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Abstract
Conventional raycasting methods extract 2D-images from

pointclouds in two main steps. The pointcloud is voxelized and
then, rays are casted from a virtual-camera center towards the
model. The value for each pixel in the resulting image is calcu-
lated based on the closest non-empty voxel intersected with the
corresponding ray. Both voxelizing and such raycasting limit
the quality (resolution) of the extracted image and impose high
memory demands. In this paper, we propose an alternative back-
raycasting method, where rays are casted from the model towards
the virtual-camera center and intersecting an image plane. This
does not require any voxel grid to be generated. Moreover, this
method allows to obtain images with any required resolution with
all the points involved. Besides this, a neighbours-consistency
technique is introduced to enhance the resulting image quality.
The proposed method has been evaluated based on several cri-
teria and for various resolutions. Evaluation results show that
the proposed method compared to the conventional approach ex-
ecutes upto 49 times faster and improves PSNR and SSIM met-
rics for the resulting images by 26% and 12%, respectively. This
improvement is beneficial for such domains as feature matching,
edge detection, OCR and calibration. To enable researchers gen-
erating the same results and extend this work, the dataset and
implementation codes are publicly available [1].

Introduction
Raycasting [2] plays a prominent role in structure of several

algorithms including extracting images from pointclouds, hid-
den points/surface removal, non-recursive ray-tracing and vol-
ume rendering algorithms for various domains such as computer
graphics, computational geometry, volumetric image processing,
health-care and robotics [3, 4, 5, 6, 7, 8, 9]. In this paper, we focus
on raycasting for pointclouds with the aim of extracting RGB-D
images from 3D data for a specific point of view.

In general, raycasting algorithms trace rays from a virtual-
camera center towards the 3D-models to generate a 2D-image.
In resulting 2D-images, a ray is casted for each pixel, where the
pixel value is determined based on the closest point of the model
intersecting with the corresponding ray. Applying raycasting to
pointclouds, the most challenging part is to intersect a ray with
points of the 3D-model in the 3D space. Since pointclouds are
discrete structures of disconnected points, rays may not intersect
any points while passing through the pointcloud. Therefore, the
conventional algorithms voxelize the pointclouds prior to the ray-
casting process [10]. A voxelized pointcloud is a 3D array of vox-
els (volume-pixels) representing the model data. The resolution of
a voxelized model is determined based on its voxel size. A draw-

back of voxelized models compared to pointclouds is their high
demands on memory. To overcome this problem, several spatial
partitioning techniques have been introduced (e.g. octrees and kd-
trees) to deliver the performance of the pure voxelized model, but
with a significantly less memory requirement [11, 12, 13]. Fig-
ure 1 shows the a conceptual 3-D model and its corresponding
voxelized and optimized models.

Conventional raycasting algorithms perform two main steps
to extract 2D-images from pointclouds: (a) voxelizing the target
pointcloud and (b) raycasting from virtual-camera center to the
voxelized model (Figure 2). Both steps decrease the quality of
the extracted 2D-image. First, voxelizing process manipulates the
arrangement of the points by changing the density and distance
between them, which degrades the 2D-image quality especially
for the points located closer to the camera (influenced by the value
of V in Figure 2). Second, since rays are casting from the cam-
era towards the model, they scatter while becoming further from
the camera. This decreases the intersection chance for the voxels
located further from the virtual camera, accordingly (influenced
by the value of ar in Figure 2). Although decreasing the voxel
size and the angel between rays can partly compensate the above-
mentioned drawbacks, they require larger memory and computa-
tional resources.
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Figure 2: Conventional raycasting method (ar and V are the angel
between rays and voxel size, respectively).

In this paper, we propose an alternative for the conventional
raycasting method to extract RGB-D images from colored point-
clouds. Two main advantages of the proposed method are (1) its
ability to produce higher-quality images and (2) its efficient CPU
and memory usage, when compared to the conventional raycast-
ing method. The next section introduces the proposed method in
detail. Then, evaluation results are shown and discussed. And the
final section concludes the paper.
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Figure 1: (a) Input 3D-model, (b) voxelized model and (c) corresponding optimized model.

