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Abstract
This work focuses on estimating an accurate 3D transfor-

mation in real time, which is used to register images acquired
from different viewpoints. The main challenges are significant
image appearance differences, which originate from lateral dis-
placements and parallax, inconsistencies in our 3D model and
achieving real-time execution. To this end, we propose a feature-
based method using a single synthesized view, which can cope
with significant image appearance differences. The 3D transfor-
mation is estimated using an EPnP refinement to minimize the
influence of inconsistencies in the 3D model. We demonstrate that
the proposed method achieves over 95% transformation accuracy
for lateral displacements up to 350 cm, while still achieving 85%
accuracy at displacements of 530 cm. Additionally, with a run-
ning time of 100 milliseconds, we achieve real-time execution as
a result of efficiency optimizations and GPU implementations of
time-critical components.

Introduction
Image registration or image alignment, consists of placing

two images depicting the same scene, in the same coordinate sys-
tem, where one image is recorded from an unknown changed cam-
era pose. This effectively means that the images are placed in the
same coordinate system and thus nullify the camera-pose change,
where at least one of the images is required to undergo a transfor-
mation. This transformation ensures that pixels representing the
same world objects in both images, map to the same image coor-
dinate after successful registration. The challenge is then defined
as achieving a pixel-accurate alignment, regardless of the camera
pose.

We study image registration in the context of a mobile ap-
plication, where images are recorded from a moving vehicle and
need to be aligned to images acquired during an earlier drive,
where the latter will be referred to as historic images. The ac-
quisition setup consists of a stereo camera pair, so that the 2D im-
ages are complemented with depth information. Both the images
and depth map are acquired once every meter at a resolution of
1920×1440 pixels. A GPS receiver, IMU (Inertial Measurement
Unit) and Real Time Kinematic (RTK) correction are employed
for improved positioning accuracy. The resulting stereo images
are geo-referenced with an accuracy up to tenths of centimeters.

Our mobile application presents additional registration chal-
lenges. First and foremost, the relative order of objects in the
scene changes due to parallax effects, as shown in Figure 1. This
effect occurs when images are captured from a moving vehicle
with little restriction to trajectories, i.e. driving trajectories can

be meters apart. This results in significant perspective differences
and different relative positions of objects in the scene. Second, the
time difference between the images in a cluttered environment of-
ten results in visual changes between the two scenes, e.g. a parked
vehicle or strong shadows with a different orientation due to a
different daytime. This becomes especially relevant in combina-
tion with different viewpoints, which limits the viewpoint overlap,
meaning that a significant part of the scene may look different.

To overcome the first challenge and deal with the parallax
effects, the 2.5D hierarchical alignment introduced in previous
work [25] is adopted. To summarize this 2.5D method, a textured
3D model of the historic scene is obtained, which is transformed
(in 3D) to the live camera pose. The transformed 3D model is
projected back to a 2D image, resulting in an image of the historic
scene, as if captured by the live camera. Since the transformation
took place in 3D, the parallax effects are handled correctly. This
approach is visualized in Figure 2 and explained in more detail in
the Section ‘Baseline system’.

Figure 1: Sample historic and live image depicting the same scene
from different viewpoints. Note the significant appearance differ-
ence and the strong parallax effect, which changes the relative
position of objects from 1-2-3 to 2-1-3.

The second challenge, the cluttered environment and varying
recording conditions, make it difficult to accurately estimate the
3D transformation between the live and historic camera pose. In
fact, this is the bottleneck of the existing 2.5D system [25], which
shows good performance for (lateral) displacements up to 2.5 me-
ters, but the performance drops rapidly when displacements be-
come larger. The objective of our method is therefore to estimate
a robust and accurate 3D transformation between the live and his-
toric camera pose under large viewpoint differences and dynamic
changes in the scene. Here, our real-time requirement is satis-
fied at 6 fps, because that is the maximum capturing speed of our
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Figure 2: Overview of the stages in the baseline image registration
method [25]. This work focuses on estimating the 3D transforma-
tion, the stage outlined in red.

custom-made stereo camera. The accuracy requirement of the fi-
nal (2D) alignment is a maximum alignment error of a few pixels
within images of HD resolution (1920×1440 pixels).

