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Abstract

This study explored emotional and physiological states in re-
sponse to stressful situations involving deception, and their rela-
tion to facial imaging. Male participants were evaluated (i.e.,
appraised) impending stressors. Stressor appraisals ranged from
threat (i.e., appraisals that there are a lack of sufficient resources
to meet the demands of a stressor) to challenge (i.e., appraisals
that there are adequate coping resources to manage Stressor
demands). We used appraisals to discriminate two appraisal
groups: threat versus challenge. The capacity to detect state
changes of the human face was examined using several standoff
sensing technologies, including 2D visible (VIS) and mid-wave
infrared (MWIR) cameras. Psychophysiological determination of
the human state was achieved through self-assessment and phys-
iological measures which formed the ground truth for the clas-
sifier systems. Two deception studies, a false opinion study and
a false behavior study, served as high-stakes stressors to under-
stand facial changes with respect to human stress states. The
methodology extracted MWIR statistical features from facial re-
gions in response to changes in stress state. Using the statistical
features from MWIR sensor and implementing Eigen analysis al-
lowed classification of the threatened and challenged participants
for the false behavior study with an accuracy of 85%.

Introduction

In ancient China, lie detection included putting dry rice in
the mouth of the accused. Upon spitting it out, those with rice
sticking to their tongue were considered guilty. Stress causes a
dry mouth, preventing enough saliva to help spit out all of the
rice. Presumably, those guilty would suffer more stress than inno-
cents. Assessment of human emotional states is a complex multi-
disciplinary field with theoretical roots in psycho-physiology. To
empirically investigate emotional states, scientists trained in psy-
chology (e.g., clinical, social, neuroscience and cognitive) utilize
different assessments including self-reports, physiological mon-
itoring and observation, to name a few. To study and catego-
rize emotions, for example, self-reports assess emotional expe-
rience, physiological assessments assess blood flow and sympa-
thetic nervous system or amygdala activity, and behaviors indi-
cate approaching or avoiding a stimulus. Our research aims to
analyze the face during a high-stakes deception situation, using
past-validated psycho-physiological metrics as well as advanced
imaging and pattern recognition techniques to predict the human
emotional state via non-contact methods.

The use of non-contact sensing for detecting intentions to de-
ceive, if valid, can be of great value. People often rely on nonver-
bal cues of deception (eye contact patterns, nervous laughter, and
hurried speech) and are rarely accurate, with success rates hov-
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ering around 50 percent [3]. Some deceivers will have concerns
that they will be found out, leading to high levels of anxiety [20].
Complicating the accurate detection of deception is that some de-
ceivers will be unconcerned with discovery and have low emo-
tional reactions, whereas those innocently accused may have high
levels of anxiety. Consequently, we assume that stress reactivity
varies under deception conditions, because the act of interrogation
can be a stressor itself.

The stress process begins with a persons evaluation or ap-
praisal of an event, and people appraise situations differently,
causing their stress responses to differ [18], [19]. Appraisals
range on a continuum from challenge to threat. Challenge ap-
praisals result when people evaluate an impending situation as
personally relevant and demanding, but one with which they may
be able to cope and even gain mastery. Threat appraisals result
when people evaluate the demands of the situation as outweigh-
ing their ability to cope; they may become overwhelmed. Re-
search shows that challenged participants experience more pos-
itive and less negative affect than threatened participants [18],
[19]. These two groups have also been distinguished by their
physiological pattern differences. During a stressor, challenged
participants have increased cardiac output into a more accept-
ing vasculature, whereas threatened participants have somewhat
more blood pumped into a more resistant, constricted vasculature
[18],[19],[12]. High-stakes situations are stressors that engage
stress responses in participants. Research indicates that threat and
challenge appraisals initiate the stress process and are robust pre-
dictors of various stress responses. Stressor appraisals are appro-
priate for discerning the human state and emotional activity. We
examined stress responses such as appraisals, affect, and phys-
iology and investigated the validity of remote sensing of facial
activity to do the same.

