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Abstract
Image degradations can be modeled as a process of linear

systems which are usually denoted by convolution. Deconvolu-
tion refers to a reverse operation of the linear system in which
an original image is convolved with a blur kernel, which is also
known as a point spread function (PSF) of the linear system. If
the blur kernel, which can represent linear degradations such as
an out-of-focus blur or motion blurs due to the shake of a cam-
era, is known, we call this ill-posed problem the non-blind decon-
volution problem. In this paper, we propose a non-blind decon-
volution method using a convex optimization method in which a
non-derivative approach is used to solve the ill-posed problem.
The proposed method minimizes the objective function using the
stochastic process in which the random variable selects the co-
ordinate. The objective function is minimized along the selected
coordinate direction at each iteration. If several coordinate di-
rections are picked simultaneously, the cost can be decreased in-
dependently along each coordinate direction.

Introdunction
Image deblurring refers to the process of estimating an in-

trinsic image from degraded observations using prior information
which is associated with the degrading system or the original im-
age. Image deconvolution plays a key role in various problems
where the image degradation can be supposed to be a linear pro-
cess. The PSF serves an amount of information about the degra-
dation system. However, there still exist uncertainty with the
PSF and we call this problem non-blind deconvolution problem.
The non-blind deconvolution algorithm, which serves the solu-
tion to the non-blind deconvolution problem, is used for various
image processing problems, especially in the blind deconvolution
method in which the PSF is also unknown. Non-blind deconvolu-
tion methods can be extended to the kernel estimation which is a
critical process in the blind deconvolution algorithms. Image de-
convolution has an amount of applications in various areas such
as image restoration, remote sensing, medical image processing,
astronomical image processing, etc.

Many deconvolution algorithms assume that the degradation
is a linear system. The image deconvolution problem to restore
an intrinsic image from a single degraded image can be modeled
using a linear convolution:

y = Hx+n, (1)

where y is a given observation which is usually a blurry image, x
is the intrinsic image, n is an error term generally modeled as ad-
ditive white Gaussian noise (AWGN), and H is a system matrix.
The system matrix, usually having a form of a block circulant with

circulant block (BCCB) matrix, has an assumption that the degra-
dation is a linear process based on the linear convolution. Even
if the PSF of the system is known, there still exist uncertainty
in this ill-posed problem. In the problem of non-blind deconvo-
lution, noise which is usually modeled as AWGN and boundary
problems are always taken into account to decrease the uncer-
tainty. Additionally, there exist many non-linear factors in image
processing modules such as dead pixels, hot pixels, non-linear
in-camera processing, nonlinear camera response curve and the
noise. Sometimes noise can be modeled as Poisson noise or film-
grain noise which have different characteristics with AWGN [1].
Overcoming outliers mentioned so far is a difficult problem to be
solved so various approaches have been tried for many years.

Various non-blind deconvolution methods have been pro-
posed in last decades. Traditional image deconvolution meth-
ods include Wiener filter, constrained least square (CLS) filter,
Richardson-Lucy (RL) deconvolution, etc. The Wiener filter,
which is closely related to the mean square error between the esti-
mated intrinsic image and desired image, is widely used to restore
the noisy observation [4]. CLS filter uses the Laplacian operator
as a prior knowledge with reducing the computational require-
ment by introducing the fast Fourier transform (FFT) [2]. RL de-
convolution algorithm, which is also known as Lucy-Richardson
deconvolution, uses Bayesian approach to estimate the intrinsic
image [5, 6]. Nowadays, non-blind deconvolution algorithms try
to estimate the intrinsic image by suggesting regularizations such
as total variation. For example, stochastic process is used to es-
timate the intrinsic image and cost functions that contain the L1
norm is suggested [7].

In this paper, we propose the non-derivative image deconvo-
lution algorithm in which a stochastic approach is used. First, in
the section of related works, we categorize the image deconvo-
lution algorithms into several groups and analyze gradient-based
algorithms and non-derivative algorithms. In the section of the
proposed method, a deconvolution algorithm, which does not use
the gradient of the cost function, is introduced. In the section of
experimental results, several results of simulations using test im-
ages are demonstrated and the values of peak signal-to-noise ratio
(PSNR) are also shown to compare the performances of a conven-
tional method and the proposed method. Lastly, in the section of
conclusions, we conclude our paper and discuss the potential of
our method.

