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Abstract 
A visual system cannot process everything with full fidelity, 

nor, in a given moment, perform all possible visual tasks. Rather, it 
must lose some information, and prioritize some tasks over others. 
The human visual system has developed a number of strategies for 
dealing with its limited capacity. This paper reviews recent evidence 
for one strategy: encoding the visual input in terms of a rich set of 
local image statistics, where the local regions grow — and the 
representation becomes less precise — with distance from fixation. 
The explanatory power of this proposed encoding scheme has 
implications for another proposed strategy for dealing with limited 
capacity: that of selective attention, which gates visual processing 
so that the visual system momentarily processes some objects, 
features, or locations at the expense of others. A lossy peripheral 
encoding offers an alternative explanation for a number of 
phenomena used to study selective attention. Based on lessons 
learned from studying peripheral vision, this paper proposes a 
different characterization of capacity limits as limits on decision 
complexity. A general-purpose decision process may deal with such 
limits by “cutting corners” when the task becomes too complicated.  

Human vision is full of puzzles. Observers can grasp the 
essence of a scene in less than 100 ms, reporting with a fair degree 
of reliability whether it is a beach or a street, whether it contains any 
animals, and what materials are present [1, 2]. Yet when probed for 
details, they are at a loss. Change the scene while masking the 
motion transients, and the observer may have great difficulty 
determining what has changed, even when the change is quite 
visible once it has been spotted (“change-blindness”, [3, 4]). 
Human vision is better than the best computer vision systems ever 
created, yet it is also easily fooled by visual illusions. People can 
look at a line drawing of a 3D object, and effortlessly understand its 
shape, yet have difficulty noticing the impossibility of an Escher 
never-ending staircase. We have difficulty finding our keys, even 
when they prove quite visible once found and fixated, and look 
nothing like other items on our desk.  

How does one explain this combination of marvelous successes 
and quirky failures? It perhaps seems unsurprising that these diverse 
phenomena at present have no unifying explanation.  What do they 
have in common?  Certainly, scene perception, object recognition, 
and 3-D shape estimation require different mechanisms at some 
stage of visual processing. Nonetheless, might there exist a coherent 
explanation in terms of a critical stage of processing that determines 
performance for a wide variety of tasks, or at least a guiding 
principle for what tasks are easy and difficult? 

Attempts to provide a unifying account have explained the 
failures in terms of the visual system having limited capacity (see 
[5] for a review). Our senses gather copious amounts of data, 
seemingly far more than our minds can fully process at once. At any 
given instant, we are consciously aware of only a small fraction of 
the incoming sensory input. We seem to have a limited capacity for 
awareness, for memory, and for the number of tasks we can 
simultaneously carry out, leading to poor performance at tasks that 
stress the capacity limits of the system. 

A classic example of the limited capacity logic concerns visual 
search. Suppose a researcher runs an experiment in which observers 
must find a target item among a number of other “distractor” items. 
As in many such experiments, the experimenter picks a target and 
distractors such that individual items seem easy to distinguish. 
Nonetheless, the researcher finds that search is inefficient, i.e., that 
it becomes significantly slower as one adds more distractors. Why 
is search difficult? One can easily discriminate the target from the 
distractors when looking directly at them. The poor search 
performance implies that vision is not the same everywhere, or, as 
Julian Hochberg put it, “vision is not everywhere dense” [6]. If 
vision were the same throughout the visual field, search would be 
easy. 

By a popular account, the main reason vision is not the same 
everywhere has to do with attention, in particular selective attention. 
In this account, attention is a limited resource, and vision is better 
where the observer attends than where they do not. The visual 
system deals with limited capacity by serially shifting attention. 
Some tasks require selective attention, and as a result are subject to 
the performance limits inherent in having to wait for this limited 
resource. In the case of difficult search tasks, for instance, the target-
distractor discrimination is presumed to require attention, making 
search significantly slower with increasing number of display items. 
On the other hand, preattentive tasks do not require attention; they 
can be performed quickly and in parallel, leading to easy search. 
Selective attention is typically described as a mechanism that gates 
access to further visual processing [7, 8, 9] rather than engaging in 
processing itself. Once the visual system selects a portion of the 
visual input, perception happens. Throughout this paper, when I 
refer to selective attention, I mean a gating mechanism. 
Traditionally, researchers have taken visual search phenomena as 
evidence that selective attention operates early in the visual 
processing pipeline, and that correct binding of basic features into 
an object requires selective attention [10].  

Though this account has had a certain amount of predictive 
power when it comes to visual search, it has been problematic 
overall [11, 12, 13, 14]. The need for selective attention to bind basic 
features seems to conflict with: the relative ease of searching for a 
cube among differently lit cubes [15, 16, 17]; with easy extraction 
of the gist of a scene [18, 19, 2, 20, 21, 22, 23] and of ensemble 
properties of sets [24, 25, 26]; and with what tasks require attention 
in a dual-task paradigm [27].  

My lab has argued instead that a main way in which the visual 
system deals with limited capacity is through encoding its inputs in 
a way that favors foveal vision over peripheral. Peripheral vision is, 
as a rule, worse than foveal vision, and often much worse. Peripheral 
vision must condense a mass of information into a succinct 
representation that nonetheless carries the information needed for 
vision at a glance. Only a finite number of nerve fibers can emerge 
from the eye, and rather than providing uniformly mediocre vision, 
the eye trades off sparse sampling in the periphery for sharp, high 
resolution foveal vision. This economical design continues into the 
cortex: more cortical resources are devoted to processing central 
vision at the expense of the periphery. 

We have proposed that the visual system deals with limited 
capacity in part by representing its input in terms of a rich set of 
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local image statistics, where the local regions grow — and the 
representation becomes less precise — with distance from fixation 
[28]. Such a summary-statistic representation would render vision 
locally ambiguous in terms of the phase and location of features. 
Thus, this scheme trades off computation of sophisticated image 
features at the expense of spatial localization of those features.  

One of the main implications of this theory for vision science 
has been the need to re-examine understanding of visual attention. 
Most experiments investigating selective attention have had a 
peripheral vision confound. A number of phenomena previously 
attributed to attention may instead arise in large part from peripheral 
encoding.  

This paper begins by reviewing both phenomena in peripheral 
vision and our model of peripheral encoding. It reviews what we 
have learned about perception, as well as the implications for 
theories of attention, particularly selective attention. Our 
understanding of peripheral vision constrains possible additional 
mechanisms for dealing with limited capacity. In particular, I 
propose that the brain may face limits on decision complexity, and 
deal with those limits by performing a simpler version of any too-
complex task, leading to poorer performance at the nominal task. 

A lossy encoding in peripheral vision 
Peripheral vision is susceptible to clutter, as evidenced by the 

phenomena of visual crowding. Classic crowding refers to greater 
difficulty identifying a peripheral target when flanked by 
neighboring stimuli than when it appears in isolation. Crowded 
stimuli may appear jumbled and uncertain, lacking crucial aspects 
of form, almost as if they have a textural or statistical nature [29]. 
Crowding has often been studied with a target identification task, 
and with a target object flanked by other objects, but it almost 
certainly affects perception more generally. Crowding points to 
significant qualitative differences between foveal and peripheral 
vision. These differences are far greater than the modest differences 
between foveal and peripheral acuity, and are likely task-relevant 
for a wide variety of tasks [30]. The phenomena of crowding have 
been described in detail in a number of recent review papers [31, 32, 
33, 34].  