Method

We propose a Model-to-Camera back-raycasting (M2C)
method as an alternative to the conventional Camera-to-Model
raycasting (C2M) approach. The M2C method allows to extract
higher-quality images in two main steps without any need for
the voxelizing process. As demonstrated in Figure 3, the con-
ventional reycasting method performs two main steps: voxelizing
and raycasting. However, these main steps are replaced by back-
reaycasting and pixelizing steps in the proposed method.

A. Back-Raycasting

To extract images from the 3-D model, first, the rays are
casted from the 3D-model towards the virtual-camera center to
intersect the resolution-less image plane. This image is located
at the focal length of the virtual camera and preserves the exact
intersection point of each ray. In contrast to digital images, there
is no resolution defined for this continuous image. Figure 4 illus-
trates the M2C method, where casting rays from the pointcloud to
the camera center are intersecting the resolution-less image.

Each intersection point on the resolution-less image records
two elements of data per ray: (1) coordinates of the intersection
in the range of [−1,1] per each axis and (2) the distance from
the ray origin in the pointcloud to the camera. This information
are processed in the pixelizing step to generate the corresponding
color and depth images.

B. Pixelizing

Extraction of images from the 3-D model continues with the
second step of pixelizing, where the 2D-image with the desired
resolution is generated from the obtained resolution-less image.
In pixelizing technique, each pixel value is calculated by inte-
grating data of multiple intersection points. Pixelizing process is
performed in two phases. First, we apply the desired resolution as
a 2D grid on the resolution-less image to determine each grid cell
and the intersection points located inside it. Then, we determine
the grid pixel values as follows. If a grid cell contains no inter-
section points, the corresponding pixel is determined as an empty
pixel. The pixel value is straightforwardly calculated, if a grid
cell contains a single intersection point. For a grid cell containing
multiple intersection points, the pixel value is inherited from the
value of the intersection point with the closest distance. Figure 5
shows the phases of the pixelizing process.

C. Neighbours Consistency
Regardless of deploying C2M or M2C methods, the ex-

tracted images may contain undesired empty pixels. Moreover,
both methods may result in sharp borders between neighbouring
pixels in the extracted image, depending on the virtual-camera
pose in the scene (Figure 6). To overcome the above-mentioned
challenges, we introduce a neighbours-consistency technique.
The aim is to perform a weighted color-fusion in order to achieve
a smoother image with the least possible amount of empty pixels.
The following equation updates each pixel value by combining its
own value with its neighbouring values:

Qi =
Wd ×Pi +∑p(Wp ×Np)+∑c(Wc ×Nc)

Wd +∑p Wp +∑c Wc
. (1)

The new pixel value, Qi, is calculated based on three ele-
ments: (1) the old pixel value, Pi, (2) the non-diagonal neighbours,
Np, and (3) the diagonal neighbours, Nc. The user-defined weights
Wd , Wp and Wc indicate the amount of influence for the old value,
non-diagonal and diagonal neighbours, respectively (Wd = 80,
Wp = 4 and Wc = 1, for our experiments). Figure 7 illustrates
the neighbours-consistency technique applied to a generic pixel
of the extracted image.

The following section discusses the evaluation results, where
the proposed M2C method is compared to the conventional C2M
method.

Evaluation Results
Implementation and dataset collection: the proposed M2C

method is implemented in C++ and all the codes and dataset col-
lection are publicly available under an open-source license [1].
We have utilized OpenCV [15] and PointCloud Library [14] for
the standard implementation of some well-known algorithms to
generate evaluation results. The CloudCompare [18] tool has been
used for the pointclouds comparison. The experimental results
have been obtained utilizing a workstation with a Xeon(R) W3550
@3.07GHz CPU and 20 GB of RAM. The dataset collection con-
sists of 40 colored pointclouds obtained from the FARO Focus3D

laser scanner and the corresponding groundtruth images.
Criteria: the experimental results are obtained based on

three main metrics: performance, color-image quality and depth-
image quality. For performance, we compare the M2C and
C2M methods in terms of their execution time. We evaluate
the color-image quality by applying the following four well-
known algorithms to the extracted images: edge detection, cam-
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era calibration, feature detection and Optical Character Recog-
nition (OCR). And finally, in order to evaluate the depth-image
quality, we compare the pointclouds generated based on the
extracted depth images to the groundtruth laser-scanner point-
cloud. In all cases, we evaluate the extracted images for four
resolution formats: VGA (=640×480), VGA×2 (=1280×960),
VGA×3 (=1920×1440) and VGA×4 (=2560×1920).