The human state and emotional assessment can be defined as
a participants stress response to specific stimuli that includes be-
havioral, physiological and visual components. Behavioral mea-
surements in stress studies are subject to modification, based on
what an individual is able and motivated to display, whereas phys-
iological measurements are more implicit, where individuals are
often not aware of and furthermore cannot control their physio-
logical responses to any great degree. Visual facial observations
(facial expression, head gesture, eye movements, gaze, etc.) can
provide quality indicators of stress [7]. The domain of human
state assessment and emotion recognition from a psychological
perspective has been expanding over several years. Ekman and
Friezen [5] have shown that facial expressions may be linked to
specific (i.e., basic) emotions, and that these basic emotions are
relatively universal across human cultures. Stemming from his
work with Tomkins, Ekman has developed a systematic method of
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categorizing human facial expressions known as the Facial Action
Coding System (FACS) [6]. J. Bailenson [1]et al. performed real
time classifications of emotions (sadness or amusement) using fa-
cial feature tracking and physiological responses and recorded a
classification rate of nearly 95%. One of the unique things is that
their paper analyzes physiological features and uses the physio-
logical features along with facial features to recognize emotions.
In some cases, it has been shown that the physiological levels
in detection of sadness outperform facial expression data analy-
sis. The paper uses trained psychological coders labels for par-
ticipants emotions. The ground truth reliability is heavily de-
pendent on the inter-coder reliability to correctly labeled emo-
tions. Most of the visible cameras data help perform facial feature
point tracking that could be used to analyze emotions. This may
not be enough to understand complicated emotions such as chal-
lenge/threat responses, so there is a need to explore other sensors
like thermal sensors. Our research focuses on thermal imagery to
detect behavioral indicators of emotional changes during a high-
stakes situation which, to our knowledge, is the first analysis in
this area.

Recent technological advances in imaging, computing and
pattern recognition have made it possible to effectively analyze
facial visual modalities. Human emotions are thought to trigger
specific facial activity as external signals (although facial activ-
ity is clearly not for the sole purpose of emotional expression).
We aimed to capture these external signals using non-contact sen-
sors. Several approaches have been used to classify human af-
fective states using facial expressions. One of the most common
non-contact sensors is the electro-optics (EO) sensor that oper-
ates in the visible light (VIS) waveband, which can capture 2D
static images as well as 2D dynamic video sequences. Yacoob et
al. proposed a mid-level symbolic representation for spatial and
temporal data using linguistic and psychological considerations
[23]. The system achieved a recognition rate of 86% for smile,
94% for surprise, 92% for anger, 85% for fear, 80% for sadness,
and 92% for disgust. Essa and Pentland have developed an ad-
vanced computer vision system to probabilistically characterize
facial motion and muscle activation, thus developing a new and
more accurate representation of human facial expressions termed
FACS+ [8]. Their expression recognition accuracy is close to 98%
on a database of 52 sequences. Tian et al. recognized the changes
in the action units (AUs) of the FACS system using static and
dynamic 2D images [21] and making use of geometric-based fea-
ture (using a set of points that represent a facial component) and
appearance-based features (using texture information).

The use of thermal imaging is increasing in the surveillance,
security, military and health industries. Another important ad-
vantage of thermal imaging is its lack of sensitivity to varying
illumination conditions, unlike traditional VIS imagers. O’Kane
et al. have demonstrated noticeable changes in the thermal sig-
nature of the human face during breathing, muscle tension, aer-
obic exercise, and during the playing of aggressive video games
[16], suggesting that thermal imaging can be used to gain insight
on the human state. These results suggest that thermal imaging
is a promising technology that could be used to gain insight on
the perception of human state assessment and also to understand
underlying internal states. 1. Pavlidis et al. [17] have captured
high definition thermal images of the face that were useful for
deceit detection. Exploring thermal images and detecting deceit
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has accuracy comparable to the polygraph examination. To attach
electrodes and to perform a security screening at the airport us-
ing a polygraph mechanism for each individual person is almost
impossible because of the amount of time needed. Using thermal
imaging of a face gives a specific thermal signature for differ-
ent emotions. In the paper [17], an experiment is conducted with
twenty participants and they were asked to stab a mannequin, rob
it for $20, and then prove that they are innocent. The thermal
imaging was successful in correctly classifying 6 out of 8 partici-
pants who were guilty. Using thermal imagery as a stand-off sen-
sor in turn helps to measure and analyze psychological responses
without contact sensors.

Another study [14] measures the startling effect using ther-
mal imaging. Facial thermal signatures changes have been seen
near the periorbital and cheek regions for subjects after fright elic-
iting experiments. The study in [14] shows that thermal signatures
of the face help us to determine the psychological state of a per-
son. However, the above mentioned studies did not provide any
pattern recognition analysis of thermal signatures to classify the
emotions. Next, we discuss studies which provide a detailed pat-
tern analysis of the respective thermal signatures.