My lab has argued that one must control for or otherwise 
account for the strengths and limitations of peripheral vision before 
considering explanations based upon visual attention [30, 14, 35]. 
Otherwise, one risks fundamental misunderstandings about both 
perception and attention. Whether the paradigm is visual search, 
change detection, dual-task, scene perception, or inattentional 
blindness – all tasks whose results have been interpreted in terms of 
the mechanisms of attention – the often-cluttered stimuli lie at least 
in part outside of the fovea, and are potentially subject to crowding.  

A number of researchers have suggested that crowding results 
from “forced texture perception,” in which information is pooled 
over sizeable portions of the visual field [29, 36, 31, 32]. Based on 
these intuitions, we have developed a candidate model of the 
peripheral encoding that we hypothesize underlies crowding. In this 
Texture Tiling Model (TTM), originally described in [28], the visual 
system computes a rich set of summary image statistics, pooled over 
regions that overlap and tile the visual field. Because of the 
association with texture perception, we chose as our set of image 
statistics those from a state-of-the-art model of texture appearance 
from [37]: the marginal distribution of luminance; luminance 
autocorrelation; correlations of the magnitude of responses of 
oriented V1-like wavelets across differences in orientation, 
neighboring positions, and scale; and phase correlation across scale. 
This seemingly complicated set of parameters is actually fairly 

intuitive: computing a given second-order correlation merely 
requires taking responses of a pair of V1-like filters, point-wise 
multiplying them, and taking the average over the pooling region. 
This proposal [28, 38] is not so different from models of the 
hierarchical encoding for object recognition, in which later stages 
compute more complex features by measuring co-occurrence of 
features from the previous layer [39, 40, 41, 42]. Second-order 
correlations are essentially co-occurrences pooled over a 
substantially larger area. 

This encoding scheme provides an efficient, compressed 
representation. It captures a great deal of information about the 
visual input. Nonetheless, the encoding is lossy, meaning one cannot 
reconstruct the original image exactly. We hypothesize that the 
information maintained and lost by this encoding provides a 
significant constraint on peripheral processing and constitutes an 
important and often task-relevant way in which vision is not the 
same across the visual field. 

The proposed lossy encoding has potential implications for 
virtually all visual tasks. Simply re-examining possible confounds 
in selective attention studies requires the ability to apply a single 
model to recognition of crowded peripheral targets, visual search, 
scene perception, ensemble perception, and dual-task experiments. 
In order to make predictions for this wide range of stimuli and tasks, 
one needs a model applicable to arbitrary images.  

In addition, critical to our understanding of this encoding 
scheme has been the use of texture synthesis methodologies for 
visualizing the equivalence classes of the model. Using these 
techniques, one can generate, for a given input and fixation, images 
with approximately the same summary statistics [28, 37, 43, 14, 38]. 
These visualizations allow for easy intuitions about the implications 
of the model. Figure 1BC shows two examples synthesized from the 
image in Figure 1A. Information that is readily available in these 
synthesized images corresponds to information preserved by the 
encoding model. 

Understanding a model through its equivalence classes is a 
relatively rare technique in human and computer vision (see [44, 37, 
45] for a few notable exceptions). Visualizing the equivalence 
classes of TTM allows one to see immediately that many of the 
puzzles of human vision may arise from a single encoding 
mechanism [38, 28, 43, 14]. Doing so has suggested new 
experiments and predicted unexpected phenomena [28, 46].  

On the other hand, getting intuitions from a low-to-midlevel 
model by viewing the model outputs is fairly common. Researchers 
will filter an image to mimic a modeled contrast sensitivity function 
(CSF), and judge whether the CSF can predict phenomenology (e.g. 
[47]); they will apply a center-surround filter and judge whether that 
can predict lightness illusions (e.g. [48]); they will look at a model’s 
predictions for perceived groups, and judge whether they match 
known perceptual organization phenomena (e.g. [49]).  

Furthermore, visualization of the equivalence classes has 
facilitated the generation of testable model predictions, allowing us 
to study the effects of this relatively low-level encoding on a wide 
range of higher-level tasks. Observers view the synthesized images, 
and perform essentially the original task, whether that be object 
recognition, scene perception, or some other task [38, 28, 50, 51, 35, 
52, 53, 54]. This allows one to determine how inherently easy or 
difficult each task is, given the information lost and maintained by 
the proposed encoding. The next section reviews evidence that the 
proposed encoding can qualitatively – and in a many cases 
quantitatively – predict a range of visual perception phenomena.  
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Limitations of peripheral vision: A factor in 
many phenomena, and well modeled by TTM 

For the last decade, we have worked to re-examine a number 
of visual phenomena to determine whether peripheral vision was 
a factor, and whether the encoding modeled by TTM can predict 
behavioral performance. This includes peripheral object 
recognition and some of the phenomena associated with the study 
of visual attention: visual search, scene perception, change-
blindness, and dual-task performance. 

We have shown that TTM quantitatively predicts 
performance at a range of peripheral recognition tasks. Balas et al. 
[28] showed that a local encoding in terms of the hypothesized 
image statistics can predict identification of a peripheral letter 
flanked by similar letters, dissimilar letters, bars, curves, and photos 
of real-world objects. Rosenholtz, et al. [35] and Zhang et al. [52] 
further demonstrated that this model could predict identification of 
crowded symbols derived from visual search stimuli. More recently, 
Keshvari and Rosenholtz [51] have used the same model to explain 
the results of three sets of crowding experiments, involving letter 
identification tasks [55], classification of the orientation and 
position of a crossbar on t-like stimuli [56], and identification of the 
orientation, color, and spatial frequency of crowded Gabors [57]. In 
all of these cases, we made predictions based on the information 
encoded in a single pooling region that included both target and 
flankers within the critical spacing of crowding. Figure 3A plots 
some of these results. Note that there are no parameters in the fit 
of the model to data; model predictions do not merely correlate 
with behavioral results, but rather quantitatively predict the data. 

By incorporating information from multiple, overlapping 
pooling regions, Freeman and Simoncelli [38] showed that they 
could predict the critical spacing of crowding for letter triplets. Their 
pooling region sizes and arrangement were set to make it difficult to 
distinguishing between two synthesized images with the same local 
statistics.  

Peripheral discriminability of target-present from target-absent 
patches predicts difficulty of search for a T among Ls, O among Qs, 
Q among Os, tilted among vertical, and conjunction search [35]. The 
same is true for search conditions that pose difficulties for selective 
attention models: cube search vs. search for similar polygonal 
patterns without a 3-D interpretation [52]. Differences between 
foveal and peripheral vision are task-relevant for visual search. 

TTM, in turn, predicts the difficulty of these peripheral 
discrimination tasks, and thus search (Figure 3B). There is some 
evidence from search experiments that the model requires additional 
or different features (e.g. worse encoding of oblique compared to 
horizontal or vertical lines, and more correlations between different 
orientations across space). Running TTM has given us some 
intuitions about how to improve the model. 

More recently, with model in hand, we subtly changed classic 
search displays in ways that should not affect predictions according 
to traditional selective-attention-for-binding explanations. We 
changed stroke width, stroke length, or the set of distractors, and 
correctly predicted whether these changes would make search easier 
or more difficult [46].  

