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Abstract 

For land and sea surface monitoring applications that rely on 
optical Earth Observation satellite images, it is required that cloud 
and cloud shadow areas in the images are detected and removed. 
As a consequence, the frequency of obtaining new images can be 
increased and short-term changes can be studied more effectively. 
In this paper, an algorithm is designed that is able to automatically 
detect clouds and shadows in medium-resolution optical multi-
spectral images.  

The developed system is a frame-based image processing 
technique utilizing multiple spectral bands for feeding a cloud and 
shadow detector, where possible cloud contamination is 
recursively removed from the input images. The cloud detector 
utilizes Brightness Temperature Differences in the spectral regions 
of Far IR (FIR) and Thermal IR (TIR). After careful 
considerations, the reflective band FIR was adopted for usage in 
this Difference Image. The shadow detector uses Background 
Subtraction, which iteratively constructs its Reference Image 
automatically. This iterative nature is exploited to utilize time-
sequential characteristics among the input images.  

After experiments, 94.6% of the clouds are detected, with a 
precision of 86.5%, as determined using per-pixel ground-truth 
data. For shadows, these statistics are 77.1% and 75.8%, 
respectively and may be further improved in future work. Selected 
mid-resolution Landsat images have been used for the validation. 

 
Index Terms— Cloud Detection, Shadow Detection, Multi-

Spectral Satellite Images, Time-Sequential Characteristics, 
Ground-Truth Based Validation 

I. Introduction  
For most studies that rely on optical Earth Observation 

satellite images, it is required that the images do not contain clouds 
or cloud shadows. For example, in applications like weather 
analysis, weather forecast, and land- and sea-surface temperature 
analysis, the extraction of cloud locations plays a crucial role [1]. 

Since most satellite images contain cloud contamination, 
cloud and shadow removal is useful. This paper describes a study 
on cloud and shadow removal using multi-spectral images. A well-
designed algorithm will take all possible cloud types into account, 
since specific cloud configurations like e.g. cirrus clouds, are 
known to be difficult to identify [1][2][3]. 

The proposed approach utilizes multiple spectral bands, but 
limits the exploited bands to those that are typically present in 
most medium-resolution multi-spectral Earth Observation 
Satellites, like Landsat and ASTER. For coarser resolution multi-
spectral satellites, like GOES, AVHRR and MODIS, the designed 
algorithm is expected to be compatible. The algorithm uses 
medium-resolution Landsat imagery, obtained from either the 
Thematic Mapper Satellite (L5) or newer.  

In previous work [1] and [2], it was found that Brightness 
Temperature (BT) difference images are used, which is attractive 
due to the high contrast between cloud and ground. However, the 
algorithm from [1] adapts some of its thresholds using a 20-day 
history of images, which makes it more flexible to changes, while 
[2] is based on fixed thresholds. Approaches that do not employ 
thresholds on more or less raw image data have been encountered 
in [4] and [5], which use feature extractors and clustering 
techniques, respectively. As such techniques seem plausible, they 
were adopted into the proposed approach.  

The sequel of this paper first describes the detector in Section 
II. Then, Section III discusses the processing structure that utilizes 
sequential characteristics. The experimental results are given in 
Section IV. The recommendations and conclusion are presented in 
Sections V and VI, respectively. 

II. Cloud and Shadow Mask Generation 
The proposed approach is shown in Figure 2, which consists 

of blocks Cloud and Shadow Mask Generation, Previous Result 
Insertion, Storage and Visualization Post-Processing. The first 
block is the most important function, generating a cloud- and 
shadow mask. Both detectors are addressed in detail in this section. 

Figure 1. Sample Cloud and Shadow Detector Result of training image. The 
yellow overlay depicts the detected clouds and blue the detected shadows. 

 
Figure 2. Simplified Block Scheme of Complete Processing Chain 
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A) Cloud Detector 
The block scheme of the cloud detector is shown in Figure 3, 

where the input for the detector is a series of Landsat radiance 
images. A Brightness Temperature (BT) Differencing approach is 
adopted which is motivated below, where the detector first 
converts two spectral bands of the input to BTs. Next, one of the 
channels is stretched in contrast, to increase the contrast between 
cloud and background for the thresholding steps that follow. To 
make the threshold more adaptive, a median matching step is 
included, which matches the median of the background parts of the 
BT images that should be subtracted.  