The main contributions of this paper are twofold. First, we
propose a robust 3D transformation estimation method, that has a
significantly higher accuracy than the baseline system and is on-
par with computationally more expensive state-of-the-art meth-
ods. Second, we demonstrate real-time execution resulting from
efficiency optimizations and a GPU implementation of the time-
critical elements in our method.

The remainder of this paper is organized as follows. In the
next section, an overview is given of related work in image reg-
istration. Then, in Section ‘Baseline system’, the baseline image
registration method as well as our acquisition setup is described.
Section ‘Approach’ details our proposed method, followed by
a thorough validation of our method in Section ‘Results’. Fi-
nally, we discuss the limitations of the proposed work in Sec-
tion ‘Discussion & Recommendations’ and draw conclusions in
Section ‘Conclusions’.

Related work
Image registration has been widely researched for a broad

range of applications. In this section we briefly overview the two
approaches most relevant to our context: feature-based and point-
based registration.

Point-based registration
The point-based registration approaches aim at minimizing

the distance between two 3D point clouds, derived from the depth
map only. The most widely used algorithm is Iterative Closest
Point (ICP) [2], which iteratively converges to an optimal solu-
tion. Although reliable for synthetic 3D models, ICP is neither
robust to noise nor outliers [21], which are unavoidable when us-
ing passive stereo cameras to generate a depth map.

Various improvements to ICP have been proposed. Most no-
tably, probabilistic variants [23][15] show increased robustness to
noise and outliers, but remain prone to converging at local op-
tima. Additionally, ICP-like algorithms often suffer from long
execution times due to their iterative nature. Typically, downsam-
pling is applied to improve the execution time. However, such

downsampling increases the registration error beyond the required
alignment accuracy. For these reasons, we consider point-based
registration to be less suitable for our high-resolution mobile ap-
plication and do not pursue this approach any further in this work.

Feature-based registration
Typically, feature-based registration approaches first com-

pute features in both images. Second, these features are matched
to generate point-to-point correspondences between the two im-
ages. Finally, a transformation is estimated from these correspon-
dences. A distinction can be made between methods that use 2D
(image) features and 3D (point-cloud) features.

Theoretically, 3D features are very powerful for generating
strong correspondences at salient 3D structures [9][24], especially
when color is incorporated [22]. However, such features typically
use point orientations [26], which are derived from locally esti-
mated surfaces in the point cloud. In the case of our mobile stereo
setup, the point cloud is sparse and noisy over the viewing di-
rection, which means that surface normals cannot be computed
reliably (at the scale of interest). The resulting 3D features are
therefore not found at consistent locations between scenes, which
makes them unsuitable for estimating the 3D transformation in
the considered mobile application.

Alternatively, 2D image features can be used, such as the
well-known Scale Invariant Feature Points (SIFT) [12] and Lo-
cal Binary Patterns (LBP)[16] descriptors. In this work, Bi-
nary Robust Independent Elementary Features (BRIEF) [4] de-
scriptors are used together with the Accelerated Segment Test
(FAST) [18][19], where the latter is a corner detection heuristic.
This combination has shown to perform particularly well in our
mobile application and can be computed efficiently. By project-
ing the resulting 2D features to 3D using the disparity map, the
3D transformation can be estimated.

However, neither of the aforementioned features contain
structural information, nor are they robust to occlusions or ap-
pearance changes that result from severe viewpoint differences.
To tackle such appearance issues, Morel et al. [14] introduced
synthesized views that simulate different viewpoints in Affine-
SIFT (ASIFT). An affine transformation applied to the original
image yields a synthesized view, approximating the scene as seen
from a different viewpoint. In ASIFT, the full range of synthetic
viewpoints is simulated, which has shown attractive performance
in registering planar scenes from different viewpoints. However,
the execution time is excessive because each view is matched
separately. A recent variant to ASIFT, Matching On Demand
with view Synthesis (MODS) [13], iteratively applies more time-
consuming feature detectors in a progressive way, which employ
a robust variant of SIFT, called RootSIFT [1]. Additionally, each
iteration applies a predefined amount of viewpoint simulations.
Compared to ASIFT or 2D features, MODS shows a huge per-
formance increase on non-planar scenes, but its iterative nature is
undesirable for real-time application.