Related works
Many non-blind image deconvolution methods are based on

least squares estimation which is a standard approach in regres-
sion analysis to the estimated solution. Least squares estimations
can be categorized into two groups, i.e., linear least squares and
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non-linear least squares estimations. In the case of linear least
squares estimation, a unique closed-form solution is suggested
and this solution can be regarded as unpleasant restored image
in general. The singularity cannot be overcome by this approach.
Especially in image processing, artifacts can be observed in the
frequency region. In the case of the non-linear least squares es-
timation, however, the solution of the problem can be selected
from the set of feasible solutions. Many iterative image deconvo-
lution algorithms fall into the non-linear least squares estimation
and select the solution by incorporating the prior knowledge as
regularization. The most appropriate solution is selected from the
set of feasible solution sets based on the suggested regularization.

The image deconvolution problem can be regarded as an ill-
posed problem that contains uncertainties as mentioned before.
The non-linear least squares estimation reduce the uncertainty by
using the iterative approaches. Various iterative approaches can
be constructed to solve the under-constrained problem incorporat-
ing information about the degradation system or the assumption
of the intrinsic image.

Deconvolution algorithms often use the gradient of images
because the gradient implies for the high frequency components
in terms of Fourier analysis. An amount of image degradations
such as defocusing problem or motion blur problem often de-
grades the regions of high frequencies more severely. Generally,
the blur kernel works as a low-pass filter so the high frequency
component is vulnerable to these degradations. Image deconvo-
lution process requires inpainting, especially on edges, to restrore
the loss of high frequency components of degraded images. As
in Fig. 1a, gradient-based methods look for the negative direc-
tion of the gradient at the current point. In this paper, the steepest
gradient descent method was implemented to estimate the origi-
nal image and was compared with the proposed algorithm that is
a non-gradient-based method.

The cost function can decrease along the direction of coor-
dinate as represented in Fig. 1b. The coordinate descent method
solves the optimization problem by successively performing ap-
proximate minimization along coordinate directions. The mini-
mization along the coordinate direction can be seen as a simpli-
fied version of the original ill-posed problem. By the simplifi-
cation, we can update each pixel by considering the neighboring
pixels. The optimization strategy based on the coordinate descent
method is proposed. This method does not use the information of
the gradient of the cost function and has similar complexity to the
method with the steepest gradient method.

In this paper, we propose an iterative non-blind deconvolu-
tion method in which the stochastic process is used to estimate
the original image. Our method would demonstrate the high res-
olution of intrinsic image with its own potential to decrease the
processing time although its convergence property is similar to
the steepest descent method. The proposed method also focuses
on the recovery of high frequency components which have large
loss during the degradation though the pixel-wise estimation.

Proposed method
A pixel has a higher correlation with its adjacent pixels rather

than pixels apart from its coordinate in the image plane. The
image degradation assuming a linear process considers that the
degraded pixel is obtained as a weighted sum of adjacent pixels
from the original images based on the estimated blur kernel. In
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Figure 1: (a) Optimization method in which the gradient infor-
mation is used. (b) Iterative algorithm which does not use the
gradient information. The cost function decreases along the coor-
dinates

this paper, we introduce an objective function which is differen-
tiable. This differentiable cost function is minimized with local
cost functions and the stochastic process. The objective function
consists of local cost functions that are a set of adjacent pixels
centered at every pixel in the image plane. The number of local
cost functions is equal to the number of the image pixels. Once we
select a coordinate (i.e., a pixel) to decided which local cost func-
tion to be decreased, the pixel will be updated via minimization
of local cost functions. Stochastic strategies will be mentioned to
decide which strategy can make the cost function much smaller.

Pixel-wise optimization
In this section, a convex optimization with a strictly convex

cost function is derived by a non-derivative optimization method
to compare with the gradient-based method. The cost function
here in suggested is a data fidelity term with the quadratic regu-
larization using the Laplacian[2]:

F(x) = ||y−Hx||2 +λ ||Cx||2, (2)

where || · ||2 denotes the L2 norm, C denotes a Laplacian operator
and λ is a regularization parameter. The suggested cost function is
twice differentiable so second derivatives are available. This char-
acteristic helps to compare the proposed method with the gradient
based method mentioned in the previous section.