To structure the upcoming discussion of the system, a list of 
topics is defined. In order to quickly refer to these topics, a label 
has been assigned to each of them. This list involves motivating 
the use of BTs (T1), the complications using Landsat Images (T2), 
and is followed by an extra Contrast Stretch (T3). Then further 
optimizations follow for this extra Contrast Stretch (T4), 
succeeded by Median Matching optimizations (T5). Finally, the 
morphological operations are discussed (T6) and some conclusions 
are given (T7). 

(T1) Motivation of using Brightness Temperature 
In literature, multiple cases are found that applied Brightness 

Temperature (BT) differences between spectra around 3.7 𝜇𝜇 and 
11 𝜇𝜇 [1][2][6][7] (where [2] referenced to [6] and [7] for its use 
of this BT difference method, but for [6] the use of this method 
could not be checked). Both of these spectral channels are part of 
the emissive bands [8]. However, the 3.7-𝜇𝜇 band is so close to 
the borderline between emissive and reflective channels that 
reflection of sunlight still plays the most important role in this 
channel [8]. On the other hand, at the 11-𝜇𝜇 band, the influence of 
sunlight reflection is negligible because it involves the larger 
wavelength part of the IR spectrum and is thus almost a fully 
emissive channel [8]. These properties are used in the BT 
difference. Since clouds are colder than the background, their 
appearance is dark in the fully emissive 11-𝜇𝜇 band, while clouds 
appear bright in the 3.7-𝜇𝜇 band, due to the reflected sunlight 
[1][2][8]. As a result, the BT difference has a much higher contrast 
between clouds and background. 

Another advantage of using these spectra is that snow will 
have little or no influence on the detection. This is because, in  [3], 
snow has a strong absorption ability for wavelengths around 
1.64 𝜇𝜇. For the considered Landsat imagery, similar behavior 
was encountered for the reflective bands that have longer 
wavelengths. Also in the emissive band, snow appeared as a visual 
signal that mixes into the background. 

(T2) Complications using Landsat Images 
Adopting this BT approach on the Landsat Imagery yields 

complications in the available spectra and their BT conversions. 

Landsat does not use Lookup Tables, like MODIS does, to come to 
Brightness Temperatures for their emissive bands, but calculates 
them using a formula that stretches image contrast, according to: 

𝐵𝐵 =
𝐾2

𝑙𝑙 �𝐾1𝐿𝜆
+ 1�

  . (1) 

Here, constants 𝐾1 and 𝐾2 are provided in the image meta data and 
𝐿𝜆 is the spectral radiance of the corresponding emissive band [9]. 

Unfortunately, none of the Landsat satellites measure spectral 
data around 3.7 𝜇𝜇, which is the source of the complications when 
implementing the BT difference method as applied in [1][2][6][7]. 
The only emissive channel that the Landsat missions offer, is the 
Thermal IR (TIR) channel. This channel is sensitive for light with 
wavelengths between 10.4 and 12.5 𝜇𝜇 (for L5). Because the 
constants of Eq. (1) are only available for emissive channels, only 
the TIR channel has a method available to come to BTs. The 
channel of the Landsat satellites closest to the other required 
spectra of around 3.7 𝜇𝜇 is the Far-IR channel (FIR, also known 
as SWIR), which measures in the spectral range of 2.08 −
2.35 𝜇𝜇 (for L5). Newer than L5 satellites measure in similar 
spectral ranges.  

Applying Eq. (1) with the metadata-provided constants 𝐾1 
and 𝐾2 ensures that units of degrees Kelvin are achieved. Since it 
is not typical to acquire Brightness Temperatures for reflective 
bands, it will be difficult for the FIR channel to come to the exact 
constants for BT conversion. However, the application for this 
study is cloud and shadow detection, so that coming to BTs with 
exact units of degrees Kelvin is of little importance, as long as a 
similar contrast stretch is applied – both BT conversion blocks of 
Figure 3 are therefore identical – and the reason for using BT 
differences in this application and its channel selection is sound, 
this is treated next.  