Contrary to the above-mentioned methods in which no a-
priori knowledge about the viewpoint difference is assumed, we
exploit the GPS/IMU position and previous vehicle displacements
to synthesize a single relevant view. This synthesized view neu-
tralizes image appearance differences of the ground plane due to
a different viewpoint, which allows the use of the efficient FAST
and BRIEF features.
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Baseline system
The baseline image registration method [25] can be sum-

marized in four stages, as visualized in Figure 2. Prior to these
stages, live and historic images featuring the same scene from
different viewpoints, are paired using GPS and vehicle heading.
Next, a depth value is obtained for every pixel in the historic im-
age through disparity estimation.

Figure 3: Prototype vehicle used for our experiments, featuring
a stereocamera with 1920× 1440 pixel resolution and GPS/IMU
positioning, achieving decimeter accuracy.

In the first stage of the image registration, the historic scene
is modeled by projecting texture onto a 3D model of the historic
scene, yielding a textured 3D polygon model. The implementa-
tion of this model can be found in [25]. In the second stage, a
3D transformation between the live and historic scene is calcu-
lated. This transformation is subsequently used in the third stage
to transform the historic 3D model, as if it was viewed by the live
camera. The transformed model is then projected to 2D, result-
ing in an historic image that is aligned with the live image. This
initial registration may have local misalignments, e.g. shifts of
several pixels, due to small inaccuracies in either the 3D scene
reconstruction or the 3D transformation. In the last stage, the
registration is refined using an optical flow method to achieve a
pixel-precise registration.

The baseline system estimates the 3D transformation
through 2D feature matching. First, the FAST corner detector
together with the descriptor of Oriented FAST, Rotated Brief
(ORB) [20] are applied to find features. Next, 2D correspon-
dences are generated between the live and historic features using a
full-search bi-directional matcher, where only one-to-one matches
are accepted. Additionally, false correspondences are filtered with
the Second Nearest Neighbor (SNN) [12] similarity constraint.
The resulting set of feature correspondences is projected to 3D
using world coordinates obtained from the depth map. The ge-
ometrical constraint from Hirschmuller [7] further removes out-
liers from the set of 3D correspondences. From this improved set
of feature correspondences, a rigid 3D transformation between
the two scenes is estimated using the 3D RANdom SAmple Con-
sensus (RANSAC) algorithm. This baseline 3D transformation
estimation method performs well for lateral displacements up to
2.5 m, but performance declines rapidly for larger displacements.

Approach
In this work we propose an improved 3D transformation es-

timation that is more robust to inaccuracies in the depth map, oc-
clusions of objects and ambiguities in the scene, such as repeating
patterns. For this reason, we introduce a single synthesized view
to cope with large perspective distortions. Furthermore, we mini-
mize the influence of inaccuracies in the depth map, by applying
an additional refinement to the set of 2D-3D correspondences.

Figure 4 shows the flow of our method in four stages. First,
view synthesis is applied. To reduce the computational load of this
stage, we choose to create a single synthesized view of the live
ground surface, as appearance changes due to viewpoint varia-
tions are most apparent in this area, e.g. the ground surface in Fig-
ure 1 is significantly more distorted than the lighting pole. To this
end, the historic and live image are first split into separate ground
surface and obstacle views. These views can be interpreted as im-
ages containing only the ground surface or obstacle pixels, where
the ground/ obstacle division is made using the 3D historic scene
model1. Second, features are computed for each view separately.
Third, point correspondences are obtained and false correspon-
dences are rejected. The remaining correspondences are projected
to 3D using the depth map. Fourth, the 3D correspondences are
used to estimate an initial transformation, which is later refined
using a set of 2D-3D correspondences, thereby minimizing the
registration error in 2D. The following paragraphs provide a de-
tailed description of these four steps.

View synthesis
The proposed pipeline starts with an initial estimate of the

lateral displacement of the vehicle w.r.t. the previous driving tra-
jectory, which is based on a temporal filtering of the GPS/IMU
data and the previously estimated transformation. This estimate
is used to synthesize a single relevant view.

View syhthesis increases appearance similarity between im-
ages acquired from different viewpoints. Performing view syn-
thesis on an image involves applying a 2D transformation to that
image, which is known to be valid only for a single world plane.
In this work, the live ground plane is synthesized to increase the
appearance similarity with respect to the historic ground plane
(see Figure 5). The focus lies on canceling appearance changes
due to lateral displacements of the vehicle, as these are most com-
mon in practice, e.g. driving in a different lane.