In our method, the suggested cost function decreases along
the coordinate. Minimization of the cost function along a direc-
tion of the coordinate works by fixing all the components of the
vector, x, except for a pixel which corresponds to the selected co-
ordinate as below

xk+1
i = argmin

ε
F(xk

1, · · ·,x
k
i−1,ε,x

k
i+1, · · ·,x

k
N), (3)

where k denotes the index of iterations, i denotes the index of
components in the vector xk, xk

i is the ith component of vector x
on kth iteration, N is the dimension of the vector space or the size
of images and F denotes the cost function suggested above. This
minimization process of (3) can be regarded as an optimization
for the single variable so the ith component can be obtained by
satisfying

∂F(xk
1, · · ·,x

k
i−1,ε,x

k
i+1, · · ·,x

k
N)

∂ε
=

d fk(ε)
dε

= 0, (4)

where fk is the local cost function that measure the cost of the cor-
responding region that contains the selected pixel and its neigh-
boring pixels. If the certain pixel can be regarded as a variable
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to be calculated, other neighboring pixels can be considered as
constants during the minimization of the corresponding local cost
function.

We can estimate the local data fidelity and the local prior
information using the local cost functions. Theoretically, if we
minimize the cost function through optimizations of the local
functions with the same number of access, convergence can be
guaranteed[3]. Then the cost function decreases at every iteration
as below

F(x0)> F(x1)> F(x2)> · · ·, (5)

where the x0 indicates the initial state which is the image that we
obtained from the device, i.e., y in (1).

The pixel-wise optimization using the local cost functions
requires the neighboring pixels of the certain pixel corresponding
to the variable xk+1

i for minimization. The neighboring pixels can
be extracted by considering the PSF. When we extract neighbor-
ing pixels form the image plane, the pixels that have correlation
with the selected pixel should be considered and the relationship
between the original cost function F and the local cost function
fk is as below

F =
1

l× l

N

∑
k=0

fk(ε), (6)

where l is the size of the blur kernel N is size of the image.
The extracting operation can convert the optimization prob-

lem as the series of single variable optimizations by decomposing
the multi-variable problem into many small problems. In this min-
imization mechanism of solving small problems consecutively,
only one pixel is updated in one iteration. Thus far, as in (3), the
ordering of the small problems is constructed by lexicographical
ordering but the various orderings can be constructed. In the next
subsection, the effect of constructing the sequence of the small
problems is analyzed.

Sampling without replacement
As mentioned in the previous section, the ordering of solv-

ing small problems is a key factor to generate satisfying decon-
volution results. In this subsection, an effective ordering of small
problems is suggested. The easiest way of constructing the or-
dering is to solve the problems in lexicographical ordering (also
known as cyclic ordering). In many applications the lexicograph-
ically constructed ordering is used for its simple structure which
scans the image from top to bottom. Although lexicographically
ordering is easy to be constructed, this ordering generate severe
artifact as demonstrated in Fig. 3d. When the pixel-wise opti-
mization works based on lexicographical ordering, the distribu-
tion of the updated pixels in the neighborhoods generates the arti-
fact.

By using the stochastic process for constructing the order-
ing, our method generates more pleasant results than the result
with lexicographical ordering. Fig. 3e demonstrates less artifacts
than lexicographical ordering. The ordering can be constructed
by sampling without replacement. If a pixel is updated once, the
pixel has to be considered as constant until every pixel is up-
dated, i.e., we deliberately have to avoid sampling any pixel of
the image more than once. With this strategy, N! ordering can
be constructed. The satisfying restored images can be generated
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Figure 2: (a) Convergence of the proposed method with the image
’cameraman’ and four blur kernels. The first blur kernel is of size
13 by 13. The second blur kernel is of size 17 by 17. The third
blur kernel is of size 31 by 31. The forth blur kernel is of size
41 by 41. (b) With the first blur kernel. (c) With the second blur
kernel. (d) With the third blur kernel. (d) With the fourth blur
kernel.

by selecting ordering from the set of ordering based on sampling
without replacement. (Note that lexicographical ordering is one
in the set of orderings)