If a typical spectral characteristics plot is considered that 
shows the ratio between Earth-emissive and Sun-reflective energy 
of the detected radiance in orbit, as is present in [8], it can be seen 
that using spectra around 2.2 𝜇𝜇 rather than 3.7 𝜇𝜇, has no 
significant influence: in both cases the reflective energy is the 
major part of the in-orbit received radiance. Both FIR and TIR 
channels will thus respond similarly to the previously proposed 
spectra (by [1][2][6][7]).  

(T3) Extra Contrast Stretching 
In the ideal case, it would be desirable that the cloud-free 

areas (the backgrounds) in both individual images of the BT 
difference are as similar as possible to make the clouds stand out 
more. This can be achieved by an extra contrast stretch. The result 
is that the backgrounds have a BT difference close to zero, while 
the clouds are then the only areas that significantly differ and 
consequently are better to differentiate from the background. 
Because of practical reasons, the extra stretch is only applied to the 
TIR channel, as is done by the processing block Background 

 
Figure 3. Block Scheme of the Final Cloud Detector. 
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Match Contrast Stretch in Figure 3, with fixed constants 𝐾1 and 
𝐾2. 

(T4) Further Optimizations for the extra Contrast Stretch 
To optimize the extra contrast stretch, 𝐵𝐵𝑇𝑇𝑇 (see Figure 3) is 

first subtracted by a scalar, followed by removing the then negative 
values. This ensures that clouds are differently stretched than the 
backgrounds, because otherwise values are inserted in the roughly 
linear range of the curve of Eq. (1). The scalar that is subtracted is 
selected as the 0.5th percentile of the pixel values present. This 
ensures that always a constant area of the clouds is saturated which 
results in more constant behavior and makes it inherently adaptive 
to radiance variations in the actually considered image. The scalar 
to subtract is not allowed to be higher than 273.15 °𝐾, as not all 
images contain clouds. Lastly, the performance curve of the extra 
contrast stretch is selected such that it is similar to the curves of the 
processing blocks BT Conversion of Figure 3, which proved to be 
effective.  

(T5) Median Matching Optimizations 
The next step of the cloud detector is Median Matching, 

which makes the system adaptive to a broad range of situations, as 
demonstrated in Figure 4. This step adds the difference between 
the medians of the two input spectra (measured at blocks Calculate 
Median) to one of the spectra, such that these inputs equalize and 
lead to the same median outputs. It results in a more robust 
behavior of the cloud detection, thereby effectively making the 
threshold dependent on the currently processed image, and hence 
making it adaptive. Having the same median outputs ensures that 
the background pixels will correspond to a small BT difference 
value. However, if there are more cloud-contaminated pixels than 
there are background pixels, the median will correspond to the 
clouds. To solve this, the detector is first executed partially with a 
different threshold, to provide an estimate that excludes most of 
the cloud pixels for the Median Matching. The detector therefor 
has two instantiations of the block series BT Difference, 
Thresholding, Opening and Dilation.  

(T6) Morphological Operations 
As a final step of the cloud detector, morphological Opening 

is performed as most of the smallest areas returned by both blocks 
Thresholding are typically errors. Likewise, dilation is also 
applied, since the detector appeared to have difficulties on cloud 
edges. Lastly, the structuring element used has a circular shape, 
since clouds typically have an approximately round shape.  

(T7) Conclusions on the Cloud Detector 
Ultimately, a detector is realized that is able to differentiate 

cirrus clouds which are hard to detect. Although cirrus clouds have 
a more grayish color, they are still detectable in most situations, 
due to the enhanced contrast. For the same reason, the scheme also 

works well for the thicker white clouds. However, it was found 
that once the cirrus type of clouds became more transparent and 
fog like, the method has more difficulties in detecting this type of 
clouds. It should be noticed that it depends on the application 
whether this is acceptable or not. If the application is for instance 
visible inspection, it may still be possible to distinguish objects 
from the background, like cars, planes, etc. In such a case, the 
detection difficulties will then be of less importance.  