It was shown by Ranft [17] that the 2D transformation for
simulating a slanted world plane as seen by another camera (in
stereo setup), simplifies to a shearing transformation. However,
this only holds when the pair of images are rectified. Rectification
implies that the camera centers are displaced in the x-direction
only and there is no angular difference between the optical axis
of the cameras. As we are interested in approximating image ap-
pearances, we can neglect small differences in the y-direction or
in image scale and only rectify the angular differences of the op-
tical axis.

The process of view synthesis by angular rectification and
shearing the live ground surface is shown in Algorithm 1. Rec-
tification of the live optical axis with respect to the historic axis,

1In reality regions of interest (ROIs) are used. However, for ease of
explanation, we refer to these as separate ground surface and obstacle
views instead.
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Figure 4: Block diagram of the proposed method. First, the live and historic images are split into separate ground surface and obstacle
views. Second, features are computed for each view separately. Third, the features are matched, false matches are filtered from the
correspondences and the resulting correspondences are projected to 3D using the depth map. Finally, a transformation is estimated from
the 3D correspondences and later refined.

(a) Historic image (b) Live image at 3.5m dis-
placement

(c) Synthesized view of the live image
Figure 5: An example of a synthesized view of the live image.
The image is transformed such that the ground surface is depicted
as viewed from a different angle. This transformation is clearly
not applicable to pixels not belonging to the ground surface.

is achieved using a rotational homography H∆R [5] (Line 9 of Al-
gorithm 1), computed from the angular difference ∆R between
the optical axes. Due to vibrations of the vehicle disturbing the
onboard IMU, the roll and pitch angles supplied by the IMU are
inaccurate. Instead, the roll and pitch angles are derived from
an estimation of the ground surface normal and the yaw angle
is derived directly from the IMU. This is shown in Lines 2–6 of
Algorithm 1, where α , β and γ are the pitch, roll and yaw an-
gles towards the ground surface, respectively. The actual shearing
transformation A only requires a shearing gradient g (Line 10, Al-
gorithm 1). This gradient is calculated from the initial lateral dis-
placement δ between camera poses, the measured height hv of the
cameras atop the vehicle and the absolute roll angle of the historic
ground surface β H . The synthesized view is finally created by ap-
plying the rectification (H∆R) and shearing (A) transformations to
the live image.

Feature matching
The FAST corner detector is combined with the BRIEF de-

scriptor, which have shown good performance under perspec-

tive transformations [6]. From Figure 4 it can be observed that
features are matched independently for the ground and obstacle
views. This reduces the amount of false matches and is more ef-
ficient than jointly matching all features. A full-search matcher
is used to match the features based on the Hamming distance be-
tween their descriptor vectors. False matches are filtered from
the initial correspondences using the Second Nearest Neighbor
(SNN) ratio, where a match is rejected if the first and second near-
est matches are too similar.

Transformation estimation
A set of 3D feature correspondences is obtained by pro-

jecting the 2D correspondences from the previous section to 3D,
using the depth values obtained from the disparity map. These
3D correspondences are then used to estimate an initial rigid 3D
transformation, by minimizing the Euclidean distance in 3D.

Algorithm 1 View synthesis of the live ground surface

Input: IL - Live image, δ - displacement estimate between live
and historic camera pose, (SL,SH ) - Live and historic 3D
ground surface

Output: IS - Synthesized live image
Parameters: K - Intrinsic camera matrix, hv - Height of camera

1: procedure SYNTHESIZEVIEW(IL,δ ,SL,SH )
2: for i ∈ {L(ive),H(istoric)} do
3: Ni = EstimateSurfaceNormal(Si)
4: α i = atan(Ni

y/Ni
z)

5: β i = atan(Ni
y/Ni

x)