Using facial temperature difference images and binary pat-
terns from specific facial regions as inputs into an artificial neural
network (ANN) for classification, Yoshitomi et al. could distin-
guish happy, surprised and sad expressions with a recognition ac-
curacy of 90% [24]. Liu and Wang analyzed facial temperature
sequences from samples of the USTC-NVIE (natural visible and
infrared facial expression) database and computed statistical and
temperature difference histogram features. Hidden Markov Mod-
els (HMM) were then used to discriminate happiness, disgust and
fear with recognition rates of approximately 68%, 57%, and 52%,
respectively [15]. This research suggests that thermal cameras
could be an effective non-contact modality for sensing tempera-
ture changes of the face. Jarlier et al. [10] show that the thermal
changes of the face are caused by the changes in the facial mus-
cle contractions. The FACS coders are trained to produce differ-
ent action unit combination at various intensities. These changes
in action unit combination eventually cause the thermal patterns
which can be classified using a PCA decomposition of the ther-
mal signal. One of the things to be noted is that all the coders are
forced to certain emotions; which makes it difficult to detect and
characterize spontaneous expressions.

The primary objective of the current research effort was to
develop an emotional state assessment system using multimodal
non-contact sensors. We employed 2-D (VIS) and midwave in-
frared (MWIR) imagers with a goal of developing a state classifier
based on specific features from the contact sensor data and vari-
ous the psycho-physiological indices as ground truth. Ultimately,
we aim to create a sensor model that establishes associations be-
tween human facial signatures captured and a separately validated
psycho-physiological state. To validate our approach, two human
subject studies were conducted: a false opinion study and a false
behavior study.

Method
Participants

The false opinion study included 44 male participants, with
3 participants eliminated due to missing data for the self-report
(n = 1), physiological (n = 1) , or sensor data (n = 1), yielding
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a dataset from 41 participants. The false behavior study included
50 male participants, with 2 participants eliminated due to missing
data, yielding a dataset of 48 participants. Given the resources to
collect only a small sample size, we included males only to reduce
physiological variability (autonomic and hormonal variability) in
stress responses to the deception task.

Measures
Surveys

Self-assessment surveys were administered pre- and post-
task and included questions that address demographics, state anx-
iety, positive and negative affect, and stressor appraisals. To mea-
sure self-reported appraisals, the Stressor Appraisal Scale (SAS)
[18] was administered in both studies. With the SAS, multi-
ple questions assess perceptions of the personal relevance (i.e.,
stressor demands) of the experimental task and the persons per-
ceptions of his ability to manage those stressor demands (coping
resources). Personal relevance is assessed via primary appraisal
questions, and includes: How demanding do you expect the up-
coming task to be? and How important is it for you to do well on
this task? Coping resource questions include: How well will you
be able to perform this task? The primary and secondary items re-
sulted in two reliable subscales (Cronbachs alphas exceeded .70).
To arrive at the appraisal ratio, an average of the personal rele-
vance items is divided by the coping resource perceptions (de-
mands/resources). An individuals ratio value indicates where he
lies on the threat-challenge continuum, with higher values indicat-
ing greater threat and lower values representing greater challenge.
To measure self-reported emotions we use the Positive and Neg-
ative Affect Scale (PANAS) which asked participants to rate how
they are feeling at the present moment. There are 10 positive af-
fect indicators, including inspired, strong, and attentive, and 10
negative affect indicators, including afraid, distressed, and ner-
vous. The subscales for positive and negative affect were both
reliable (Cronbachs alphas exceeded .70).

Physiology

Cardiovascular signals, including electrocardiography
(EKG), were obtained with an ambulatory impedance cardio-
graph (Mindware, Inc.). Baseline impedance (Z0) and the rate
of change in impedance on a given heartbeat (dZ/dt) are used
to derive measures of cardiac performance. These signals along
with the EKG are used to estimate stroke volume, cardiac output
(CO; the amount of blood pumped out of the heart over time),
and contractile force, to determine cardiac reactivity. CO is
combined with mean arterial blood pressure (MAP) (CO * 80 /
MAP) to estimate vascular resistance, and to determine vascular
reactivity. For both studies blood pressure assessment was made
on the non-dominant arm. For the first study, we used an Oscar
Ambulatory BP Monitor, obtaining two assessments at baseline,
one pre-task and two during the task. For Study 2, we used a
continuous noninvasive arterial blood pressure monitor (CNAP).
Reactivity values were obtained by subtracting the last minute of
baseline (resting rate) from the first minute of each task. The key
physiological variables of interest, based on our conceptualiza-
tion of stress and prior robust findings in this literature, were CO
(derived from EKG and stroke volume estimates) and vascular
resistance (derived from CO and MAP estimates). To enhance
power for analyses, the reactivity values for CO and vascular
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resistance were transformed into a single physiological variable
where higher values denote greater challenge physiology.