A primary difficulty with early selection accounts has been the 
ease with which observers can perform many scene tasks. The 
attentional mechanism that supposedly underlies visual search 
difficulty has seemed incompatible with the ease with which 
observers can get the gist of a scene. TTM gives us, perhaps for the 
first time, a mechanism that can explain both difficult search and 
easy scene perception. We asked observers to perform a number of 
navigation-related and other naturalistic scene tasks both at a glance 
– while fixating the center of the image – and free-viewing. Figure 
3C shows predictions of TTM vs. performance at a glance [50]. The 
prediction is quite good. This graph exaggerates the power of the 
model of peripheral vision, however, as some tasks are inherently 
difficult even when free-viewing. Figure 3D compares instead how 
much more difficult each task is when fixating instead of free-
viewing. We see that TTM also does a reasonable job of predicting 
which tasks are harder when one cannot move one’s eyes, i.e. when 
forced to use extrafoveal vision. Although these are quantitative 
predictions of scene perception performance, the fit is not 
parameter-free; in modeling the interaction between multiple 
pooling regions we chose particular amounts of overlap and 
density of pooling regions. 

Freeman and Simoncelli [38] similarly modeled 
computations of these image statistics over multiple pooling 
regions. They adjusted the size of the pooling regions until 
observers could not tell apart two synthesized images with the 
same local encoding. They demonstrated that observers have 
trouble distinguishing between the synthesized “metamers”, even 
when attending to regions with large differences. One can 
reinterpret this result as showing that they can predict 

 
Figure 1. A. Original scene image. B,C. According to the Texture Tiling Model, these images are members of the equivalence class of (A). Details that appear 
clear in these visualizations are those predicted to be well encoded by the model. TTM preserves the information necessary to easily tell that this is a street 
scene, possibly a bus stop, with cars on the road, people standing in the foreground, and a building and trees in the background. However, given this 
encoding, an observer may not be certain of the details, such as the number and types of vehicles, or the number of people. 
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performance on a different sort of scene task -- telling apart two 
distorted real-world images. 

TTM correlates well with performance at peripheral object 
recognition, search, and scene perception. However, there is 
clearly unexplained variance in all of these cases, and room for 
model improvement. If anything, the model seems to throw away 
a bit too much information. Human peripheral vision performs 
somewhat better than predicted, in the case of both crowded 
object recognition and scene perception (mostly in the case of 
recognizing a crowded object in the scene). 

Easy search tasks do not always correspond to easy dual-tasks 
(see Figure 2). These results are puzzling if one relies on search and 
dual-task paradigms to uncover what visual processes require 
attention, since the two paradigms appear to give different answers 
[27]. Understanding peripheral vision provides insight into this 
conundrum [14]. The tasks that are easy in both paradigms are easy 
in peripheral vision (both behaviorally, and according to TTM). The 
tasks that are easy in dual-task but hard search tasks simply suffer 
much more crowding in the search displays. TTM predicts more 
faithful encoding of a single scene than of an array of scenes, and 
more faithful encoding of a single colored bar than an array of bars 
of different orientations and colors. Two of the tasks that are hard in 
the dual-task paradigm involve distinguishing upright vs. inverted 
symbols (cube and red-green circle). A single pooling region in 
TTM would have difficulty distinguishing between upright and 
inverted, although multiple pooling regions will seldom confuse the 

two (depending on details such as the size of the stimuli). TTM 
indicates that these difficult dual-tasks should be more difficult or 
complex than the easy dual-task conditions. Actually, the upright vs. 
inverted cube turns out to be a difficult search task when the display 
is less regular, suggesting the easy search may have resulted from 
emergent features [14]. For the remaining elements of the matrix 
(rotated L vs. +, and L vs. T) TTM predicts the search behavior, and 
we have argued that the difficult dual-task may arise because of 

 
Figure 2. Perfect predictions would lie along the dashed line. Solid line shows best fit between model and data. A. Results from three crowding studies, 
overlaid (o, triangle, and + from [51], filled circles from [52], squares from [28]). For a wide range of stimuli and tasks, TTM performs well at predicting 
crowded object recognition. B. TTM predicts search difficulty [52]. C. TTM predicts difficulty at a range of scene gist tasks. D. Many of these scene tasks are 
only slightly more difficulty when fixating, but object detection is considerably worse. The model correlates well with performance, but underpredicts object 
detection. [50] For details, please see the original papers. 

 
Figure 3. Tasks that seem not to require attention in a visual search 
paradigm sometimes require attention in a dual-task paradigm. Based on 
Figure 4A in [27]. TTM helps make sense of these results. 
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response conflicts with the central T vs. L task. TTM appears to 
resolve the differences between search and dual-task performance. 
Note that while TTM provides insight into which dual-tasks are easy 
and hard, it makes clear neither the reason all conditions are easy as 
a single task, nor the impact of attention, nor precisely why some 
tasks are easy dual tasks and others are difficult. This paper attempts 
to address these issues in a later section on decision complexity. 

In a phenomenon known as change blindness, observers have 
difficulty detecting the difference between two similar images, if 
presented in such a way as to disrupt motion and other transients that 
would cue the difference [58, 59, 3, 60, 61]. A popular explanation 
of change blindness suggests that detecting the change requires 
selective attention to the change in order to perceive and/or encode 
the changed region in memory (e.g. [3, 62]). Might peripheral vision 
play a role? We can see hints that a pooling model like TTM predicts 
change blindness from the visualization of the equivalence classes 
in Figure 1. While the encoding preserves a great deal of useful 
information to support getting the gist of the scene, precise details 
are lost. This may explain why change blindness occurs [38, 14, 63]. 
Behavioral evidence has also pointed to peripheral vision as a factor; 
researchers have found eccentricity effects. Observers are worse at 
detecting changes if they have fixated farther from the changed 
object, either before or after the change [64, 61, 65]. In pilot work, 
we asked observers to distinguish between two frames of a standard 
change blindness stimulus, when both the change and its location 
were known. Presumably the observers attended to the known 
location and to the features of the change. We found that the 
threshold eccentricity at which one can reliably discriminate a 
known change is predictive of difficulty detecting that change 
(Sharan et al., under review). Rather than looking for a change 
merely where one fixates, our results suggest that vision looks for 
evidence of a change throughout the visual field, possibly in parallel. 
However, evidence of a change can be weak due to loss of 
information in peripheral vision, making change detection difficult.  

Both behavioral evidence and modeling suggest that peripheral 
vision plays a greater role than previously thought in a number of 
phenomena. These phenomena are a subset of those used to study 
attention, particularly selective attention. The importance of 
peripheral vision suggests a very different answer to questions like: 
how can one so easily get the gist of a scene, when one cannot easily 
search for a T among Ls? Scene tasks may seem to human cognition 
more complex than judging T vs. L, but due to the nature of 
encoding in the visual system, the scene tasks are actually simpler, 
as more information is available. These results by themselves do not 
preclude the possibility that attentional limits also play a role in the 
phenomena of search or change blindness. Certainly, attentional 
limits play some role in dual-task and inattentional blindness 
phenomena. However, this rethinking certainly calls into question 
what we have learned about attention, and requires us to reassess 
what role attention might play.  

Revisiting theories of attention 
As discussed in the previous section, one way in which the 

visual system appears to deal with limited capacity is through use of 
efficient encoding strategies in peripheral vision. This largely static 
underlying encoding presumably does not vary appreciably with the 
task. On the other hand, attention, broadly speaking, refers to 
dynamic, short-term mechanisms by which the brain adapts to the 
task at hand. Due to the brain’s limited capacity, our visual systems 
cannot automatically perform every possible visual task at the same 
time. Instead, the brain may concentrate resources on one task in a 
given moment, and then switch to focus on another task. In 

attempting to separate the static from the dynamic mechanisms used 
to deal with limited capacity, what have we learned about the 
dynamic attentional mechanisms?  