A. Performance
Table 1 and Figure 8 show the average execution time of the

C2M and M2C methods for the four resolutions. The most im-
portant finding is that the execution time for M2C is resolution-
independent. In contrast to that, the execution time for C2M
grows exponentially by increasing resolution. The reason is that
M2C depends only on the number of points in a pointcloud and
not the image resolution. However, the image resolution influ-
ences on the performance of the C2M method through its vox-
elizing phase. On the average, M2C and C2M execute in 2.15 s
and 47.27 s, respectively. This means that for an average resolu-
tion, M2C runs 22 times faster than C2M.

Table 1: Execution time for the C2M and M2C methods for vari-
ous resolutions.

Resolution C2M (s) M2C (s)
VGA×1 2.50 1.80
VGA×2 12.15 1.93
VGA×3 44.79 2.21
VGA×4 129.62 2.65

0

20.000

40.000

60.000

80.000

100.000

120.000

140.000

x1 x2 x3 x4

Ex
ec

u
ti

o
n

 t
im

e 
(m

s)

Image resolution factor

Performance evaluation

C2M

M2C

Figure 8: Execution time for the C2M and M2C methods for var-
ious resolutions.

B. Color-Image Quality
Figure 9 (b-d) compares the extracted images by the M2C

and C2M methods for the four criteria: quality of edges, calibra-
tion results, quality of features, and OCR results, respectively. In
the following, we discuss the evaluation results for each criterion
in detail.

B.1. Edge Detection
We have applied the well-known Canny edge-detection al-

gorithm to the images obtained by C2M and M2C. The result-
ing edges have been compared to the corresponding groundtruth
by computing the Peak Signal-to-Noise Ratio (PSNR) and mean
Structural SIMilarity (mSSIM) metrics. Table 2 and Figure 10
show the edge-detection results for C2M and M2C. For all four

resolutions, both metrics indicate a consistent pattern, however,
M2C outperforms C2M in terms of providing higher-quality
edges. For the average resolution, C2M yields a PSNR of 17.3 dB
and 89.3% of similarity with the mSSIM metric. M2C provides
higher-quality edges by yielding a PSNR of 20.5 dB and 94.8%
of similarity with mSSIM, when compared to C2M. This shows
15.2% and 5.8% of improvement in terms of preserving edges for
M2C, based on the PSNR and mSSIM metrics, respectively.
Table 2: Comparing similarity between detected edges and the
groundtruth for the images extracted by the C2M and M2C meth-
ods in terms of PSNR and mSSIM metrics for various resolutions.

Resolution PSNR (dB) mSSIM (%)
C2M M2C C2M M2C

VGA×1 17.2 19.5 87.7 92.9
VGA×2 18.8 20.6 92.4 94.7
VGA×3 17.3 21.8 92.3 96.2
VGA×4 16.1 19.9 84.7 95.2
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Figure 10: Comparing similarity between detected edges and the
groundtruth for the images extracted by the C2M and M2C meth-
ods in terms of PSNR (top) and mSSIM (bottom) metrics for var-
ious resolutions.

B.2. Camera Calibration
We have evaluated the M2C and C2M methods by apply-

ing a standard camera-calibration algorithm to the images, which
are extracted from the pointclouds containing checker-boards 3-
D data. The resulting camera intrinsics have been compared to
the virtual camera intrinsics fed to both C2M and M2C meth-
ods to generate the color images. As shown in Table 3 and Fig-
ure 11, the average calibration error for the images extracted by
M2C and C2M methods are 0.36% and 11.7%, respectively. This
means that M2C performs 32 times more accurately than C2M.
Besides this, M2C shows a consistent behaviour independent of
resolution, when compared to the resolution-dependent behaviour
of C2M.
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Table 3: Percentage of the average error for applying camera cal-
ibration algorithms to the images extracted by the C2M and M2C
methods for various resolutions.