B) Shadow Detector 
The shadow detector, partly inspired by [1], is depicted in 

Figure 5. For now, the BS image is considered to be constructed by 
subtracting an image which is known to be cloud-free. As such, 
clouds yield positive differences and shadows yield negative 
differences. This principle is exploited in the shadow detector. 

The final shadow detector utilizes the two channels of all 
spectra that are found to be most effective. The selected channels 
are the Near IR (NIR) and the Mid IR (MIR) bands, which are 
combined as shown in Figure 5 to reduce errors. The combination 
can reduce errors, since both spectra mostly produce errors at 
different locations, as shown in Figure 6. Typically, the NIR 
channel generates errors at vegetation (NIR is used in the 
Normalized Difference Vegetation Index). For the MIR channel, 

 
Figure 4. Median Matching (MM) effectiveness for two images with different 
cloud coverage at the same location (left/right). From top to bottom: Original 
RGB image; cloud detection mask overlay without MM; ditto with MM where 
median is calculated over all pixels; and ditto where MM is calculated over 
valid pixels only. The detection threshold is constant for all these situations. 

 
Figure 5. Block Scheme of the Final Shadow Detector. 
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the errors are typically apparent at different locations than those 
present in the NIR result.  

Unfortunately, it is unavoidable that errors remain in the 
combination of the two spectra, as indicated by the circles in 
Figure 6. This occurs mostly because the errors have similar 
intensities as true shadows. The blue circles demonstrate the case 
of effective error removal from MIR and the purple colors likewise 
for NIR. In the middle of these images, land can be seen that is 
ultimately labeled erroneously as shadows. Finally, the red circles 
show an undetected shadow, due to the very transparent cirrus 
clouds on top of it.  

Additionally, water area is also difficult, likely because these 
areas have already low reflection values. The detector is also 
dependent on the sun angle, which influences the natural position 
of shadows projected by the ground and other objects. Its effect on 
the detection depends on the time of day and season. 

However, difficulties for the shadow detector could be 
expected, since shadows are harder to detect. For instance, they are 
visually very similar to water lakes. Due to the here described 
issues and research time limitations, the resulting performance is 
limited, as will become clear in Section IV.  

III. Sequential Characteristics Pipeline 
The objective in this study is to develop a cloud- and shadow 

detection algorithm for time series of images, performed in the 
framework of monitoring applications, such that clouds and 

shadows are time-sequentially filtered out. The advantage of such a 
sequential approach is that the Background Image can be 
constructed iteratively, since it is not always feasible that there is 
an image present that contains no clouds whatsoever. Even if there 
are clouds, it is preferable that this image is taken recently due to 
landscape differences. The block scheme of the proposed approach 
is shown in Figure 7. 

A) Preparation and Pre-Processing 
Each iteration of the pipeline starts with loading the actual 

original image and calculating the Background Subtracted (BS) 
image, where both images are already atmospherically corrected. 
That is, the channels R, G, B, NIR, and MIR are already converted 
to reflectances, and the FIR and TIR channels are already 
converted to Brightness Temperatures.  

B) Detection and Insertion 
Once these images are available, the Cloud and Shadow 

Detector (Section II) is executed. The detector returns three masks: 
the cloud mask, the shadow mask, and the union of both. These are 
saved in Saved Masks and the combined mask is directly used by 
Insert Previous Result. For ideal masks, the latter produces a 
cloud-free processed image. It accomplishes this by inserting the 
previous iteration’s output at the locations that the current 
combined mask labeled as cloud-contaminated pixels. The inserted 
image is corrected in brightness, to match the current Original 
Image as closely as possible and to prevent insertion borders, 
which will be further described (in Subsection C). The resulting 
image is then stored at Saved Processed Images. 