Selective attention may not be early 
One of the main pieces of evidence in favor of early selection 

in vision has been visual search [10]. As discussed, the early 
selection account has been problematic, at best. It struggles to 
explain easy cube search [15, 16, 17], it struggles to explain the 
impact on search of small image changes to the target and distractors 
[46], it seems incompatible with easy scene and set perception [24, 
25, 26, 22, 20, 66, 67, 12, 11, 12], and with dual-task results [27]. 
Physiology early in the visual system (V1/V2), while it shows 
significant effects of attention, seems not to show the sorts of strong 
“gating” proposed by early selection accounts [68, 69, 70] or shows 
it only late (>150 ms) after stimulus onset [70]. Early selection also 
deviates quite a bit from subjective experience, though reasoning 
from such experience deserves skepticism. It is unclear whether 
mere priors on a stable world, memory, and rapid shifts of attention 
can explain our percept of a rich stable world. 

My lab has suggested an alternative explanation for visual 
search performance that requires no early selection. We have shown 
that peripheral vision alone can explain the relative difficulty of a 
range of search tasks [46, 35, 52]. This means, at the very least, that 
search experiments had a serious confound. Therefore, we cannot 
neatly interpret search results in terms of the stage at which selective 
attention operates, thereby calling into question early selection. In 
addition, our model of encoding in peripheral vision provides a 
consistent explanation of many puzzling phenomena, including 
those problematic for an early selection account [14, 35, 52, 50]. In 
other words, we have not merely called into question the early 
selection account due to peripheral vision confounds, but have also 
demonstrated that there exists a viable alternative explanation with 
more predictive power. 

Attention may not in general selectively gate 
processing 

The visual system clearly adapts to perform the task at hand. 
The question is to what degree that adaptation takes the form of 
selecting and processing only a portion of the input; is attention 
merely a gating mechanism? What evidence remains that attention 
operates by serially selecting a portion of the display for processing? 

Many lab tasks explicitly ask observers to selectively process a 
target. Observers may, for instance, be asked to identify or report a 
change to only a particular display item among distractors (e.g. [71, 
72]), or to track only a subset of the moving items in a display (e.g. 
[73]). Generally speaking, the visual system is incredibly successful, 
and we would expect it to do its best to mimic selective attention 
when doing so is the task. One must question to what degree we can 
generalize from such tasks to non-selective tasks like search or 
getting the gist of a scene.  

If anything, top-down selective attention tasks provide an 
example of vision’s surprising failures rather than its impressive 
successes. Lavie et al. [72], for instance, find significant distractor 
compatibility effects when the task requires observers to respond as 
to the identity of the target while also remembering a single digit. 
Perhaps even when the nominal task requires information only about 
the target it remains a poor evolutionary strategy to ignore all other 
stimuli [74]. Nonetheless, one can argue that it is odd, if attention 
generally acts by selecting a portion of the display for further visual 
processing, that observers are poor at intentionally attending in this 
way.  
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In the past, researchers have interpreted both difficult search 
and difficulty detecting a change as evidence for serial processing, 
and particularly as evidence for a selective gating mechanism. We 
have suggested instead that search difficulty arises from losses in 
peripheral vision. These losses occur even when fully attending. 
This reopens the door to a largely parallel mechanism punctuated by 
occasional shifts of fixation to gather more information [75, 76, 35, 
77, 78]. These results do not disprove a selective attention story; in 
general, it is difficult to distinguish between truly parallel processing 
and very rapid shifts of a serial mechanism, based on behavioral 
evidence alone. However, it does mean that difficult visual search 
cannot be used as evidence for selective attention [79, 80, 81, 82, 
14, 35, 77]. 

Similarly, easy scene perception has long been taken as 
evidence of a more parallel, less selective attention story. Work 
demonstrating that peripheral vision is a predictive factor in change 
detection [64, 61, 83, 84] similarly points to more of a parallel 
mechanism than previously thought. Rather than needing selective 
attention to a change in order to perceive it, our visual systems 
appear to utilize parallel processing to look for evidence of a change. 
However, we are poor at detecting changes at least in part because 
of loss of information in the periphery. Again, attention in some 
form may well play a role in change blindness, but we cannot simply 
interpret change blindness as evidence for selective attention per se.  

More recently, my lab has found evidence against a selective 
gating explanation for the “invisible gorilla” (inattentional 
blindness) phenomenon. In the original experiment [85], observers 
are better at noticing the gorilla when counting passes of the team 
dressed in black than when counting passes of the team in white. 
Supposedly when selectively attending to the black team, the 
observer is likely to also select the gorilla, which is colored similarly 
to black team members. The gorilla thus gains access to higher level 
processing, allowing the observer to notice it. When selectively 
attending to the white team, the dissimilar gorilla is unlikely to be 
selected. We had all observers do a task with the black team, 
presumably selecting black team players and filtering out white 
team players. If selective attention to the black team were all that 
was required to notice the gorilla, noticing rates should be high. 
Instead, whether or not the observers noticed the gorilla was a 
function of whether their fixation patterns matched those of people 
counting black team passes or white team passes. The dependence 
on fixation suggests a greater role for the strengths and limits of 
peripheral vision. The lack of dependence on the task-relevant 
features and regions of the display – where presumably the observer 
was attending – suggests at best a limited role for selective attention 
in the invisible gorilla phenomena. 

It is also worth noting the mismatch between physiological 
phenomena and traditional selective attention theory. 
Physiologically, selective attention effects should look like some 
sort of suppression of responses to unattended stimuli. To get such 
effects, however, researchers have had to place multiple stimuli 
within a single receptive field [70, 8]. Classic selective attention 
theory instead would predict suppression effects when multiple 
stimuli appeared anywhere in the visual field. 

In summary, recent work has called into question the notion 
that a primary means of adapting to the task consists of selectively 
gating some portions of the display for later processing. Some of the 
evidence in favor of selective attention may have resulted from 
peripheral vision confounds, and other evidence seems inconsistent 
with the traditional story.  

Should we classify tasks as preattentive vs. 
requiring attention? 

Traditionally, coupled to the notion of selective attention is the 
idea that some tasks require attentional resources, while others do 
not. Recent work, however, has called this dichotomy into question.  

Researchers have long used visual search tasks to discriminate 
between which tasks require attention and which are “preattentive”. 
Inefficient search meant that discriminating between the target and 
distractors required attention, whereas efficient search meant the 
discrimination could be done preattentively. However, our work 
calls into question this interpretation, just as it called into question 
early selection [14, 35, 52]. Search may actually probe peripheral 
vision, not what does or does not require attention. 

The visual search paradigm only implicitly manipulates 
attention, by stressing resource limits with a task that requires 
processing multiple items. Dual-task experiments explicitly 
manipulate attention by asking observers to perform either a single 
task or two simultaneous tasks. Nonetheless, dual-task experiments 
may not indicate what tasks do and do not require attention. We have 
argued that peripheral vision preserves more task-relevant 
information for performing easy dual tasks than difficult dual tasks 
[14]. Neither search nor dual-task experiments clearly tell us what 
judgments require attention.  

