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ABSTRACT

New models of gray-scale image representation in the 4-D quaternion space are described, wherein images can be
processed as quaternion and color images in the frequency domain, by using the concepts of the 2-D quaternion
unitary transforms, such as quaternion discrete Fourier transforms, wavelet, and others. Methods of alpha-
rooting by such 2-D transforms can be effectively used for gray-scale image enhancement, and optimal parameters
enhancements can be found by using the measures EME and EMEC, and image visibility measures of image
enhancement. Different models of transferring the gray-scale images into the quaternion space can be applied,
which include models 2 × 2, 4 × 1, 4 × 1, and others.
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1. INTRODUCTION

The goal of image enhancement techniques is to improve a characteristic or quality of an image, such that
the resulting image is better than the original, when compared against specific criteria. The digital image
enhancement has remained one of the most active research areas in image processing and computer vision.
Two major classifications of image enhancement techniques can be defined: spatial domain enhancement and
transform domain enhancement. Transform-based methods of image enhancement are based on manipulation
with all or part of spectral components of the transform. We focus on the well-known method of alpha-rooting,
although other methods, including the log-alpha-rooting, modified unsharp masking, and methods based on
wavelet transforms are also used in image enhancement. Many traditional methods of image enhancement were
applied for processing the color images. In the last decade, the concept of the 2-D DFT was generalized and the
2-D quaternion discrete Fourier transforms (QDFT) were introduced and applied to color imaging1-.4 The 2-D
QDFT include the two-side, right-side, and left-side QDFTs.5 These transforms are fast and there algorithms are
based on representation of the QDFT by a combinations of a few classical DFT transforms.6 This allows us to
obtain 1-D and 2-D QDFT fast numerical implementation with the standard FFT algorithms.11,14,21,22 These
transforms can found effective applications in color imaging,15,19 medical imaging16-,18 in image filtration,1,31

image enhancement20,26-.30 The 2-D QDFT can be used not only in color imaging, but in gray-scale imaging as
well, and for that there are many models of transferring one or a few gray-scale images to the quanterion space.1

In this paper, new methods of image enhancement are proposed for enhancement grays-scale images, which are
based on constructing models and transferring the images to quaternion space, where images can be considered
as 4-D quaternion with the 3-D color image component images. In the quaternion space, as well as in the color
space, images can effectively be processed and then transformed back to the gray-scale images. The application of
the concept of the two-dimension discrete quaternion Fourier transform (2-D QDFT) together with the methods
of image enhancement and filtration results in high quality images, when comparing with traditional processing
by the 2-D DFT. The methods of alpha-rooting, weighted alpha-rooting and other modification of alpha-rooting
in the quaternion space allows to achieve new results in gray-scale imaging. The image enhancement technique of
alpha rooting can be used for enhancing high contrast edge information and sharp features in images. Therefore
the use of the 2-D DQFT in alpha-rooting adapted to the quaternion image representations is much promised.
Our preliminary results show that the application of the 2-D QDFT plus alpha-rooting method can be effectively
used for enhancing gray-scale images. Examples of application of the proposed method on different gray-scale
images and comparison with the traditional method when the 2-D DFT based alpha-rooting are given. To
estimate the quality of the gray-scale and color image enhancement, we used the known EME and EMEC
measures of image enhancement and applied it for images enhanced by both 2-D QDFT and 2-D DFT.
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2. BLOCK-DIAGRAM OF GRAY-SCALE IMAGING

The general block-diagram of gray-scale image processing in the quaternion space of frequencies is shown in
Figure 1.

Figure 1. The block-diagram of gray-scale image processing in the frequency domain.

The processing is by the 2-D quaternion discrete Fourier transform (QDFT). In image enhancement, the
methods of enhancement by the 2-D QDFT can be considered, including the method of α-rooting,13,20 which
will be described in next sections.

This diagram describes the gray-scale image processing by the following steps.

Step 1. Gray scale image fn,m of size N ×M is transformed into the quaternion image qn,m

{fn,m; n = 0 : (N − 1), m = 0 : (M − 1)} → {qn,m; n = 0 : (N1 − 1), m = 0 : (M1 − 1)},

The quaternion image has the size smaller than the original image, for instance N1 = N/2 and M1 = M/2
considering N and M even. Given pixel (n,m), the value of the quaternion image at this pixel is a quaternion
number written as

qn,m = an,m + (i(qi)n,m + j(qj)n,m + k(qk)n,m),

where i, j, and k are quaternion units, i2 = j2 = k2 = −1. All numbers an,m, (qi)n,m, (qj)n,m, and (qk)n,m are
real.