C) Brightness Correction 
To decrease the apparent insertion borders, the brightness 

correction is applied, as proposed in [5], using: 
𝐼𝑜𝑜𝑜 = �𝐼𝑂𝑇 − 𝜇𝑇𝑂𝑂� ∙

𝜎𝑇𝑇
𝜎𝑇𝑂𝑂

+ 𝜇𝑇𝑇   , 

where 𝐼𝑜𝑜𝑜 is the image of interest (𝐼𝑂𝑇), which is corrected in 
brightness towards the target image (𝐼𝑇). Parameters 𝜇𝑇𝑂𝑂 and 𝜇𝑇𝑇 
are the mean of 𝐼𝑂𝑇 and 𝐼𝑇, respectively, while similarly, 𝜎𝑇𝑂𝑂 and 
𝜎𝑇𝑇 describe the standard deviation of these images. In this case, 
𝐼𝑂𝑇 denotes the previous Processed Image, and 𝐼𝑇 is the current 
Original Image. The cloud-contaminated pixels are excluded from 
these statistics to improve accuracy. 

 
Figure 6. Shadow Mask Samples. The top-left image shows the Original RGB 
image, the others show it overlaid with a shadow mask.  
Top-right: thresholding the NIR spectrum of the Background Subtracted 
image, bottom-left: ditto for MIR spectrum, and bottom-right: logical AND of 
the previous two. The circles indicate areas that show interesting trends.  

 
Figure 7. Block diagram of the complete processing chain for cloud and shadow detection, where the blue rectangles indicate the blocks of Figure 2 
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D) Reference Image 
Blocks Saved Processed Images and Saved Masks currently 

save up to a total of 5 images for easy access and according to the 
FIFO principle. Construct Reference Image then accesses these 
images and masks to compute a median of the pixels having the 
same image-coordinates (loosely based on [1]). If one of these 
pixels (with the same coordinates) do not describe a cloud or a 
shadow, they are labeled valid and then the median of up to five 
values are computed, based on the label value. The non-valid 
pixels are excluded, to assure that none of the Original Image 
pixels are counted multiple times due to the insertion of the 
previous Processed Image.  

The number of saved images is selected as 5, such that the 
complete system becomes more robust against temporal effects and 
because of the limited number of images in the validation and 
training sets. After completion, the full processing chain is 
repeated on image basis and the next iteration begins.  

It is important to note that the background subtraction makes 
the shadow detector dependent on the cloud detector. Also, it is 
troublesome to encounter snow on the input images. When such a 
case first occurs, the detector cannot directly switch to the new 
situation and makes shadow errors, until it can change its reference 
image. This adaptation time could not be further addressed and as 
such it was decided to focus on non-snow imagery, for which a 
solution is presented in Section V. 

IV. Results and Validation 
This section focuses on the separation of datasets, the validation 

of the proposed scheme and the experimental results.  

A) Optimizing the Method and Image Selection 
A number of images have been made available by the NLR 

institute. These images have been divided into a set strictly used 
for training purposes, and a set reserved for validations. Since 
generating ground-truth data is a process that is rather time 
consuming, only for the validation set ground truths were made. 
Therefore, the training and the setting of involved parameters was 
performed empirically by manual inspection. For the validation set, 
the images were selected as consistently as possible. To do so, all 
Landsat imagery of 2015 that was available for the selected region 
was downloaded. The only imposed selection was the exclusion of 
images containing snow on approximately more than 10% of the 
images, due to the previously described limitations of the shadow 
detector.  

The images from the training set were selected more 
specifically by the experts of the NLR institute. To be able to reuse 
these images, they were selected as the training set. The selection 
was done such that images are covering the same area 
approximately once every month in 2013 and 2014, to investigate 
short-term changes. Experts searched for the absence of clouds and 
snow as much as possible, which typically occurs more often in the 
summer. To compensate, one of the 2015 images that mostly 
consisted of clouds was interchanged with the training set for one 
of the 2014 images. At last, both sets now contain 8 images. 