6: γ i = RetrieveYawFromIMU(i)
7: end for
8: ∆R = Rz(β

L−β H) ·Ry(γ
L− γH) ·Rx(α

L−αH)
9: H∆R = K ·∆R ·K−1

10: g = δ/hv cosβ H

11: IS(x) = IL(A ·H∆R · x) , A =

[
1 g 0
0 1 0
0 0 1

]
, x =

[
x
y
1

]
12: return IS

13: end procedure
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However, due to inaccuracies in the depth map, which typi-
cally involve a high uncertainty in the localization of the point on
the ray through the camera center (pinhole camera model), the
initial transformation in 3D may not correspond to an optimal
registration after back projection to 2D. To reduce the effect of
such 3D inconsistencies, an additional transformation refinement
is employed that minimizes the reprojection error in 2D. This
is accomplished using the Efficient Perspective-n-Point camera-
pose estimation algorithm, EPnP [10]. Since the 2D projection of
a 3D point is unaffected by the localization of this point on the
ray through the camera center, the resulting transformation is less
affected by 3D inconsistencies in the viewing direction.

Although an initial 3D transformation estimate is strictly
not necessary for the EPnP algorithm, the accuracy of EPnP
has shown to improve significantly when less spatial outliers are
present [10]. Both the estimation of the initial transformation and
the EPnP algorithm are wrapped in a RANSAC scheme to im-
prove the robustness of the solution.

Efficiency optimizations
Several efficiency optimizations are included in our imple-

mentation to ensure a transformation can be estimated in real-
time. These optimizations are as follows:

• Only image regions withing the overlapping Field of View
(FoV) of both cameras are processed.

• Time-critical elements are executed on a GPU. For this
reason, we have created our own GPU implementation of
BRIEF and used GPU algorithms from OpenCV [3] for
FAST, full-search feature matching and image warping.

• Memory overhead is reduced by cropping the synthesized
view to the relevant ground-surface region. This also re-
duces the overhead from GPU data transfers.

The Section ‘Timing evaluation’ near the end of this paper, shows
the execution time with and without these optimizations.

Experiments & Results
Both the transformation accuracy and the execution time of

the proposed method are evaluated for several realistic scenarios.
Results are compared to the baseline system as well as the state-
of-the-art MODS algorithm. The experiments focus on challenges
that typically occur for moving vehicles: different driving trajec-
tories, different viewpoints and illumination changes. Further-
more, the contribution of the synthesized view to the alignment
accuracy is explicitly addressed.

Evaluation framework
This work focuses on estimating an accurate 3D transfor-

mation, which is used to register images acquired from different
viewpoints. Therefore, the registration error between the live and
aligned-historic frame can be used as an evaluation metric as fol-
lows. Corresponding points in both historic and live images are
manually annotated. Similar to the techniques described in Sec-
tion ‘Approach’, the historic annotations can be converted to 3D
points using the depth map. By applying the estimated 3D trans-
formation, the historic annotations are transformed to the (3D)
coordinate frame of the live camera. After re-projecting the trans-
formed historic annotations to 2D, the historic annotations should
now be aligned to the live annotations.

Throughout this paper, we define the transformation accu-
racy as the percentage of annotations with an alignment error be-
low 5 pixels. It has been observed that the manual annotation pro-
cess itself causes alignment errors that are on the average below
2 pixels.

Results
This section evaluates the transformation accuracy of the

proposed, the baseline and the state-of-the-art MODS system,
where MODS replaces stage a-c in Figure 4. Table 1 summa-
rizes the results of all experiments, which are now discussed sep-
arately. Figure 6 shows examples of the challenges encountered
in our datasets, which are evaluated in this section.

Figure 6: Illustration of the challenges encountered in our
datasets. The left and right images show the same scene under
a different: lateral displacement (top), driving orientation (center)
and with dynamic changes in the scene (bottom).

Lateral displacements: This experiment contains parallel
driving trajectories with different lateral displacements between
the historic and live trajectories (of 0 cm, 160 cm, 350 cm, 530 cm
and 700 cm). This simulates the effect of driving in a different
lane.