More generally, researchers have identified few tasks that 
consistently appear not to require attention. Noticing an oddball item 
(e.g. a moving item among stationary) or getting the gist of a scene 
may not require attention [10, 86, 87, 88]. Even these results have 
been called into question. Detecting a change has long been 
considered easy if observers have access to a sufficiently salient 
motion transient. However, Matsukura et al. [89] showed that when 
performing a secondary task, observers miss changes even when the 
motion transient is present. Similarly, Cohen et al. [90] have shown 
that getting the gist of a scene becomes difficult in a dual-task 
paradigm, so long as the secondary task is sufficiently hard. (See 
also [91, 92, 93].) It seems that no tasks categorically require no 
attentional resources. If we abandon the dichotomy of tasks either 
requiring or not requiring limited attentional resources, where does 
that leave us?   

Constraints on further capacity limits 
The study of attention asks, essentially, about the limits on 

what tasks we can perform at a given moment: 
• What the nature of these limits?  
• Which tasks run up against a capacity limit and which do not?  
• What is the nature of the mechanisms that adapt to the task, 

and what impact do they have on task performance? 
A popular answer has been that of selective attention theory 

[10, 94]. According to this theory, there are limits on access to 
higher-level processing; tasks requiring higher-level processing run 
up against these limits, while tasks requiring only lower-level 
processing do not; and selective attention deals with these limits by 
gating access to later stages of processing. However, as discussed 
above, this account has been problematic. The previous section 
argued for abandoning notions of early selection, of attention 
operating primarily by gating access to later processing, and of only 
a subset of tasks requiring attention.  

Alternatively, we have argued that only a limited amount of 
information can make it through a bottleneck in visual processing; 
that the visual system deals with that limit by compressing its inputs; 
and that it does so for all stimuli and tasks – in other words, that this 
encoding is largely fixed and automatic. However, clearly this is not 
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the whole story. Abundant evidence demonstrates that the visual 
system encounters additional capacity limits, and deals with these 
limits by adapting to the task. Behaviorally, dual-task experiments 
are often harder than single-task (e.g. [27]), an effect not addressed 
by TTM. Inattentional blindness phenomena demonstrate that 
performance is better when the observer knows the task [95]. 
Changing the task (e.g. identify object A instead of B) significantly 
modifies brain responses [96, 70, 97, 68, 69, 98]. Any viable account 
of visual processing must explain these effects of task. 

Building on this, let us revisit the nature of limited capacity, 
and of what dynamic mechanisms might adapt to the task. Previous 
work imposes a number of constraints on the answers to the three 
questions above. Although it makes sense to describe a theory by 
answering the questions in the order listed, it is easier to consider 
the constraints in reverse order: what does previous work say about 
possible effects of later capacity limits; about which tasks could 
plausibly face additional capacity limits; and about what might be 
the nature of those limits? 

Constraints on mechanisms that adapt to task 
Previous work constrains the nature of additional losses of 

information due to limited capacity. Losses in peripheral vision 
already predict the relative difficulty of a range of tasks, including 
peripheral object recognition [28, 38, 51, 35, 52], visual search [46, 
35, 52], and scene perception tasks [50, 14, 38]. Predicted difficulty 
performing a peripheral task, according to TTM, correlates with 
difficulty performing that task under dual-task conditions. Difficulty 
identifying a known, fully attended peripheral change can coarsely 
discriminate between easy, medium, and hard change detection 
examples (Sharan, et al., under review). To be viable, any theory of 
capacity limits must not (to a first approximation), predict a change 
in the relative difficulty of those tasks, or we lose predictive power. 

Suppose, for example, that we hypothesize that the visual 
system encodes unattended portions of the stimulus using a 
fundamentally different set of summary statistics; attended regions 
get the rich encoding described by TTM, whereas unattended 
regions just get the power spectrum, for instance. Any such major 
change in the encoding would differentially affect some stimuli and 
tasks compared to others. This would almost certainly change our 
predictions of the relative difficulty of those tasks, causing us to lose 
the predictive power we gained by understanding peripheral vision. 
Mechanisms that cope with additional capacity limits must not make 
major changes to the visual encoding.  

With early selection called into question, and the visual 
encoding not varying much with task, perhaps we should revisit the 
possibility that additional capacity limits are late; perhaps even as 
late as the decision stage. An obvious objection would be that 
physiology finds effects of task early in visual processing (e.g. [96, 
70, 97, 68, 69]. However, this does not immediately preclude late 
capacity limits, since it remains controversial how to interpret those 
results. Perhaps some of the early effects of task result from the 
visual system feeding back a decision -- a hypothesis about the 
world -- for comparison with the visual input (see [99] for another 
reinterpretation of attention physiology in terms of effect rather than 
cause). In other words, physiological effects may follow from 
successfully performing a particular task, rather than being the 
mechanism for doing so. Alternatively, mechanisms for dealing with 
a relatively late capacity limit may nonetheless utilize early 
processing to some degree.  

Which tasks encounter additional capacity limits? 
It might seem odd to introduce a dichotomy of tasks that do and 

do not encounter capacity limits, having just abandoned the 

dichotomy of whether or not tasks require attention. However, the 
questions differ, due to a reframing of what we mean by a task. The 
old question asks whether scene perception, say, never encounters 
resource limitations, regardless of what other tasks the observer 
might simultaneously attempt to perform. The new framework treats 
“scene perception” and “scene perception while tracking multiple 
objects” as different tasks; the latter may come up against capacity 
limits while the former does not. This clarifies our interpretation of 
dual-task experiments: Difficult dual-task performance provides 
evidence that making the pair of judgments encounters capacity 
limits. It does not provide evidence that the individual component 
judgments encounter capacity limits.  

What insight does previous work provide into what tasks 
conceivably encounter additional capacity limits? The question is 
this: for what tasks might performance be worse than predicted by 
the loss of information in peripheral vision?  

For many tasks, we do not know the answer. Although losses 
in peripheral vision are clearly a factor in search, scene perception, 
and change blindness, this alone does not preclude the possibility 
that additional capacity limits also play a role. Search tasks may run 
up against additional limited capacity, or at least hard search tasks 
may. TTM has predicted relative task difficulty, but not absolute; 
there is room for, say, a mechanism that makes all difficult search 
tasks proportionally more difficult. (Additional losses might 
conceivably also make easy search tasks more difficult than 
predicted by peripheral vision losses. However, observers so 
efficiently perform easy search tasks that additional losses must 
have little effect on those tasks.) The same is true of change 
blindness. Scene tasks may also run up against additional capacity 
limits. We did make quantitative predictions of scene task difficulty. 
However, there were free parameters in the model: the dimensions, 
density, and arrangement of the pooling regions. Conceivably, TTM 
threw away too much information, and some of that information 
may instead be lost due to later capacity limits. Again, any effect on 
easy scene tasks must be small. In all of these cases, additional 
modeling could resolve the issue of whether the tasks encounter 
additional capacity limits. 

We do know that harder dual tasks run up against limits in a 
way that their component single tasks do not. Easier dual tasks do 
not run up against the same limits. Furthermore, inattentional 
blindness experiments show that many tasks are easier when the 
observer knows the task, suggesting that somehow not knowing the 
task can cause one to encounter capacity limits.  

What is limited? 
Are we limited in the number of items we can process at once? 

In the number of tasks we can simultaneously perform? In access to 
working memory and conscious perception [100]? We should at 
least try to find a generalizable answer. Proposing a limit in terms 
of the number of items, for instance, requires a number of qualifiers 
and clarifications: Do single item tasks never encounter limited 
resources? Why is search sometimes easy? How many items must 
one process to recognize a scene? If the limit is on the number of 
tasks, then what counts as a task, and why are dual tasks sometimes 
easy? The ultimate answer should not only address the nature of the 
limits, but also clarify what tasks encounter them, and by what 
mechanism the visual system deals with them. 