B) Ground-Truth Generation 
The ground truths were generated by a remote-sensing expert 

of NLR, having extensive experience in image calibration, 
atmospheric correction and pre-processing. Typically, ground 
truths were annotated manually by experts and at pixel accuracy. 
However, in the case of clouds, the annotation is a painstaking 

drudgery work, due to the many small clouds occurring in certain 
situations. As a result, the ground truths were made by manually 
setting the optimal threshold per image for some spectral 
classification. In some cases, this required a threshold that includes 
also some false positives in order to involve as many clouds as 
there are present. Next, these false positives have been manually 
removed.  

The manual annotations made by the expert proved to be 
partly based on the cloud detector, because it provided an effective 
classification compared to other spectral classification. Also, the 
shadow ground-truth was limited due to lack of images, using only 
known cloud-free images. Summarizing, the above selections yield 
some limitations to the generated ground truths. The missed clouds 
of the proposed algorithm are likely also missed in the ground-
truth annotations. However, it is also possible that the ground truth 
lacks clouds that the proposed algorithm could rightfully detect, 
due to the induced enhanced contrast. Both statements also hold 
for the shadows. Besides this, also manual annotation uncertainties 
occur. It is generally known that if an image is annotated by 
multiple experts, their resulting ground truths are not fully 
identical. In order to address this issue, a multi-level ground truth 
would be required that takes these undefined borders into account 
[10].  As there is only one ground truth per image, these regions 
are finally generated by morphological dilation such that the 
undefined borders are included in the dilated ground truths. 

C) Validation Methodology 
Figure 8 visualizes a selection of the algorithm’s mask 

overlay results. The ground-truth data are used to classify the 
algorithm masks into True- and False Positive regions (TP and 
FP), and True- and False Negative regions (TN and FN), excluding 
the ‘don’t care’ regions. These regions are then used to compute: 

𝑅 =
|𝑀𝐺𝑇 ∩𝑀𝐷| 

|𝑀𝐺𝑇| =
|𝐵𝑇|

|𝐵𝑇| + |𝐹𝐹|   ,              

𝑇 =
|𝑀𝐺𝑇 ∩ 𝑀𝐷| 

|𝑀𝐷| =
|𝐵𝑇|

|𝐵𝑇| + |𝐹𝑇|         ,        

𝐽 =
|𝑀𝐺𝑇 ∩ 𝑀𝐷| 
|𝑀𝐺𝑇 ∪ 𝑀𝐷| =

|𝐵𝑇|
|𝐵𝑇| + |𝐹𝑇| + |𝐹𝐹| , 

with Recall score 𝑅, Precision score 𝑇, and Jaccard-Index score 𝐽. 
Parameter 𝑀𝐷 denotes the Detector Mask, and 𝑀𝐺𝑇 is the Ground-
Truth Mask.  

The 𝑅, 𝑇, and 𝐽 scores are three useful metrics, describing the 
detector performance, which is computed for every image in the 
validation set and then averaged. Recall shows what percentage of 
the ground truth is detected, while Precision describes how much 
of the total mask is correctly identified. The Jaccard-Index 
combines both types of possible mistakes and determines a score 
based on both. The Jaccard-Index equally weights both types of 
mistakes in its computation. 

Figure 9 presents a full overview of the performances of the 
cloud, shadow, and overall detector using the validation set. 

D) Validation Results 
From the samples of Figure 8, it becomes clear that the cloud 

detector performs well, nearly all clouds are detected, only the 
more transparent clouds are missed. Typically, these cirrus clouds 
are most difficult to detect, and the results indicate that most of the 
cirrus can be detected. The shadow detector finds the majority of 
the shadows, but unfortunately also generates false positives in the 
process.  
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It stands out that the three images containing nearly no cirrus 
clouds, particularly image 4 and 5, score poorly on precision for 
cloud detection. The loosely-tuned dilation operation thus appears 
to form a compromise in the precision for these cloud types.  

With respect to image 8, it should be noticed that although the 
cloud detector’s precision is high, the recall is rather low. This 
image contains a difficult kind of cirrus cloud over the whole 
image, which results in a ground truth that is virtually impossible 
to tune with the described method of generation. For the shadow 
detector, the high recall is not surprising in this case, since the 
shadow mask includes a large portion of the image. It does include 
the darkest areas of the image, but it is hard to visually identify that 
these areas are indeed shadows. 