Resolution C2M (%) M2C (%)
VGA×1 3.76 0.05
VGA×2 11.03 0.99
VGA×3 18.93 0.16
VGA×4 13.03 0.26
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Figure 11: Percentage of the average error for applying camera
calibration algorithms to the images extracted by the C2M and
M2C methods for various resolutions.

B.3. Feature Detection
We have applied the well-known SIFT feature detector al-

gorithm to the extracted images and the corresponding real im-
ages of the same scenes. Then, the detected features are catego-
rized in two groups: (1) extracted images together, where we have
matched resulting images together and (2) between extracted and
real images, where we matched the resulting images with the real
images taken by an actual camera. The average number of inlier
matched features between each pair of images is used as a metric
to evaluate the color-image quality. Table 4 and Figure 12 show
the evaluation results for the C2M and M2C methods.

Table 4: Average number of the matched features between the
extracted (ext.) images by the C2M and M2C methods in two
groups: inside the extracted images and between the extracted
and real images for various resolutions.

Resolution ext. vs ext. ext. vs real
C2M M2C C2M M2C

VGA×1 151 256 2 7
VGA×2 99 200 42 53
VGA×3 138 216 62 105
VGA×4 141 209 74 85

M2C represents a more steady behaviour compared to C2M,
in terms of matching features in the extracted images. How-
ever, both methods perform differently for each resolution, when
matching features between extracted and real images. This is due
to the fixed resolution of the real images. On the average, C2M
and M2C lead to 132 and 220 (67% of improvement) matched
features in the extracted images, respectively. And for matching
features between the extracted and real images, C2M and M2C
lead to 132 and 220 (67% of improvement) matched features, re-
spectively. These values are 45 and 62 (40% of improvement)
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Figure 12: Average number of the matched features between the
extracted images by the C2M and M2C methods in two groups:
inside the extracted images (top) and between the extracted and
real images (bottom) for various resolutions.

matched features between the extracted and real images.

B.4. OCR algorithms
We have generated a laser-scanner dataset containing text

images of various font types and sizes. Then, two well-known
OCR algorithms, Tesseart [16] and OnlineOCR [17], have been
applied to the extracted images. As a metric for color-image qual-
ity, we have reported the percentage of correctly recognized char-
acters by each algorithm per method and for various resolutions
(Table 5 and Figure 13). As expected, both algorithms indicate
resolution-dependent results with a consistent pattern for the ex-
tracted images by the C2M and M2C methods.
Table 5: Average percentage of the recognized characters in the
extracted images by C2M and M2C for various algorithms and
resolutions.

Resolution Tesseart (%) OnlineOCR (%)
C2M M2C C2M M2C

VGA×1 39 44 39 46
VGA×2 53 69 73 75
VGA×3 63 72 78 87
VGA×4 71 77 80 88

The Tesseart algorithm can averagely recognize 56% and
65% of characters in the images extracted by the C2M and M2C
methods, respectively. The OnlineOCR recognition rate is 68%
and 74%, when applied to the the images extracted by the C2M
and M2C methods, respectively. These show that the M2C
method leads to 16% and 10% more recognized characters by the
Tesseart and OnlineOCR algorithms, when compared to the C2M
method.
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Figure 13: Average percentage of the recognized characters in
the extracted images by C2M and M2C for various resolutions:
results obtained by the (top) Tesseart and (bottom) OnlineOCR
algorithms.

C. Depth-Image Quality
To evaluate depth-image quality, first, we have extracted the

depth images from the laser-scanner pointclouds, based on the
C2M and M2C methods. Then, the extracted images have been
converted again to the pointclouds, according to the virtual cam-
era intrinsics used for both methods. Finally, the resulting point-
clouds have been compared to the corresponding groundtruth
laser-scanner pointclouds. We have utilized the average point-
to-point distance between pointclouds (obtained via CloudCom-
pare [18]) as the error metric. Table 6 and Figure 14 demonstrate
these comparison results of the C2M and M2C methods in terms
of mean error and standard deviation.

Table 6: Average point-to-point error of the pointclouds generated
based on the images extracted by the C2M and M2C algorithms,
compared to the groundtruth.