Imaging

The imaging platform consists of scientific-grade, high-
resolution imagers including a VIS camera (Basler A202k, Basler,
Inc., Exton, PA) and a MWIR imager (SC6700, FLIR Systems,
Boston, MA). The cameras are placed at a distance of approxi-
mately two meters from the participant during data capture. Im-
age data are acquired at 30 Hz, with the VIS and MWIR cameras
operating synchronously. The MWIR camera is calibrated with a
blackbody source and the ambient temperature and humidity are
automatically sampled and logged throughout the experimental
period.

Procedure

For both studies, the participants were seated in a comfort-
able chair and seven physiological sensors were attached to their
torso to assess heart rate and blood flow (Figure 1). Baseline
physiological measures were recorded for five minutes, whereas
MWIR and VIS image data were collected during the last 10 sec-
onds of baseline.

Signature Science

Sensor signatures Psychophysiology

VIS
MWIR
NIR

ECG

Blood Pressure
Cardiac Output
Vascular Resistance
Self-reporting

Figure 1: Experimental setup showing various physiological
probes attached to the participant and three cameras that are posi-
tioned approximately two meters from the participant.

Study 1

For Study 1, after the physiological baseline, participants
were administered a baseline survey that assessed state emotion,
demographics, and their opinions about abortion and gay mar-
riage. The researcher determined the participants strongest held
opinion, and participants were randomized to speak either towards
or against their own opinion with approximately (n=22 partici-
pants) in each category. Participants were told that if deemed by
the researchers as telling the truth, they would receive a finan-
cial bonus, but if deemed as lying they would relinquish half of
their original participant pay (high stakes scenario). After these
instructions, appraisals and emotions were assessed. Participants
were given one minute to prepare the speech and two minutes
to deliver their speech. After the preparation time, participants
were reminded to speak either to or against their opinion and
the speech task commenced. When the task was complete, we
again measured appraisals and emotion, and their beliefs about
how effective they were in persuading the researchers. All par-
ticipants were told that the researchers were mixed in discerning
their truthfulness, so each received the participant pay plus bonus.
Participants were asked to not share study details with others, and
were told that other participants might not be judged similarly and
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could lose their participation money. For the analysis of this pa-
per, we examined the data from 20 participants who were in the
false opinion condition (i.e., spoke against their opinion).

Study 2

Study 2 was similar in many ways to Study 1, in that the
measures for physiology, psychological self-report and the multi-
modal imaging remained the same. However, the nature of the de-
ception differed. In describing the task, the experimenter gave the
participant an envelope that either did or did not contain money.
The participant was to take the money and hide it, or pretend (rat-
tle the envelope) to take the money from an empty envelope (the
presence of money evoked the truth and deception condition, and
was randomized). Researchers were blind to condition. Again,
the task was to deliver a speech and be deemed as telling the truth
that they did not take money. As before, if deemed truthful by the
researchers, participants would receive a bonus, otherwise half of
the participant remuneration was to be forfeited. After these in-
structions, self-reported appraisals and emotions were assessed.
As in Study 1, this included a one-minute preparation and two-
minute speech task. After the preparation, participants were re-
minded to convince the judges that they did not take the money
and then the speech task began. After the task, self-report ap-
praisals and emotions were measured. Participants were delivered
the same debriefing and asked not to share the study details with
others as in Study 1, and all were given their remuneration plus
bonus. The analysis for this study included 23 participants who
spoke about not taking the money when they actually did take it.

Image acquisition

VIS and MWIR image data are acquired synchronously dur-
ing the last 10 seconds of the baseline period and during the en-
tirety of each task. The VIS and MWIR images were co-registered
using test pattern images (that are collected pre-baseline) as inputs
to our mutual information based registration algorithm [11]. The
VIS and MWIR images are co-registered using test pattern images
as inputs to a mutual information based registration algorithm that
we tailored for thermal imaging based on coarse and fine region
registration. Since the object (i.e. human face) depth is not large,
an assumption of affine geometry is considered and thus, requires
parameters for translation, rotation and scale differences. Fifteen
fiducial points are selected for each of the test pattern images.
Note that one-to-one correspondence is not needed during the se-
lection process as the algorithm will examine all combinations of
available points to find the set of analogous pairs. Six transform
coefficients are returned, and then each MWIR is transformed to
match the analogous VIS image using bilinear interpolation.