Re-examining what tasks might encounter additional capacity 
limits provides some insight. Here, one can note a general trend that 
the tasks most likely to encounter additional limits are the hard 
tasks: hard search, difficult scene tasks, and hard dual tasks. Perhaps 
the limit is on some resource that makes difficult tasks tractable. For 
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instance, there might exist limited resources for improving the 
signal-to-noise ratio. Hard discriminations hit limits, and the visual 
system might adapt by reducing the internal noise limiting one 
subtask at the expense of others. Alternatively, the visual system 
might increase the signal by adjusting feature detectors to more 
precisely measure some features at the expense of others. 
Unfortunately, this solution does not appear to explain dual-task 
phenomena. Many dual-task experiments (including those in [27]) 
adjust the presentation time in order to equalize the difficulty of all 
single tasks. If all single tasks are equally hard, and capacity limits 
merely depend on task difficulty, then dual-task conditions should 
be equally difficult, except perhaps in special cases when the two 
tasks share features and/or resources. 

Why, if one equalizes single task difficulty, are those tasks not 
equally difficult under dual-task conditions? Equally difficult tasks 
can be difficult in different ways. The next section discusses the 
proposal that our visual systems are limited in the complexity of the 
decisions they can make. This hypothesis makes sense of a number 
of phenomena, and it will soon be testable, by leveraging recent 
advances in statistical learning. 

Proposal: A general limit on decision 
complexity 

Suppose the task was to distinguish between two similar breeds 
of cats. In some feature space, this hard task might look like one of 
the examples in Figure 4AB. The feature space, in reality, is 
certainly high dimensional, but appears here as two dimensions for 
simplicity. The two classifications might differ behaviorally because 
the one in Figure 4B might require more training to reach the same 
level of performance. Once trained, however, the two classification 

tasks might look quite similar; in the face of observation noise, an 
ideal observer would perform similarly well in the two cases.  

The task in Figure 4B, however, depends on the availability of 
resources in a way that the task in Figure 4A does not. It can 
accomplish equally good performance only if it has access to 
mechanisms capable of implementing a more complicated 
classification boundary. If one had to perform the task with a single 
linear classifier, performance would be better in the simple case 
shown in Figure 4A. Alternatively, the task in Figure 4B may be 
possible with a linear classifier if one can represent it in a higher-
dimensional space; in which case it requires the resources to do so. 

Perhaps the visual system has limits on the complexity of 
decision rules. Executive functions may sometimes be unable to 
construct a sufficiently complex classifier, and as a result, the 
observer will make errors. The precise nature of the limit might take 
various forms. For the purposes of discussion, we can think about 
limits on the number of hyperplanes available to construct the 
classification boundary. The limit might take other forms, 
depending upon the nature of the decision-making mechanisms. (If, 
for instance, the brain implemented classification tasks using center-
surround mechanisms operating in some feature space [101], then 
the limit could be on the number or density of those mechanisms 
instead.) A limit on decision complexity might exist for good reason, 
as it would avoid overfitting to sometimes-limited data.  

Complexity depends integrally on the underlying encoding. As 
an initial hypothesis, I suggest thinking of the limit as applying to 
the feature space at the highest level visual processing. First, 
arguably that is nearest the decision stage, as appropriate for a limit 
on decision complexity. Second, the visual system appears to 
performs a series of hierarchical processing steps precisely to make 
many real-world tasks simple at higher levels [102]. Finally, even 

 
Figure 4. Given the underlying encoding, tasks can be difficult because of similarity between the stimuli to be discriminated (A), or because they require a 
complex decision rule (B). If the task requires too complex a decision rule, the observer may have to perform a simpler version, “cutting corners” and making 
errors. Dual-tasks are automatically more complex than single tasks. However, some dual tasks may nonetheless be relatively simple (C), whereas others 
may be too complex (D), given limited resources.  
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tasks that seem to require “low-level” information, such as the 
orientation of a bar, are not obviously simpler given a lower-level 
encoding. If one does not know the precise location of the bar, early 
visual encoding provides a soup of responses of feature detectors 
with different phase and orientation; finding the orientation may 
well be simpler given a later representation that effectively 
interprets the bar as an object. Hong et al. [103] find that an inferior 
temporal population encodes category-orthogonal features such as 
position and size more explicitly than either a V4 population or a V1 
Gabor model. 

Tasks that required overly complicated decision rules would 
encounter complexity limits. To deal with these limits, the brain 
would have to perform a simpler version of the task. In the example 
in Figure 4B (left), for instance, a classifier made out of 4 
hyperplanes would perform well. However, if the brain only has 
access to 3 hyperplanes, it would need to carry out a simplified 
classification. It would literally and figuratively “cut corners” 
(Figure 4B, right), leading to worse performance at the nominal task. 
Given enough time, one could perform the original, complex task, 
by performing a series of simpler tasks; e.g. in a dual-task condition 
one could first perform one task, and then perform the other.  

The brain might make use of a broad range of flexible strategies 
for simplifying an overly complex decision. A small subset of 
possible strategies resemble previously proposed attentional 
mechanisms. Take, as an example, the task of performing two 
moderately complex tasks at two different locations in the visual 
field. This joint task might surpass the complexity limit. The brain 
might simplify by performing one of the two tasks well, at the 
expense of performance at the other. This sounds something like 
selective attention to a region of space, except that the suggested 
mechanism performs the classification, rather than merely gating 
access to some later stage. One would also expect object-based 
attentional effects. The representation at the highest level of the 
visual processing hierarchy arguably developed to make object-
based decisions simple [102]. Performing a simpler task might 
sometimes have the signatures of object-based attentional 
phenomena. Comprehending the full set of available strategies is 
difficult without a better understanding of the underlying feature 
space used for decision-making.  

One can immediately see how a limit on decision complexity 
agrees with a number of the dual-task phenomena. Dual tasks are 
inherently more complex than their component single tasks. With 
only a single task, one can recruit all resources (all of the available 
hyperplanes, for example) to perform the task. For typical 
component tasks from dual-task studies, observers perform well. 
However, as shown in Figure 4CD, an observer who has to 
distinguish between two alternatives for each single task needs, in 
the dual-task condition, to distinguish between four alternatives. 
Doing so inherently requires more hyperplanes than either single 
task alone. However, dual tasks need not all be difficult. If both 
single tasks are simple enough, the pair may not encounter 
complexity limits (Figure 4C). Even if the experimenter normalizes 
the difficulty of all single-task conditions, complicated single tasks 
will require a complex decision rule, leading to a more difficult dual-
task condition. Furthermore, for any given single task, choice of the 
secondary task can make the dual task easy or difficult.  

In fact, TTM has already suggested that difficult dual tasks 
from [27] are particularly complex. Take for example the two 
difficult dual-task conditions that require distinguishing between an 
upright and inverted stimulus (cube, or bisected circle). A single 
pooling region computing rotationally symmetric statistics cannot 
distinguish between upright and inverted. However, multiple 

pooling regions can. In the case of the cube task, one pooling region 
might identify the top/bottom of the cube, and another could detect 
a cube without revealing its orientation; together, these pooling 
regions reveal the orientation of the cube. If the cube were always 
in the same location, one might be able to do the task using only the 
outputs of the pooling region that identifies the top of the cube. 
However, the experiments randomized the cube location on every 
trial; the location uncertainty makes the task complex.  