Step 2. The quaternion image qn,m is processed in the frequency domain

qn,m → q̂n,m, n = 0 : (N1 − 1), m = 0 : (M1 − 1),

by using the concept of the 2-D QDFT. Different methods of enhancement and filtration, including the alpha-
rooting, can be used for processing the image. The concept of 2-D QDFT has different definitions, such as the
right-side, left-side, two-side 2-D QDFT, and all of them can be used. Instead of the Fourier transform, the
concept of the 2-D quaternion wavelet transform and other transforms can also be used.

Step 3. The processed quaternion image q̂n,m is transformed back into gray-scale

{q̂n,m; n = 0 : (N1 − 1), m = 0 : (M1 − 1)} → {f̂n,m; n = 0 : (N − 1), m = 0 : (M − 1)}.

The gray-scale image f̂n,m is the new processed (enhanced or filtered) image. Thus, the gray-scale image

processing fn,m → f̂n,m is accomplished through the quaternion space.
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3. QUATERNION AND IMAGES

The quaternion are four-dimensional generation of a complex number with one real part and three component
imaginary part.1,9,10 The imaginary dimensions are represented as i, j, and k. In practice, the i, j, and k are
orthogonal to each other and to the real numbers. Any quaternion q may be represented in a hyper-complex
form as

q = a+ bi+ cj + dk = a + (bi+ cj + dk),

where a, b, c, and d are real numbers and i, j, and k are three imaginary units with multiplication laws: ij =
−ji = k, jk = −kj = i, ki = −ik = −j, i2 = j2 = k2 = ijk = −1. The table of multiplications of imaginary
numbers i, j, k, and 1 is given in Table 1.

1 i j k

1 1 i j k

i i -1 k -j

j j -k -1 i

k k j -i -1

Table 1. The table of multiplications of the four quaternion unit numbers.

The number a is considered to be the real part of q and (bi + cj + dk) is the “imaginary” part of q. The
quaternion conjugate and modulus of q equal q̄ = a− (bi+ cj + dk), and |q| =

√
a2 + b2 + c2 + d2, respectively.

The property of commutativity does not hold in quaternion algebra, i.e., there are many quaternions q1 6= q2,
such that q1q2 6= q2q1. Given pure unit quaternion µ, the quaternion exponential function at angle ψ is calculated
by e−µψ = cos(ψ) − µ sin(ψ), (µ2 = −1, |µ| = 1). This function is used in the concept of the 1-D and 2-D
quaternion discrete Fourier transform (QDFT). In many applications the simple cases of µ are considered, such
as µ = j and µ = k.

It is not difficult to transfer the color image from the RGB model to the quaternion space. The three
components, R(ed), G(reen), and B(lue) of discrete color image fn,m at each pixel can be considered together as
the imaginary part of the a quaternion image, fn,m = 0 + (rn,mi+ gn,mj + bn,mk).

4. GRAY-SCALE-TO-QUATERNION MODEL

In this section, we present the simple model of (2 × 2)-mapping, which is described as follows. The gray-scale
image fn,m of size N ×M can be divided by four parts with even-even, even-odd, odd-even, and odd-odd indices

. . . . . .

. f2n,2m f2n,2m+1 f2n,2m+2 f2n,2m+3 .

. f2n+1,2m f2n+1,2m+1 f2n+1,2m+2 f2n+1,2m+3 .

. f2n+2,2m f2n+2,2m+1 f2n+2,2m+2 f2n+2,2m+3 .

. f2n+3,2m f2n+3,2m+1 f2n+3,2m+2 f2n+3,2m+3 .

. . . . . .

Table 2. Image as a table

as follows:
fe = {(fe)n,m} = {f2n,2m} , fi = {(fi)n,m} = {f2n,2m+1} ,
fj = {(fj)n,m} = {f2n+1,2m} , fk = {(fk)n,m} = {f2n+1,2m+1} ,

where n = 0 : (N/2−1), m = 0 : (M/2−1). It is assumed, that N and M are even, if not, the borders of indexes
should be corrected. As an example, Figure 2 shows the gray-scale “pentagon” image fn,m.