Experimental results
In the experimental results, the proposed method shows

higher values of the measurement comparing with the other con-
ventional methods that uses the gradient of the cost function [8].
The gradient-based method is implemented based on the steep-
est gradient descent method which has a similar computational
complexity with our method. A same cost function is minimized
by two different approaches, the gradient-based and the proposed
algorithm. The first blur kernel in Fig. 4 is a Gaussian blur ker-
nel whose standard deviation is two. The Gaussian blur kernel is
used for modeling the degradation by errors in the focal distance
of lens, i.e., problem of defocusing. The second blur kernel is
modeled for the case of problems of motions during the time that
shutter is open. The third and the forth kernels are constructed
to generate complex deconvolution problems. The images con-
volved with these kernels also have regions with high frequency.

As shown in Fig. 5 which is a magnified version of the first
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(a) (b) (c)

(d) (e)
Figure 3: (a) Degraded image and the corresponding blur kernel.
(b) Restored image using the sequence based on the lexicograph-
ical ordering. (c) Restored image using the sequence based on
sampling without replacement. (d) Magnified image of (b). (e)
Magnified image of (c).

experiment in Fig. 4, the proposed method demonstrated sharper
edges than the conventional method. In the second experiment
shown in Fig. 6, gradient-based method generated ringing arti-
facts near the edges but the proposed method showed less ringing
artifacts. The images restored by the proposed method in Fig. 7
demonstrated much clearer flat regions near the edges than the
conventional method. In the last experiment shown in Fig. 8, we
could observe more distinguishable fingerprints.

The improved-signal-to-noise ratio (ISNR) is used to mea-
sure the quality of the deconvolved images. ISNR is closely re-
lated to the peak-signal-to-noise ratio (PSNR) as represented be-
low

ISNR = 20 · log10

(
||x−y||2
||x− x̂||2

)
, (7)

where x̂ denotes the estimated image. Table 1 demonstrates values
of two methods. Generally, as in the visual comparison before,
the proposed method showed higher values than the conventional
method.
Table 1: Measurement using ISNR. CM denotes the conventional
method and PM denotes the proposed method. experiment1 de-
notes the simulation with Lena; experiment2 denotes the simu-
lation with Boat; experiment3 denotes the simulation with Shop-
ping; experiment4 denotes the simulation with Fingerprints

CM[8] PM
experiment1 4.8317 5.5847
experiment2 10.4098 12.5403
experiment3 8.8867 11.5848
experiment4 12.8477 14.4292

(a) (b) (c) (d)
Figure 4: Final results with various images and blur kernels. (a)
degraded images and the corresponding blur kernels. (b) original
images. (c) demonstrates the restored images with conventional
method. (d) demonstrates the restored images with the proposed
method

(a) (b)

(c) (d)
Figure 5: Cropped images from the results in the experiment with
the image ’lena’ in Fig. 4. (a) Degraded image. (b) Original
image. (c) Conventional method[8]. (d) Proposed method.

Conclusions
The proposed method uses the approach of the pixel-wise op-

timization based on the sequences constructed by sampling with-
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(a) (b)

(c) (d)
Figure 6: Cropped images from the results in the experiment with
the image ’boat’ in Fig. 4. (a) Degraded image. (b) Original
image. (c) Conventional method[8]. (d) Proposed method.

(a) (b)

(c) (d)
Figure 7: Cropped images from the results in the experiment with
the image ’shopping’ in Fig. 4. (a) Degraded image. (b) Original
image. (c) Conventional method[8]. (d) Proposed method.

out replacement for image deconvolution. The pixel-wise opti-
mization in which the deconvolution processes can operate inde-

(a) (b)

(c) (d)
Figure 8: Cropped images from the results in the experiment with
the image ’fingerprints’ in Fig. 4. (a) Degraded image. (b) Origi-
nal image. (c) Conventional method[8]. (d) Proposed method.

pendently according to each coordinate requires the simple struc-
ture to be implemented. This operation does not require the infor-
mation that can be obtained by scanning the whole images such as
gradient information. The independent deconvolution processes
based on the randomly selected coordinates are easy to be ap-
plied a parallel computing to our method. The proposed method
which is combined with the parallel computing can show the fast
convergence rate according to the number of CPUs in the multi-
core processor. The required computation can be divided into the
number of CPUs because iteration processes based on the selected
pixels is independent each other.
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