Resolution mean error (mm) std. dev. (mm)
C2M M2C C2M M2C

VGA×1 3.79 1.68 3.45 1.77
VGA×2 3.72 1.59 3.62 1.78
VGA×3 3.70 1.60 3.59 1.76
VGA×4 3.54 1.46 3.54 1.30

Both C2M and M2C methods produce consistent results for
all four resolutions. The extracted depth images obtained by the
proposed M2C method contain the average error of 1.58 mm,
which is a 57% of improvement compared to the C2M method
with 3.69 mm of the average error. The same pattern appears for
the standard deviation metric, where C2M and M2C result in the
average deviation of 3.35 mm and 1.65 mm (53% less error), re-
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Figure 14: Average point-to-point error of the pointclouds gener-
ated based on the images extracted by the C2M and M2C algo-
rithms, compared to the groundtruth: (top) mean error, (bottom)
standard deviation.

spectively.

Conclusion
We have proposed a Model-to-Camera back-raycasting

(M2C) method as an alternative to the conventional Camera-to-
Model raycasting (C2M) approach. This method allows to extract
higher-quality images in two main steps without any need for the
voxelizing process, which is required for the conventional C2M
approaches.

The proposed method consists of two main steps to extract
color or depth images from the input pointclouds: back-raycasting
and pixelizing. First, at the back-raycasting step, we cast a ray
per each point in the pointcloud towards a resolution-less image
located at the focal length of the virtual camera. This resolution-
less image contains both color and depth data per point. Second,
at the pixelizing step, we generate a pixel grid with a user-defined
resolution to extract the color and depth images from the resulting
resolution-less image. Besides these two main steps, we also ap-
ply a neighbours-consistency technique on the extracted images
obtained from both C2M and M2C methods. This extra step im-
proves the image quality in terms of filling holes and smoother
transition between pixels.

We have evaluated the proposed methods in terms of perfor-
mance, color image and depth-image qualities. To evaluate the
color-image quality, we have utilized four well-known algorithms
including edge detection, camera calibration, feature matching
and OCR algorithms. The evaluation results show that the pro-
posed M2C method outperforms the conventional C2M method
for all the metrics and resolutions. In terms of execution time,
M2C runs upto 49 times faster than C2M (22 times faster on the
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average). Besides this, the execution time of M2C is resolution-
independent, compared to the resolution-dependent behaviour of
C2M. The edges generated by a Canny detector on M2C images
are 15% closer to the groundtruth, compared to the detector re-
sults running on C2M images.

Applying camera calibration algorithms on the extracted im-
ages shows that, on the average, M2C provides images resulting in
32% less errors, when compared to the images extracted by C2M.
The images generated by M2C lead to 67% more matched fea-
tures compared to the images extracted by C2M, when utilizing
SIFT algorithm. The OCR algorithms can averagely recognize
16% more characters in the images extracted by M2C compared
to the images generated by C2M. And finally, depth images gen-
erated by M2C contain 57% less point-to-point error, when com-
pared to the depth images extracted by C2M.

As a future work, we are investigating an efficient implemen-
tation of the proposed method to improve the execution time even
more. To enable researchers generating the same results and ex-
tend this work, the dataset and implementation codes are publicly
available under an open-source license [1].
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Extracting 2D images from point clouds

Camera to Model (C2M) ray-casting

Model to Camera (M2C) back ray-casting

Figure 3: Comparing main steps for (a) C2M vs (b) M2C methods.
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Figure 4: M2C method: (a) back-raycasting towards a (b) resolution-less image.
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Figure 5: Pixelizing process: (a) resolution-less image containing position, color, and distance information per point, (b) user-defined
pixel grid, (c) data fusion, and (d) the resulting color or depth image.

Figure 6: Before (left) and after (right) applying the neighbours-consistency technique.
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Figure 7: Neighbours-consistency technique: (a) the input image, (b) the effect of neighbours on each target pixel, and (c) the resulting
image.
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Figure 9: Comparing the extracted images by the C2M (left in each sub-image) vs M2C (right in each sub-image) methods: (a) depth
images, (b) color images used for edge detection, (c) checkerboard images exploited for camera calibration, (d) color images utilized for
feature matching and (e) color images used for the OCR algorithms.
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