This explanation perhaps sounds like a tenet of early selection 
theories: that (to paraphrase) identifying a configuration of features 
requires limited resources. It is worth pointing out the differences. 
The features here are likely at a higher level of visual processing, 
and certainly higher dimensional than in the binding of individual 
horizontal and vertical features in order to recognize a T [10, 12]. In 
TTM, as many as 1000 features contribute to perceiving the 
top/bottom of the cube. Another 1000 features yield the percept of a 
cube but do not disambiguate its orientation. (Whether or not one 
needs all 2000 features is of course another question.) Though the 
proposed capacity limits and mechanisms are quite different, it is 
not surprising that one can see connections between the old 
explanations and the new hypothesis; researchers have spent 
decades gaining intuitions about what tasks are difficult, and we 
would expect those intuitions to have some truth to them. 

One would like, of course, to make testable predictions, for 
example of dual-task performance. Unfortunately, one cannot easily 
measure complexity of the decision rule needed for a particular task. 
A baseline single-task behavioral experiment may not be adequate 
to predict whether a task will be difficult in a dual-task condition. It 
will tell us how difficult the single task is, but not how complex it 
is. We would need to determine complexity in another way. For 
some novel tasks, it might be possible to examine dependence of 
performance on the number of training examples, as this dependence 
will increase with increasing complexity. The upcoming section on 
testing decision complexity suggests an alternative based on 
statistical learning techniques. 

Decision complexity seems to make sense of other phenomena 
as well. Human visual encoding likely developed to make scene 
tasks simple. This may explain why scene tasks are easy in many 
experimental paradigms, and only become difficult if the 
experimenter degrades the stimulus in some way, or if the scene task 
is paired with a particularly complex secondary task [90]. Hard 
search might or might not be complex because of the need to 
perform moderately complex tasks at multiple locations, whereas 
easy search might remain sufficiently simple. If the relative ordering 
of search tasks according to TTM also serves to order those tasks in 
terms of their complexity, then limits on decision complexity would 
maintain the relative ordering, while making hard search tasks 
harder than predicted by TTM. Whether this is the case, however, 
remains to be determined. Finally, a limit on decision complexity 
may explain why, in inattentional blindness, observers perform 
better when they know the task. If an observer knows the task, they 
can spend hyperplanes on it. If they do not know the task, why spend 
excess hyperplanes on an unlikely and unexpected task? Perhaps 
observers instead use excess hyperplanes to get the gist of the 
display or the world around them. 

Many details remain unspecified: Should one think of 
complexity limits in terms of hyperplanes, or some other limited 
resource? What strategies may the visual system employ to simplify 
a complex decision rule? What is the neural implementation of those 
strategies? Nonetheless, conceptualizing limited capacity in this 
different way shows promise at explaining task-based effects. 
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Do other cognitive systems also encounter limits 
on decision complexity?  

Conceivably, we can take this idea of decision complexity 
beyond visual perception. The brain might have a similar form of 
limited capacity in other cognitive systems and for non-visual tasks. 
For instance, visual memory has limited capacity, and at present 
lacks a coherent explanation. Perhaps one can make sense of the 
phenomenology in terms of decision complexity.  

Visual short-term memory (VSTM) has appeared distinct from 
long-term (VLTM) in terms of its capacity; short-term memory 
appears able to store only 3-4 items [104, 105, 106] (although see, 
for instance, [107]), whereas long-term memory can store 1000s of 
objects [108, 109, 110]. However, it is unclear what to make of this 
capacity difference, as studies of the two types of memory have 
employed very different stimuli. Short-term memory experiments 
typically use images containing (e.g.) arrays of simple shapes, and 
ask whether observers can remember features like the color and 
orientation of each item (Figure 5B). Long-term memory 
experiments, on the other hand, utilize photographs of real objects 
(Figure 5A). Do arrays of colored disks require the same storage 
capacity as individual toasters and clocks? VSTM also differs from 
VLTM in the need for an active process to maintain the memory 
until test. This active storage has identifiable physiological 
signatures, e.g. sustained activity in frontal and parietal cortices 
[111, 112]. EEG studies, similarly, have shown sustained activity in 
the contralateral hemisphere when an observer holds items in short-
term memory [113]. Nonetheless, in spite of evidence that the two 
represent distinct systems, might they suffer from a similar kind of 
capacity limit?  

To assess decision complexity, we first need clarity on what is 
the memory “task”. Researchers often conceptualize memory 
similarly to storage in a computer: some mechanism stores the 
information in memory, and some other mechanism is responsible 
for retrieving that information. Limited storage capacity, as well as 
storage and retrieval errors, lead to memory errors. From a more 
decision-theoretic point of view, we can instead think of many 
visual memory tasks as classification tasks. The observer must 
distinguish between “seen” and “unseen” stimuli. The experimental 
subject’s job is to derive a classification boundary discriminating 

between seen stimuli and their best guess as to likely foils used at 
testing time. (Perhaps also relevant, the subject in short-term 
memory experiments must do this repeatedly, for many similar 
displays, whereas in a long-term memory experiment they might 
construct a single classification boundary and use it for multiple 
decisions.) This conceptualization of memory tasks differs greatly 
from the traditional storage/retrieval view, and illuminates the 
importance of the underlying representation.  

To test the viability of memory capacity as resulting from a 
unified decision-complexity limit, we need a hypothesis for the 
underlying representation, i.e. the space in which the seen/unseen 
classification occurs. As a first attempt, suppose that the 
representation underlying visual recognition also supports and 
constrains visual memory, both short-term and long-term. This 
hypothesis makes engineering sense; why develop a domain-general 
visual representation for recognition, but then use a different 
representation for memory? 

If there exist limits on decision complexity, then one would 
expect that observers do well on any memory tasks for which a 
simple decision rule distinguishes between seen (Figure 5, red 
points) and unseen (blue points), and perform more poorly when the 
discrimination requires a too-complex rule. Is this a plausible 
explanation for results in the memory literature? Consider the 
difference between capacity limits for an array of simple shapes 
compared to for a series of individual real-world objects. One might 
think that “simple” stimuli like colored disks would lead to a simpler 
task than “complex” stimuli like real-world objects. This 
presupposition should remind the reader of the earlier discussion of 
whether a T vs. L task is really simpler than a scene classification 
task. Successive stages of the ventral visual stream are thought to 
“untangle” the visual representation to enable simple decision rules 
for real-world tasks such as telling a dog from a tractor [102]. This 
untangling may also facilitate memory for real-world objects 
(Figure 5A). However, it potentially comes at the cost of 
“entangling” less ecologically relevant tasks, such as distinguishing 
between arrays of different colored disks (Figure 5B). Put another 
way, to human vision, arrays of colored disks represent a small 
subset of likely stimuli. They all fall in the category “arrays of 
colored disks”, and the visual system likely encodes them in a way 
that makes the distance between them very small. (Arguably the 

 
Figure 5. A. Discriminating between seen stimuli (red points) and unseen (blue points) may be complex in pixel space, but require a simple decision boundary 
at a later stage of visual encoding. So long as the boundary remains simple, an observer with a complexity limit can perform the seen/unseen discrimination, 
leading experimenters to conclude that memory capacity is high. B. Discriminating between similar arrays of disks, on the other hand, may possibly be simple 
in pixel space, but is likely complex at a later stage of visual encoding. The complexity likely grows with number of disks. A limit on decision complexity would 
lead to errors for larger number of disks, leading to measurement of a lower memory capacity. 
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same is true of artificial arrays of real-world objects.) One might 
expect complexity of the decision to increase as one added more 
items to the array of colored disks. Discriminating between a 
particular 2-disk array and all other 2-disk arrays with one changed 
disk is surely a simpler decision than discriminating between a 
particular 7-disk array and all other 7-disk arrays with one change. 
On the other hand, in the case of VLTM for real-world objects, the 
encoding of toasters and clocks likely makes them far more 
discriminable.  