The four parts can be considered as components of the quaternion matrix which we call the quaternion image
and denote by q(f),

q(f) = (fe, fi, fj , fk) = fe + (ifi + jfj + kfk).

The first part, the matrix of size N/2 ×M/2 is denoted by fe as the e-component, or real component of q(f).
Other three parts can be considered as the components of the imaginary part of the quaternion image. Therefore,
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Figure 2. The gray-scale pepper image of size 1024 × 1024.

they can be denoted as fi, fj , and fk for the i, j, and k-components, respectively. Thus, when transforming the
gray-scale image into the quaternion subspace, we may assume that the components fi, fj , and fk are the
set-components of the imaginary part of the quaternion image, as shown in Table 3.

Mapping of the gray-scale image into the quaternion image

. . . . . .

. E: f2n,2m R: f2n,2m+1 E: 2n,2m+2 R: f2n,2m+3 .

. G:f2n+1,2m B: f2n+1,2m+1 G: f2n+1,2m+2 B: f2n+1,2m+3 .

. E: f2n+2,2m R: f2n+2,2m+1 E: f2n+2,2m+2 R: f2n+2,2m+3 .

. G:f2n+3,2m B: f2n+3,2m+1 G: f2n+3,2m+2 B: f2n+3,2m+3 .

. . . . . .

Table 3. The gray-scale image mapping to the RGB color model.

Here, the letter E stands for the gray-levels, R for the red color, G for the green color, and B for the blue
color. We assume that the component fi is set to the red color channel, and fj and fk to the green and blue
channels, respectively, as shown in Table 3.

Figure 3 shows the real part (fe)n,m in part a, and the components (fi)n,m, (fj)n,m, and (fk)n,m in parts b,
c, and d, respectively.

Thus, we obtain the full quaternion “pentagon” image with non-zero real part. The components of imaginary
part can be mapped into one of the color spaces, such as the RGB or XYZ space.1,2 In such a mapping, the
imaginary part of the quaternion image q(f) can be illustrated as a color image.

Figure 4 shows the real part (fe)n,m of the quaternion image in part a and the imaginary part, or color
image in b. These two images, namely the gray-scale image and color image of size 512×512 each, represent the
original gray-scale “pentagon” image of size 1024× 1024 in the quaternion space.

5. IMAGE ENHANCEMENT

After mapping the gray-scale image to the quaternion image, one can perform the 2-D quaternion transform-
based method of image enhancement, which can be described by the block-diagram shown in Figure 5. The 2-D
quaternion transform, such as for instance the right-side 2-D QDFT, is calculated over the quaternion image.
Then the spectral coefficients Q(p, s) are manipulated as Q(p, s) → C(p, s)Q(p, s), p, s = 0 : (N − 1). and the
inverse transform is performed. Here, C(p, s) is a function of coefficients of the 2-D QDFT. In the alpha-rooting
image enhancement, the magnitude of the Fourier transform of the gray-scale image is transformed as18,20

|Q(p, s)| →M(|Q(p, s)|) = |Q(p, s)|α, p, s = 0 : (N − 1).

for each sample (p, s), and the parameter α is taken to be in the interval (0, 1). Here M is operator on magnitude
of the transform, which is in alpha-rooting is the power function. The coefficients C(p, s) equal |Q(p, s)|1−α. The
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Figure 3. The division of the gray-scale image into four parts of size 512 × 512 each. (a) The real part and (b) the
i-component, (c) the j-component, and (d) the k-component of the quaternion image.
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Figure 4. The quaternion image of size 512 × 512: (a) the real part and (b) the imaginary part in the RGB color model.

color image

-

2-D QDFT

-

transform coefficients

-

inverse 2-D QDFT

qn,m Qp,s Q̂p,s = C(p, s)Qp,s q̂n,m

Fq F−1
q

Figure 5. General block-diagram of the quaternion Fourier transform-based image enhancement.

parameter α can also be considered as a function which takes different values on different frequency bands.29,30

The frequency bands separated by circles are effective when processing the image by the 2-D quaternion Fourier
transform. Together with the alpha-rooting, other transform-based image enhancement methods, including the
weighted α-rooting, modified unsharp masking, and filtering also can effectively be used in image enhancement.13
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The measure of quality of images can be used for selecting processing parameters for image enhancement.
We consider the quantitative measure EME of image enhancement described in27-.29 To measure the quality of
images and to select optimal (or best) processing parameters for image enhancement, we can use two different
approaches.