Extraction of thermal features

In summary, facial feature tracking was performed on the
VIS images using a real-time face tracker (Visage T-Tracker, Vis-
age Technologies AB, Linkping, Sweden). Following manual ini-
tialization of a 3D mesh mask that is customized to each partici-
pants facial geometry, the software tracks the face in each frame
at video rates. The tracking procedure is explained in [4] where
49 fiducial points are selected out of the total 84 points returned
by the face tracker. In addition to the set of fiducial points re-
turned by the software, we derive points that enable facial seg-
mentation into 29 non-overlapping segments (Figure 2). The seg-
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ment vertices are then transferred to the co-registered MWIR im-
ages. Approximately 90% of our participant videos were tracked
successfully. Predictably, tracking is lost when head pitch or yaw
is too great or when participants obscure part of their face with
their hands. Tracking generally resumes within a few frames once
proper position is resumed or the obscuration is removed. From
each segment of each frame of the MWIR im-agery, we extracted
a number of features, including several statistical features (mean,
minimum, maximum, and standard deviation of pixel intensities)
as well as the mean of the top 10% thermally hottest pixels in a
segment. The mean of top 10% thermally hot pixels in a segment
is motivated from the method described in the research article [22]
where the mean temperature of the 10% hottest pixels from within
the periorbital region of interest is used to classify deceit. Using
this feature, a classification rate of 87.2% is achieved for 39 sub-
jects, which is almost on par with success rate achieved by highly
trained psycho-physiological experts. The facial image region is
divided into local areas and features are extracted from each re-
gion independently and then these features are concatenated to
form a global descriptor of the face [9]. There are several ways
that a facial image region can be divided into rectangular regions
4x4,5x5,7x 17, etc. We have experimented with several grids
and experimentally found that 4 x 4 grid performs better with a
histogram-based feature. An implementation of a histogram of
thermal feature is implemented, wherein each thermal image is
segmented into a regular 4 x 4 grid, the histogram of pixel in-
tensities in each grid segment is calculated and the cumulative
distribution function for these data is formed. The segmentation
of the face resulted in 16 separate regions with each region con-
taining a specific part of the face. A histogram of intensity values
are computed independently within each of the 16 regions. The
resulting 16 histograms are combined yielding a (165 bins=80)
dimensional feature vector.

Figure 2: Facial regions are defined by grouping segments into
forehead (green), eye/periorbital (cyan), nose (red), cheek (yel-
low), mouth (blue), and neck (magenta) regions.

Among the features computed, the most promising feature
was the mean of the top 10% hottest pixels in a segment. We have
used this particular feature in most of our analysis, as it can be
tracked over the whole stressor time cycle from baseline through
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Table 1: Summary data for participants in the lie condition for
study 1 and study 2

Table 2: Summary data for most challenged person and most
threatened person for for study 1 and study 2

Study 1 (n=20) Study 2 (n=23)
Mean | SD Mean | SD
Appraisal Ratio | 1.10 | 0.32 | Appraisal Ratio | 1.06 | 0.55
Positive Effect 275 | 0.61 | Positive Effect 325 | 0.78
Negative Effect | 1.62 | 0.59 | Negative Effect | 1.66 | 0.80
Physiology -0.11 | 0.80 Physiology 0.25 | 0.84

Most challenged person Most Threatened person
Study 1 | Study 2 Study 1 | Study 2
Appraisal Ratio 0.75 0.24 Appraisal Ratio 1.82 2.30
Positive Effect 2.50 4.40 Positive Effect 2.30 3.50
Negative Effect 1.00 1.00 Negative Effect 2.90 4.40
Physiology -1.02 1.58 Physiology 0.54 0.26

the first 30 seconds of the task for all 29 segments of the face.
130 seconds of data (10 seconds of baseline and 120 seconds of
task data) yield 3,600 frames for analysis. Analyzing just a single
feature from each facial segment results in over 100k features per
subject. Data reduction was achieved by temporal sampling using
various schema such as sliding windows (details will be published
elsewhere) to yield both sub-sampled and time-averaged features.
Features from defined time epochs, such as slopes and differences
from baseline values, were included in the final feature pool of
261 features per participant.

Classification

We employed Eigen analysis on the spatio-temporal data set
to facilitate dimensionality reduction and improve classification
results. We combined spatial segments to form six distinct re-
gions as shown in Figure 2, and then focused on the forehead and
nose regions to reduce the feature set to 300 time series features
(30 distinct frames * 10 segments) and 90 time-epoch-based fea-
tures (9 epochs * 10 segments) per participant. In this particular
study, statistical and histogram-based thermal features from the
false behavior dataset were input into a basic k-Nearest Neighbor
classifier wherein the appraisal ratio served as ground truth (GT).