Figure 7, shows the alignment-error histograms for differ-
ent alignment algorithms, including the proposed method. For
such histograms, the energy is ideally located at the left side of
the histogram. From Table 1 (first 5 columns), it can be ob-
served that the proposed method achieves over 95% accuracy up
to 350-cm lateral displacement and still shows 85% accuracy at
530-cm displacement. The MODS algorithm, when embedded
in the proposed evaluation framework, shows similar accuracy as
the proposed method, where it should be noted that its execution
time is approximately 30 to 80 times slower. The baseline sys-
tem consistently fails to find accurate transformations at displace-
ments of 350 cm and larger and already drops to 49% at 160 cm.
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Table 1: Transformation accuracy and execution time results for the baseline method, the proposed method and the state-of-the-art MODS
algorithm integrated in our evaluation framework. ∗method does not apply EPnP refinement to cope with 3D model inconsistencies.

lateral 0cm lateral 160cm lateral 350cm lateral 530cm lateral 700cm illumination orientations

acc. time acc. time acc. time acc. time acc. time acc. time acc. time

[%] [ms] [%] [ms] [%] [ms] [%] [ms] [%] [ms] [%] [ms] [%] [ms]

Baseline [25]∗ 99 256±27 49 242±13 27 229±13 19 253±12 6 269±17 86 377±20 5 101±97

Proposed 100 100±26 98 72±9 95 65±5 85 68±7 64 64±14 99 108±10 90 110±37

MODS [13] 100 8312±194 99 7742±160 88 7548±124 80 7586±189 64 20539±7207 97 19021±10587 66 12251±6769

These results agree with the initial transformation accuracy re-
ported in [25], where the accuracy was significantly improved by
the 2D optical flow refinement (not applied here). It should be
noted that the baseline is evaluated without using the EPnP algo-
rithm.

Varying orientations: This experiment consists of images
where the vehicle orientation between the live and historic tra-
jectory deviates more than 15◦. This limits the overlap in Field
Of View (FOV) and introduces perspective distortion between the
reference and live images. The transformation accuracy is shown
in Table 1, Column 7. The proposed method achieves a high ac-
curacy, around 90%. Although MODS shows promising results
in the previous experiment, its performance degrades for differ-
ent viewing angles. This can be explained by the limited overlap
in the FoV of the live and reference images, which is only taken
into account by the proposed system. When this view overlap is
small, processing more than the overlapping region results only in
more false correspondences. Similar to the lateral displacements
experiment, the baseline system cannot handle the viewpoint dif-
ferences and shows poor accuracy.

Illumination changes: This experiment focuses on images
with both global and local illumination changes, e.g. shadows.
The transformation accuracy is shown in Table 1, Column 6. It
can be directly observed that all methods perform exceptionally
well, which can be explained as all employed features are invari-
ant to small illumination changes.

Limitations of the Synthesized view: To evaluate the prac-
tical limitations of the synthesized view, the lateral displacement
experiments are repeated, however, this time with the obstacle
views omitted, i.e. only the ground surface is used for estimat-
ing the 3D transformation. The proposed method is then evalu-
ated with and without using a synthesized view, to clearly validate
the advantage of using such a synthesized view. Furthermore, we
employ the system in an environment that violates some of the
assumptions behind the synthesized views, i.e. a non-flat ground
surface. Similar to the previous experiment, feature matching is
limited to the ground surface and the system is evaluated with and
without the synthesized view.

Figure 8 shows the alignment-error histograms with and
without the synthesized views. The 0-cm and 160-cm datasets are
not shown, because the transformation accuracy for those datasets
is comparable to the results on the 350-cm dataset, i.e. over 95%
accuracy, both with and without synthesized views. It can be con-
cluded that the synthesized view significantly improves perfor-
mance for a lateral displacement of 530 cm, but is not strictly nec-
essary for estimating a transformation at smaller displacements.
Additionally, at 700-cm lateral displacement, the transformation
for generating a synthesized view induces such significant distor-
tion, that hardly any correspondences are found, thus resulting in
large transformation errors. The result of the 700-cm histogram

also implies that the accuracy for the 700-cm test reported in Ta-
ble 1 is mainly based on feature correspondences from the obsta-
cle views.

Finally, the histograms in Figure 9 show that even though the
synthetic view is applied to a terrain with a non-flat surface, the
registration accuracy is only slightly affected.

Timing evaluation
All implementations are evaluated on a system comprised of

an i7-3960X 3.3-GHz hexacore processor with 16-GB RAM, a
GeForce GTX Titan X GPU and a 256-GB SSD, running Ubuntu
14.04. Table 2 reports the improvement in execution time from
the efficiency optimizations introduced in the equally named sec-
tion. Table 1 shows the execution time of the proposed, the base-
line and the state-of-the-art MODS system for the various exper-
iments. From this table it is clear that the proposed method ex-
ecutes significantly faster than the other methods, in the order of
100 milliseconds versus seconds for the state-of-the-art algorithm.