How one might test decision-complexity theory? 
Limits on decision-complexity show initial promise, at least 

qualitatively, at making sense of both effects of task on perceptual 
performance, and of visual memory phenomena. To make real 
quantitative predictions, we need a measure of complexity, and as 
discussed above it is difficult to measure complexity using 
behavioral experiments alone. Since decision complexity depends 
critically on the underlying feature space, going further to test the 
viability of this theory requires a plausible candidate representation. 
Given such a representation, the field of statistical learning has 
developed a number of standard techniques that one can use to 
evaluate the complexity of a given classification task.  

The last few years have seen significant breakthroughs in 
modeling of visual object recognition. Hierarchical, neurally-
inspired models known as convolutional neural nets (CNNs) have 
suddenly crossed a tipping point. For the first time ever, these 
“deep” CNNs have allowed computer vision to approach human 
performance on tasks such as visual object recognition [41], object 
segmentation [114], and scene recognition [115]. Even more 
exciting, these CNNs, once well trained on sufficiently difficult 
visual tasks, with sufficiently variable recognition categories, prove 
useful for many visual tasks other than the ones for which they were 
trained [114, 103, 116]. Furthermore, the top layer of one high-
performing CNN is highly predictive of neural spiking responses to 
complex naturalistic images in inferior temporal (IT) cortex, its 
intermediate layers predictive of responses in V4, and its lowest 
layers predictive of V1 responses [42].  

These results make high-performing CNNs good initial 
candidates for a general-purpose model of visual representation – 
essentially, a stand-in for human perceptual processing. For many 
visual tasks we would need to “foveate” them, to make the 
representation coarser in peripheral vision and account for crowding 
[117]. Though CNNs are imperfect, and can respond in ways that do 
not mimic human performance [118, 119], they may suffice to test 
decision-complexity theory. Alternatively, one could use fMRI or 
other physiological data as this candidate visual representation, 
presuming it were of sufficient resolution and covered enough of the 
population of neurons. 

Next, one needs a measure of decision complexity. Statistical 
learning theory provides a number of candidates. In statistical 
learning, classifier complexity is important because of a basic 
tradeoff: a complex classifier can fit a set of training points well, but 
one expects that it will make errors on a new set of points, because 
it is so wiggly – one worries about over-fitting. With a simple 
classifier, we have more confidence that it will generalize, but it may 
do a poorer job of fitting the training data. There exist a number of 
established measures of classifier complexity. One that may be 
appropriate is the Vapnik-Chervonenkis (VC) dimension [120]. VC 
dimension specifies the complexity of essentially a class of 
parametrized classifiers. For a given training set, there is an optimal 
VC dimension – at low dimensions, the performance may be poor, 
and at higher dimensions performance slowly declines as a result of 

over-fitting. Less complex decision rules are those for which the 
optimal VC dimension is low. Another candidate is sensitivity to 
classifier regularization. Regularization during classifier training 
imposes a complexity penalty on classifiers that make use of too 
many dimensions at once. The sensitivity of the classifier to this 
penalty provides a measure of the complexity of the classification 
task. Tasks with low sensitivity are simpler. Alternatively, the 
number of training examples required to achieve a given level of 
performance can provide a measure of complexity. 

For each task, one needs to define the training and testing 
examples. Surely one would expect the classifier to be robust to 
small shifts in the stimulus and small amounts of noise in the 
representation; this broadens the set of possible training and testing 
examples beyond the experimenter-defined stimuli. In addition, in 
the memory task the test set depends upon assumptions about the 
possible “foils” – the “unseen” stimuli. The experimental subjects 
may have in mind a different set of foils than the experimenter, 
leading to different decision complexity and patterns of errors.  

Given a candidate feature space and complexity measure, one 
would like to measure decision complexity for a number of tasks 
and compare the results. One can represent all training and test 
examples in the candidate feature space, and for each task determine 
the complexity of the necessary classifier. (Given a multi-layer 
architecture like a CNN, one can in fact test the representation at a 
number of different levels of the processing pipeline.) One can then 
ask, for instance, whether hard dual tasks lead to higher complexity 
than easy dual tasks. Similarly, are VLTM experiments with 
hundreds of items similar in complexity to VSTM experiments with 
more than 4 items? It should also be possible to try out different 
strategies for reducing decision complexity, and see whether one can 
predict observed patterns of errors. In this way, it seems feasible to 
make testable predictions about the consequences of a capacity limit 
on decision complexity. 

Conclusions 
The visual system faces a number of capacity limits. One 

strategy for dealing with these limits appears to be the efficient 
encoding of the visual input in a way that becomes less faithful with 
increasing eccentricity. A model of this encoding, TTM, can explain 
performance at peripheral object recognition, visual search, and 
scene perception, and it provides insight into dual-task performance. 
Furthermore, peripheral task difficulty, measured behaviorally, 
correlates with search performance and difficulty detecting a change 
in the absence of a motion transient.  

There certainly exist further losses in vision. As processing 
continues, visual mechanisms continue to pool over ever larger 
regions of the visual input [121, 122], perhaps leading to further loss 
of information in the process of gaining invariance to 
transformations (although see [123]). One might ask, then, why a 
relatively early encoding has done so well at explaining a range of 
phenomena. Possibly this arises as an accident of the particular tasks 
studied. Alternatively, later losses may be more task-specific (e.g. 
losing lightness information in service of computing lighting-
invariant 3-D shape, see [52] for discussion), with an earlier efficient 
encoding scheme leading to broader and more generalizable effects. 

We have learned a great deal from the success of TTM, 
particularly as regards understanding of visual attention. This paper 
has argued that selective attention may not operate early in the visual 
processing pipeline. For that matter, attention may not primarily 
operate through a selective gating of access to later processing. 
Perhaps, as well, it is time to abandon the dichotomy of tasks that 
do and do not require attentional resources. Instead, perhaps we are 
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always attending, i.e. always dynamically adjusting processing in 
order to perform the current task. In the absence of a nominal task, 
the visual system may perform some default task, such as getting the 
gist of a scene, and based on the results of that task, posit and test 
new hypotheses about the visual world.  

In spite of questioning theories of attention, it remains clear 
that visual processing faces additional capacity limits. Rather than 
thinking of those as limits on access to higher level processing, 
perhaps cognitive processing faces general-purpose limits on the 
complexity of the decision rule.  In this formulation, the question is 
not what tasks do and do not require some resource called attention. 
Rather, what are the complexity limits, when must one cut corners 
to reduce complexity, and what are the mechanisms for doing so? 
These limits might apply not only to vision, but also to other 
processes such as visual memory. This is not necessarily to say that 
perception and memory would share the same limited resource, but 
rather that the capacity limit might take a similar form. Recent 
successes developing convolutional neural networks to perform 
complex object and scene recognition tasks may facilitate making 
testable predictions from this theory.  
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