Results
False opinion (Study 1) vs. false behavior (Study
2)

There appeared to be more variability in self-reports of ap-
praisal and emotional state for Study 2 (Table 1). In Study 2,
we also found that the most challenged person appeared to have
higher positive affect, lower negative affect, and challenge-like
physiology, compared to the most challenged person in Study 1
(Table 2). A similar examination of the most threatened persons
in Study 1 versus Study 2 revealed that Study 2s most threatened
person appeared to have higher threat appraisals, lower positive
affect, and higher negative affect, than the most threatened person
in Study 1 (Table 2). However, the physiology appeared to be sim-
ilar for the most threatened person in Studies 1 and 2. Overall, the
psychophysiological metrics appear to be more varied in Study 2,
and in the right direction for discriminating between challenged
and threatened participants. Physiology may have been less reli-
able for Study 1 given the non-continuous measurement of blood
pressure. The physiological index for each study was not related
to self-reported stressor appraisals or affective states, as it has
been in past research [18],[19], [13],[2]. Consequently, subse-
quent analyses focused on those variables that were related to one
another as expected from the theoretical and empirical literature.

Given the above examination of the data for each study, we
utilized the Study 2 appraisal ratio as our ground truth for anal-
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ysis. The research and findings have shown that an appraisal ra-
tio distinguishes important outcomes for people along the threat-
challenge continuum [18],[19], [13],[2]. Our preliminary facial
pattern analysis for both studies indicated that Study 2 uncovered
interesting and discriminatory results.

Data partitioning using appraisal ratio

In Study 2, the appraisal ratio served as ground truth for the
classification task and led to the identification of three classes of
participants: threatened, challenged and neutral (Figure 3).
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Figure 3: Using appraisal ratio as ground truth, participants were
divided into three categories: threatened (z-score > 0.5, n=10),
challenged (z-score < -0.5, n=10) and neutral (-0.5 < z-score <
0.5, n=28).
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Figure 4: Using appraisal ratio as ground truth, participants who
were being deceitful were divided into three categories: threat-
ened (z-score > 0.5, n=5), challenged (z-score < -0.5, n=5) and
neutral (-0.5 < z-score < 0.5, n=13).

This analysis included all Study 2 participants with usable
data and not just the subset in the deception condition. The com-
puted z-scores ranged from -2.0 to 3.0, where higher Z-scores
indicate threat and lower Z-scores indicate challenge conditions.
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Partitioning the Z-scores at thresholds of -0.5 and 0.5 results in 10
subjects in the challenged class (Z-score < - 0.5), 10 subjects in
the threatened class (Z-score > 0.5) and 28 subjects in the neutral
class (i.e., less challenged, less threatened).

To further analyze only those subjects who are being deceit-
ful, we re-partition the data in a similar way as above, but consider
only participants who are in the deception condition (i.e., those
who took the money and convinced the judges that they did not).
Of the 48 Study 2 participants, 23 meet this criterion (Table 1);
these subjects are identified in Figure 4. Five participants fall into
the threatened category, five participants fall into the challenged
category and the remaining participants fall into the neutral cate-

gory.

State classification using thermal features
Analyses using the whole face yielded 870 time-series fea-
tures and 261 epoch-based features per participant. Following
these initial analyses, we noted that features from the forehead
and nose regions were most successful in class discrimination,
and we subsequently restricted our focus to Segments 1-6, 14-16
and 19. This reduced the feature set to 300 time-series features
and 90 epoch-based features per participant. Eigen analysis re-
vealed that the first principal component (PC1) captures the low-
est frequency information, whereas the second and third principal
components (PC2 and PC3) capture high frequency information.
Further investigation showed that the facial changes in response to
the stressors are reliably captured by PC2 and PC3. Plots of PC2
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Figure 5: Scatter plots with PC 2 and PC 3 showing reduced time

series features in the top plot and reduced epoch features in the
bottom plot.
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and PC3 for the time-series and epoch-based features (Figure 5
top and bottom, respectively) show that the separation between
challenged (blue) and threatened (red) participants is similar. In
fact, the relative positions of participants within the distributions
remain fairly consistent, indicating that the time-series and epoch-
based analyses support the same conclusions. Most importantly,
this analysis validates our strategy to reduce 300 time-series fea-
tures and 90 epoch-based features to two features (each). Using
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Figure 6: Scatter plots of PC3 versus PC2 for the forehead (up-
per left), the nose (upper right), and the fusion of the forehead
and nose regions (bottom), using data from the threatened (T) and
challenged (C) participants in Study 2 Classification accuracies
using k-NN for the forehead, the nose and the combined forehead
and nose were 70%, 80%, and 85%, respectively.

the k-NN classifier with k=3, we found that features from certain
regions of the face are more effective than others for our classi-
fication problem (Table 3). Specifically, the forehead and nose
regions were most useful for the discrimination of threatened and
challenged participants, a result that is consistent with other re-
search findings [17]. Combining the data from these segments
yielded a classification accuracy of 85% (Figure 6). This is in
contrast to an accuracy of 73% observed when inputting features
from the entire face.