Discussion & Recommendations
It was shown that the alignment accuracy is comparable for

displacements up to 350 cm, regardless whether the synthesized
view is applied or not. Furthermore, it was shown that the synthe-
sized view is no longer beneficial when the displacement becomes
too large, e.g. 700 cm. Only in specific scenarios, where the
lateral displacement is between 400 and 600 cm, the synthesized
view significantly improves the alignment accuracy. We therefore
argue to apply it only in those situations where the displacement
estimate is between 400 and 600 cm.

The reader may have noticed the absence of a registration re-
finement stage, as employed in [25]. The method proposed in this
paper would also benefit from this additional refinement, which
was beyond the scope of this work.

At this point, we also list a recommendation for the near fu-
ture. The estimate of the displacement is currently an approxima-
tion using a weighted moving average filter. Although our method
is robust to small errors of the estimate, the displacement esti-
mate is always lagging behind on the actual displacement. There-
fore, a prediction of the displacement that would exploit both vi-
sual information as well GPS/IMU data, would be more robust
to displacement changes. Prediction or localization algorithms,
such as an Extended Kalman Filter (EKF) [8], or a visual-inertial
SLAM [11] algorithm, could be applied to reduce the difference
between our estimated and the actual displacement.

Conclusions
The contributions of this paper are twofold. First, we have

introduced an improved method for estimating a robust 3D trans-
formation in cluttered environments, which facilitates the reg-
istration of images captured under large viewpoint differences.
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(a) Baseline, 350 cm
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(b) Proposed, 350 cm
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(c) MODS, 350 cm
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(d) Baseline, 530 cm
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(e) Proposed, 530 cm
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(f) MODS, 530 cm
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(g) Baseline, 700 cm
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(h) Proposed, 700 cm
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(i) MODS, 700 cm
Figure 7: Alignment error histograms for the baseline method, the
proposed method, and the state-of-the-art MODS algorithm inte-
grated in our evaluation framework, evaluated for different lateral
displacements. Alignment errors above 10 pixels are included in the
rightmost bin.
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(a) 350 cm, with synth. view

0 2 4 6 8 10

Transform at ion error (pixels)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

N
o

rm
a

liz
e

d
 #

a
n

n
o

ta
ti

o
n

s

(b) 350 cm, no synth. view
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(c) 530 cm, with synth. view
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(d) 530 cm, no synth. view
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(e) 700 cm, with synth. view
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(f) 700 cm, no synth. view
Figure 8: Alignment-error histograms of the 350-, 530-,
700-cm lateral displacement for our proposed method with
and without the synthesized view, using the ground surface
only.

Table 2: Improvement in execution time resulting from the efficiency optimizations introduced in Section ‘Efficiency optimizations’
Pre-processing View synthesis Feature Feature Initial Transformation Total

computation matching transformation refinement

Proposed 2±1 63±2 136±14 259±43 10±5 7±13 474±59

Proposed optimized 2±1 5±0 19±2 46±10 10±5 18±29 100±26
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(a) irregular, no synth. view
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(b) irregular, w. synth. view
Figure 9: Alignment-error histograms of the irregular terrain
dataset, which violates the synthesized view assumptions, for our
proposed method with and without the synthesized view. The re-
sults are based on processing the ground surface only.

The proposed method has a significantly higher accuracy than the
baseline system and is comparable with, or even outperforms the
computationally more expensive state-of-the-art MODS method.
Second, we have demonstrated real-time execution resulting from
efficiency optimizations and a GPU implementation of the time-
critical elements.

The proposed method achieves over 95% accuracy for lateral

displacements up to 350 cm, while still achieving over 85% trans-
formation accuracy at a displacement of 530 cm. Moreover, the
method has shown to be robust to different viewing directions, il-
lumination changes and irregular terrain. It was observed that it is
sufficient to apply the synthesized view in specific scenarios only,
i.e. when the lateral displacement estimate is between 400 and
600 cm.

We have significantly improved the operational range of the
mobile registration system by increasing the robustness to lateral
displacements from 2 m in the baseline system, to more than 5 m
in the novel system.
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