31]). Per-
haps incorporating divisive normalization into DNNs as recently
suggested by Ren and colleagues [53] may solve the problem in a
more human-vision-like way than merely augmenting the training
data. In fact, we speculate that contrast-normalization may well
be the significant ingredient to help DNNs to exhibit robustness
to contrast reductions.

An additional difference between current computational
models and human observers is the latter’s ability for meta-
cognition, i.e. to notice when tasks are hard or when they are
likely to fail—we mentioned this above as the third possible mea-
sure of human behaviour in the section on MLDS. This meta-
cognitive feeling of certainty in the accuracy or appropriateness
of one’s response may enable human observers to switch their in-
ternal processing, e.g. to use different features, and thus to modify
their behaviour. It is not inconceivable that such meta-cognitive
abilities contribute to the diverging categorization behaviour be-
tween DNNs and human observers with decreasing image con-
trast, and as shown by the diverging confusion matrices with de-
creasing image contrast. Phrased positively, it may thus be ben-
eficial to train machine learning algorithms to detect when they
fail, or how sure they are about their own computations, in order
to improve their robustness for applications.

In any case, we argue that precise behavioural comparisons
between man and machine will advance our understanding of ex-
isting algorithmic differences between the two, and will enable us
to build upon the insights gained in order to engineer more robust
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models.

Implications for human vision
As vision scientists we want to understand animate vision

systems. Theory and computational models are essential if we
ever hope to understand the complex inference made by our visual
system, converting high-dimensional sensory input into meaning.

For object recognition, DNNs show the first successful al-
gorithmic solution for this inference, a solution that only a few
years ago seemed decades away. Thus it is perhaps not surpris-
ing that similarities found between DNNs and object recognition
in human or monkey were greeted with enthusiasm by some vi-
sion scientists [9, 32, 10, 54]. We, too, are enthusiastic, but at
the same time we think we need to carefully examine exactly
what the similarities—and differences—are. In the 1990s dur-
ing the previous wave of enthusiasm for neural networks, which
in psychology went under the heading of “connectionism”, all
too often similarities were exaggerated and differences ignored.
In 1991 Douglas and Martin criticised and warned against over-
generalisations, and pointed out that similarities between artificial
and real neural networks were often superficial and more linguis-
tic than substantial [55].

Obviously, models come at various levels, and in many
flavours. The processing units in psychophysical models, e.g.
correspond to “channels” and should not be thought of as repre-
senting single neurons. The linear-nonlinear-Poisson (LNP) cas-
cade model is often useful to understand spiking patterns of neu-
rons, but it does not include, and thus cannot explain, the dynam-
ics of ion channels in the cell membrane. Clearly, this does not
argue against psychophysical channel models or the LNP model
being useful in some contexts. Useful models are not required to
explain everything, and they need not be able to predict behaviour
perfectly. What is important, however, is to specify exactly what
the scope of one’s model is, and what, in case of DNNs applied to
vision sciences, putative similarities and correspondences in ar-
chitecture, processing, features or receptive fields exactly refer to.

We show that three influential DNNs with very high object
recognition performance for full contrast images are not as robust
against contrast reductions as are human observers in terms of
overt behaviour. Furthermore, human observers and DNNs do
not appear to use similar algorithms at low contrast, as shown by
the diverging confusion matrices at low image contrast. This, we
argue, points to important differences between the tested DNNs
and human vision: the difference increases with changing inputs,
and there is thus not only a (less interesting) systematic, static
offset between models and behaviour4.

We think that DNNs could prove very useful to further our
understanding of human vision: it is an exciting time for compu-
tational modelling of human vision. What our results do show,
however, is that none of the three tested DNNs is yet an algorith-
mically equivalent model of the human ventral stream, not even
for the putative feed-forward processing of core object recogni-
tion.

4It shows, furthermore, how important it is to explore the entire psy-
chometric function from chance performance to best performance and not
rely on a single threshold or point estimate only. Not that we claim this
to be a novel insight: David Green writes about this already in 1960 (see
p. 1199 [56]).