Table 3: Region based classification accuracies calculated using
k-NN classifier

Region Segments Classification
accuracy
Forehead 1,2,3,4,5,6 80%
Nose 14, 15, 16, 19 70%
Eye 7,8,9,10, 11 50%
Cheek 12, 13, 20, 23 55%
Mouth 21, 24,25 35%
Neck 27,28,29 30%
Face (Region | [1...29] 73%
fusion)
Forehead + 1 1,2,3,4,5 6, | 85%
Nose (region | 14,15, 16,19
selection)
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Pattern analysis for test data set with 30 partici-
pants for Study 2

The majority of our pattern analysis discussed involved using
the extreme threatened and challenge participants. In this analy-
sis, some new participants are included that belong to the category
of lesser threatened and lesser challenged class (neutral) as shown
in the Figure 7. The dotted box in the challenge category includes
the original extreme challenge participants and also five new par-
ticipants that belonged to the lesser challenged class. Similarly,
the dotted box in the threat category includes the original extreme
threat participants and also five new participants that belonged to
the lesser threatened class.
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Figure 7: Data partitioning indicating additional (five lesser threat
+ five lesser challenge) test participants shown in the dotted rect-
angular box.
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Figure 8: Accuracy estimation along with confusion matrices for
the fusion of nose and forehead for lesser threat and lesser chal-
lenge participants

A total of 30 participants are used for the analysis. In the
threat class, 10 participants belonged to extreme threat class and
remaining five belonged to lesser threat class. In the challenge
class, 10 participants belonged to extreme challenge class and re-
maining five belonged to lesser challenge class. The fused fore-
head and nose region provides better accuracy as shown in Table
4. Henceforth, fused forehead and nose regions epoch data are
used for most of the analysis. The statistical feature (mean of top
10% hot pixels) is estimated for all the 8 segments of the forehead
and nose and for the first two epochs (9 seconds) of the particular
emotion. The feature vector would be 8 sub-regions x 2 epochs x
1 feature=16 values row feature vector for each participant. The
cross validation involves a previously trained system with 20 ex-
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treme threat and challenge participants and testing involves using
all the 30 participants.

Finally, accuracy is calculated for three different cases using
k-NN classification as shown in Figure 8. In the first case accu-
racy is estimated using all the principal components (PCs), while
in the second case first 3 PCs are used for estimating accuracy.
Finally, the third case involves using the second and third PC to
estimate the accuracy. For each case a confusion matrix is cal-
culated where the T indicates threat value, C indicates challenge
value and N indicates that the predicted value does not belong to
T or C and therefore, it belongs to neutral category or less threat-
ened and less challenged category. The accuracy calculated for
each case indicates that PC 2 and PC 3 provide a better separa-
tion for the lesser threatened and challenged data indicating that
the thermal changes on the face are mostly higher order frequency
changes. However, the accuracy dropped from 85% to 70% indi-
cating that the lesser threat and challenge participants probably do
not exhibit a characteristic threat or challenge response.

Pattern analysis for test data set with 40 partici-
pants for Study 2

The majority of our pattern analysis discussed involved using
the extreme threatened and challenge participants. In this analy-
sis, additional new participants are included that belong to the
category of lesser threatened and lesser challenged class (neutral)
as shown in the Figure 9. The dotted box in the challenge cate-
gory includes the original extreme challenge participants and also
ten new participants that belonged to the lesser challenged class.
Similarly, the dotted box in the threat category includes the orig-
inal extreme threat participants and also ten new participants that
belonged to the lesser threatened class.

as

Appraisal [~ """ " """ "%
3 HE ; 618
1
— | 646
== 1
1
2 T 624 #6T
2 ! 625 /
[ ! 3 . hied
N 1 605
b ! 5147,
s (!
08 === === === === : (i 1
1 1626 1
o S iy ot 7 N
503 602 B4g] 4 62 45 |
o5 g gq75H 62927 | m e el e m i m = !
e 541617 AT R
607 510 | 5237 feutral
E _3}’:'/ 606 |
5 geq 609 !
Challenge | Unacceptable image data for subjects
2 ' 635,643
| Subjects
1

Figure 9: Data partitioning indicating additional (ten lesser threat
+ ten lesser challenge) test participants shown in the dotted rect-
angular box.