1. We consider the known enhancement measure of image processing, fn,m → f̂n,m, which is calculated by

EMEa(f̂) =
1

k1k2

k1
∑

k=1

k2
∑

l=1

20 log10

[

maxk,l(f̂)

mink,l(f̂)

]

. (1)

Here, the discrete image {fn,m} of size N×M is divided by k1k2 blocks of size L1×L2 where integers k1 = bN/Lic
and k2 = bM/L2c , where b.c denotes the floor function. maxk,l(f̂) and mink,l(f̂) respectively are the maximum

and minimum of the image f̂n,m inside the (k, l)th block, and a is a parameter, or a vector parameter, of

the enhancement algorithm. We call a0 such that EMEa0
(f̂) = maxEMEa(f̂) the best (or optimal) Fourier

transform-based image enhancement parameter13,21,26-.30

Example 1. We consider the 1024 “pentagon” image. Figure 6 shows this image in part (a), and the enhance-
ment by the 0.89-rooting by the 2-D DFT in part (b). The enhancement measure for the original image is 9.3487,
and 27.6140 for the enhanced image in (b). The graph of the EME measure of the α-rooting, as the function of

original image

(a)

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

10
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40

0.89

EME(α)

α

(c)

enhanced image

(b)  α=0.89

Figure 6. (a) The “pentagon” image, (b) the image enhanced by the 0.89-rooting, and (c) the EME measure of the
α-rooting by the 2-D DFT.

α in shown in part c. This function has the maximum at point 0.89.

2. In quaternion images, including color images, EME measure can be calculated separately for each color
component. Figure 7 shows the color image or component of the quaternion “pentagon” image in part (b),
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Figure 7. (a) Four EME measures of the (α-rooting by the 2-D DFT, and the imaginary parts of (b) the quaternion
“pentagon” image, and the images enhanced by (c) the 0.89-rooting and (d) the 0.92-rooting.

and the results of the 0.89-rooting and 0.92-rooting in parts (c) and (d), respectively. The enhancement was
performed by using the 2-D right-side QDFT. The parameter 0.89 was selected by analyzing the graphs EME
measures for components of the quaternion image, which are shown in part (a).

However, instead of calculating the functions EMEa(f̂R), EMEa(f̂G), and EMEa(f̂B), the following en-

hancement measure of the color image f̂ = (f̂R, f̂G, f̂B), which we call EMEC,1,2,20,26 can be calculated:

EMEC(f̂) =
1

k1k2

k1
∑

k=1

k2
∑

l=1

20 log10

[

maxk,l{f̂R, f̂G, f̂B}
mink,l{f̂R, f̂G, f̂B}

]

. (2)

The images are in the RGB color space, i.e., f = (fR, fG, fB) and f̂ = (f̂R, f̂G, f̂B). The maximum and min-

imum values of the image f̂ in the (k, l)-th block are calculated as max(f̂) = max(f̂R, f̂G, f̂B) and min(f̂) =

min(f̂R, f̂G, f̂B). Thus, one EMEC measure can be used instead of four EME.

As an example, Figure 8 shows the EMEC measure of image enhancement by the method of α-rooting over
the quaternion “pentagon” image. The maximum of this function Eq(α) = EMEC(α) is at the same point 0.89.

Figure 9 shows the original “pentagon” image in part (a) together with the result of enhancement by the
0.89-rooting in quaternion space in part (b).

Example 2. The gray-scale image of size 1024 × 1024, which we call the “airport” image, is shown in part (a)
of Figure 10. The real of this image after transforming to the quaternion space is shown in part (b), and the
imaginary part as a color image is shown in part (c).