Conclusions
1. MLDS together with the method of triads represents a po-

tentially useful method not only for appearance measure-
ments for which it was designed for, but also for the fast and
agreeable acquisition of trustworthy human threshold-type
data—at least if the important caveats regarding the size of
the returned confidence intervals are heeded.

2. AlexNet, GoogLeNet, VGG-16, and human observers ex-
hibit roughly similar classification performance and similar
confusion matrices for full contrast colour and black-and-
white images under experimental conditions believed to re-
sult in single fixation, feedforward-only processing in hu-
man observers.

3. However, the similar performance for strong signals does
not generalise to weak signals: human observers’ perfor-
mance is more robust to severe contrast reduction than that
exhibited by AlexNet, GoogLeNet and VGG-16. Further-
more, at very low contrasts object categorization in all three
tested DNNs degenerates in a non-human way: they pre-
dominantly categorize all objects in few categories only—a
behaviour not shown by our human observers.

4. Evaluation methods going beyond prediction performance
may help our progress: similarities in object recognition per-
formance between models and human observers was shown
to stem from different behaviour if analysed at a more fine-
grained per category level (confusion matrices)—at least in
the challenging, low contrast conditions.

5. We envisage that our specification of the failures, and
their possible reasons—contrast normalization, meta-
cognition—, as well as our newly collected dataset provide
excellent opportunities to improve computational models in
vision.
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[5] H. H. Schütt and F. A. Wichmann, “An image-based model for early
visual processing [abstract],” Journal of Vision, vol. 16, p. 960,
2016.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classi-
fication with deep convolutional neural networks,” in Advances in

IS&T International Symposium on Electronic Imaging 2017
Human Vision and Electronic Imaging 2017 43



Neural Information Processing Systems, pp. 1097–1105, 2012.
[7] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:

Surpassing human-level performance on ImageNet classification,”
in Proceedings of the IEEE International Conference on Computer
Vision, pp. 1026–1034, 2015.

[8] D. L. Yamins and J. J. DiCarlo, “Using goal-driven deep learning
models to understand sensory cortex,” Nature Neuroscience, vol. 19,
no. 3, pp. 356–365, 2016.

[9] D. L. Yamins, H. Hong, C. F. Cadieu, E. A. Solomon, D. Seibert,
and J. J. DiCarlo, “Performance-optimized hierarchical models pre-
dict neural responses in higher visual cortex,” Proceedings of the
National Academy of Sciences, vol. 111, no. 23, pp. 8619–8624,
2014.

[10] N. Kriegeskorte, “Deep neural networks: A new framework for
modeling biological vision and brain information processing,” An-
nual Review of Vision Science, vol. 1, no. 15, pp. 417–446, 2015.

[11] R. Dekel, “Human perception in computer vision,” ICLR, vol. under
review, 2017.

[12] J. J. DiCarlo, D. Zoccolan, and N. C. Rust, “How does the brain
solve visual object recognition?,” Neuron, vol. 73, no. 3, pp. 415–
434, 2012.

[13] M. C. Potter, “Short-term conceptual memory for pictures,” Journal
of Experimental Psychology: Human Learning and Memory, vol. 2,
no. 5, p. 509, 1976.

[14] S. Thorpe, D. Fize, and C. Marlot, “Speed of processing in the hu-
man visual system,” Nature, vol. 381, no. 6582, pp. 520–522, 1996.

[15] F. A. Wichmann, J. Drewes, P. Rosas, and K. R. Gegenfurtner, “An-
imal detection in natural scenes: Critical features revisited,” Journal
of Vision, vol. 10, no. 4:6, pp. 1–27, 2010.

[16] J. J. Koenderink, M. Valsecchi, A. J. van Doorn, J. Wagemans, and
K. R. Gegenfurtner, “Eidolons: Novel stimuli for vision research,”
Journal of Vision, vol. in press, 2017.

[17] T. S. A. Wallis, M. Bethge, and F. A. Wichmann, “Testing models
of peripheral encoding using metamerism in an oddity paradigm,”
Journal of Vision, vol. 16, no. 2, pp. 4, 1–30, 2016.

[18] G. T. Fechner, Elemente der Psychophysik. Leipzig: Breitkopf und
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