A total of 40 participants are used for the analysis. In the
threat class, 10 participants belonged to extreme threat class and
remaining ten belonged to lesser threat class. In the challenge
class, ten participants belonged to extreme challenge class and
remaining ten belonged to lesser challenge class. From the Table
4, it is evident that the fused forehead and nose region provides
better accuracy. Therefore, fused forehead and nose regions are
used for most of the analysis. The statistical feature (mean of top
10% hot pixels) is estimated for all the 8 segments of the forehead
and nose and for the first two epochs (9 seconds) of the particular
emotion. The feature vector would be 8 sub-regions x 2 epochs x



1 feature=16 values row feature vector for each participant.
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Figure 10: Accuracy estimation along with confusion matrices
for the fusion of nose and forehead for lesser threat and lesser
challenge participants.

The cross validation involves a previously trained system
with 20 extreme threat and challenge participants and testing in-
volves using all the 40 participants. Finally, accuracy is calcu-
lated for three different cases using k-NN classification as shown
in Figure 10. The accuracy calculated for each case indicates that
PC 1, PC 2 and PC 3 together provide similar classification as PC
2 and PC 3. However, the accuracy dropped from 85% to 52.50%
indicating that the lesser threat and challenge participants proba-
bly do not exhibit a characteristic threat or challenge response.

Deception classification using thermal features
We have reported results from Study 2 for the challenged
versus threatened classes (Figure 3), which are comprised of both
deceptive and non-deceptive participants. A similar analysis was
performed using only the deceptive Study 2 participants, who also
populate the challenged-threatened continuum (Figure 4).
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Figure 11: Scatter plots of the PC2 and PC3 features for Study 2
participants who were in the deceptive category. A clear separa-
tion exists between the Challenged (blue) versus Threatened (red)
subjects in this (albeit small) dataset.

Eigen analysis of the deceptive participants showed good
separation between the challenged versus threatened classes (Fig-
ure 11), leading to a k-NN classification accuracy of 90%. The
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k-NN analysis was performed using a leave one out cross valida-
tion strategy. However, given the small sample size (n=23), these
results may not be generalizable. However, our classification find-
ings suggest that both the deceptive group and the mixed group
(deceptive and non-deceptive) participants can be readily classi-
fied into challenged and threatened classes using thermal features
extracted from the face.

Discussion

The goal of this study was to examine whether thermal imag-
ing is useful for detecting differences between specific human
states, which we identify as threatened and challenged states. We
applied Eigen analysis and a simple k-NN classifier to a ther-
mal feature dataset to successfully discriminate emotional states.
Our approach was tested with a minimum of ten threatened and
challenged participants whose spontaneous changes in thermal
signatures were captured and validated with psychological self-
reporting ground truth information. From the above sections, the
accuracy rate drops considerably from 85% to 70% and further
drops to 52.5% as the lesser threatened and lesser challenged par-
ticipants are included in the testing dataset as shown in Table 4.
The pattern analysis agrees with the psychological ground truth
where the participants close to zero z-score are the typical neutral
participants.

Table 4: Accuracy estimation for all experiments calculated using
k-NN clasifier using leave one out cross validation technique

Threat and | Accuracy all | Accuracy Accuracy
challenge PCs PC1,2,3 PC2,3
participants

20  partici- | 60% 60% 85%
pants

30  partici- | 53.33% 56.67% 70%
pants

40 partici- | 50% 52.50% 52.50%
pants

The results suggest that our method could be used reliably
for state discrimination. Further, the methodology allows insight
into other questions about the duration and pattern of the thermal
response to evoked emotion. For example, we noted that after
the first few time epochs, additional data did not improve classi-
fication accuracy. We also observed spatial patterning that sug-
gests that the forehead (frontalis) and nose (nasalis) regions pro-
vide discriminatory information for classification of threatened
versus challenged individuals. Temperatures in the nasalis region
increased for threatened individuals and decreased in challenged
individuals. Temperature changes were also observed in other re-
gions of the face, but these features did not as effectively discrim-
inate between the two states. Lastly, by comparing classification
accuracies of individual and combined spatial regions, we found
that pooling the data from the forehead (80%) and nose (70%)
regions led to improved performance (85%). In summary, ther-
mal imaging appears to capture meaningful temperature changes
in the face that are useful for classifying distinct human emotional
states.
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Conclusion

We used thermal imaging to discriminate threatened from
challenged participants during a deception (high stakes) stressor.
Participants were not uniform in their evaluations of the stressor;
rather, appraisals of engaging in deception ranged from threat to
challenge. Among various multi-modal sensor outputs, data cap-
tured from the MWIR camera provided statistical features that
when transformed, appeared to appropriately distinguish threat-
ened and challenged responses in individuals. Using data from
specific facial regions and over defined temporal ranges, we were
able to classify with an average recognition rate of 85% or greater.
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