Figure 11 shows the graphs of all four image enhancement measures of alpha-rooting by the 2-D QDFT in
part (a). The maximum of these functions at the point α = 0.92. The imaginary part of the original quaternion
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Figure 8. The EMEC measure of the α-rooting by the 2-D QDFT.

pentagon image

(a)
200 400 600 800 1000

100

200

300

400

500

600

700

800

900

1000

enhanced image

(b)
200 400 600 800 1000

100

200

300

400

500

600

700

800

900

1000

Figure 9. (a) The original gray-scale “pentagon” image of size 1024 × 1024 and (b) the enhanced image
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Figure 10. (a) The original gray-scale “5.3.02” image of size 1024 × 1024 and (b) the real part and (c) the imaginary
(color) part of the image in the quaternion space.

image as the color image is shown in part (b). The corresponding color images of the 0.92-rooting and the
0.96-rooting are shown in parts (c) and (d), respectively.

Figure 9 shows the EMEC measure of image enhancement by the method of α-rooting over the quaternion
image.

The result of funding the best alpha parameter, when using one enhancement measure EMEC is shown in
Figure 8. The EMEC graph of is shown in part (a), the original gray-scale “airport” image in part (b), and the
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Figure 11. (a) Four EME measures of the α-rooting by the 2-D QDFT, and the imaginary parts of (b) the quaternion
“pentagon” image, and the images enhanced by (c) the 0.89-rooting and (d) the 0.92-rooting.
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Figure 12. (a) The original gray-scale “airport” image of size 1024× 1024 and (b) the enhanced image after processing by
the α-rooting in the quaternion space.

enhanced image by the proposed method in the quaternion space in part (c).

6. THE RIGHT-SIDE 2-D QDFT

In this section, we consider the concept of the right-side 2-D QDFT, which was used for image enhancement in
the frequency domain. This transform can be effectively calculated not only by the row-column method, but with
the concept of the tensor and paired representations1,19,26 -.30 The concept of the left-side 2-D QDFTs6-8 can be
described similarly. Such representation allow for reducing the calculation of the 2-D QDFTs to the calculation
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Figure 13. (a) The EMEC measure of the α-rooting by the 2-D QDFT, (b) the original “airport” image, and (c) the
enhanced image by the 0.92-rooting in the quaternion space.

of the 1-D QDFTs over the splitting-signals which represent the image and can be used for image processing.20,25

Therefore, the calculation of the 2-D QDFT as well as 2-D ODFT can be reduced to separate calculation of the
1-D transforms, and application of transforms in color image enhancement,17,18,30 filtration13,21,31 and image
reconstruction32-.40

Let qn,m be the quaternion discrete image of size N ×N, and let µ be the pure unit quaternion, µ2 = −1.
The right-side 2-D QDFT as a generalized quaternion Fourier transform is defined as

Qp,s =
N−1
∑

n=0

N−1
∑

m=0

qn,mW
np+ms
µ , p, s = 0 : (N − 1). (3)

The kernel of the right-side 2-D QDFT is defined by the exponential function Wµ = Wµ;N = exp(−2πµ/N).
Here, the equality Wnp

µ = (Wµ)
np = exp(−µ2πnp/N) holds. The inverse right-side 2-D QDFT is calculated by

qn,m =
1

N2

N−1
∑

p=0

N−1
∑

s=0

Qp,sW
−(np+ms)
µ , n,m = 0 : (N − 1).

As an example, Figure 14 shows the real part of the 2-D QDFT of the quaternion “pentagon” image in part
(a),

Qp,s = (Qp,s)e +
(

i(Qp,s)i + j(Qp,s)j + k(Qp,s)k

)

, p, s = 0 : 511,

in the absolute scale. The imaginary part of the transform is shown in parts (b) and (c). One can see, that the
real part of the 2-D QDFT is not a dominant component in the quaternion spectrum of the image.
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(a) (b) (c)

Figure 14. The magnitudes of (a) real component, |Qp,s)e|, and imaginary component,
√

(Qp,s)2i + (Qp,s)2j + (Qp,s)2k,

before (b) and after (c) cyclicly shifting to the center.

7. CONCLUSION

New approach of image enhancement is proposed for gray-scale images, which is based on the idea of transforming
the image into the quaternion space, where the image can be enhanced and filtered by using the concept of the
two-dimension quaternion discrete Fourier transform (2-D QDFT). The application of the proposed method is
described on the example of alpha-rooting. Our preliminary results show that the application of the 2-D QDFT
plus the alpha-rooting method can be effectively used for enhancing gray-scale images.
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