Generally, the shadow detector performs reasonably good, but 
not as good as the cloud detector. This result was expected since its 
development was time constrained for project reasons. Most of the 
found errors are the result of faults in the reference image, 
indirectly caused by false negatives from the cloud detector.  

Figure 9 presents a full overview of the precision, recall, 
Jaccard-Index performances of the cloud, shadow, and overall 
detector using the validation set. The red bars denote the 
performance of both cloud and shadow detectors in combined form 
as a union operation. This effectively looks at cloud-contamination 

in general. Its overall score is higher than the average of both 
detectors, which can be explained by the pixels that are labeled 
erroneously at both detectors: if both detector masks are combined, 
these pixels count as a single error instead of double errors. 

E) Proposed approach compared to previous work 
From all encountered previous work as cited in this paper, 

none of the authors validated their work with pixel-based ground-
truth data, where refs [1] and [2] performed a better validation than 
others.  Furthermore, none of the validations of the related work 
involved recall and precision, their statistics have thus been re-
interpreted subjectively. At last, most of the related work do not 
include a shadow detector.  Therefore, in an attempt to compare 
the proposed approach with previous work as reliably as possible, 
their statistics have to be reinterpreted to estimate the precision and 
recall, as far as this is possible. The result of this comparison is 
shown in Table 1. Due to these issues concerning incompleteness 
of the experiments in literature, the table’s legend describes how 
all scores are obtained.  

 
Figure 8. Selection of validation results, shown as mask overlays where 
yellow depicts clouds and blue depicts shadows. From top to bottom, these 
images correspond respectively to images 1, 2, 3, 5, 7, and 8 in Figure 9. 

 
Figure 9. Precision, Recall, and Jaccard-Index score, respectively, for all 
validation images. The horizontal lines correspond to the mean value of all 
measurements for the considered color and score. 
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Table 1: Cloud Detector (CD) or Shadow Detector (SD) 
Validation scores of proposed and related approaches. These 
scores are averaged over all performed measurements and the 
legend describes further how the scores are obtained 
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CD Precision 86.5 93.51 95.82 -3 -4 
CD Recall 94.6 84.51 86.92 68.03 86.74 
CD Jacc.-Ind. 81.3 79.81 83.62 -3 -4 
SD Precision 75.8 -1 -2 -3 -4 
SD Recall 77.1 -1 47.42 68.03 -4 
SD Jacc.-Ind. 57.5 -1 -2 -3 -4 

Legend: 
1 approximated using the given numbers of the used validation technique. This 
technique involves defining 16675 blocks of 30x30 km, for 30 unique 
locations. For each of these blocks only 3 labels were given by experts: clear, 
partly cloudy, and cloudy. Shadow detector not part of research. 
2 derived from the extractable TP, FP and FN numbers, which was based on 
pixel sets from 24 images strictly used for validation. Thus, not all pixels from 
these images were processed. No expert mentioned for annotations. Note that 
cloud detector results are forced to include shadow detector results with the 
given statistics. 
3 probably recall is given, distinction between recall and precision is not clearly 
stated. Score based on counting the number of clouds detected for only five 
images. No expert mentioned for annotations. Only recall could be obtained. 
4 based on counting the clouds in only 3 images. No expert mentioned for 
annotations. Only recall could be obtained, shadows not part of research. 

In conclusion, Table 1 in combination with the coarse 
validation methods described in its legend, shows that the proposed 
approach outperforms all related work found in the literature 
research, as referenced in this document. This can be concluded 
because none of the related work validate their work on a true per-
pixel basis, and if done per-pixel, the regions used for the 
validation is based on some (subjective) selection. 

V. Recommendations 
As already mentioned, the performance evaluation would 

benefit from experiments with a larger dataset. It is essential that 
the issues regarding annotation and free selection of cloud types 
are resolved prior to performing such larger scale experiments.  

Furthermore, keeping a history for snow and for non-snow 
images instead of a single global history of images, will also 
benefit the detection performance. The NIR, MIR and R channels 
are expected to effectively identify if a pixel describes snow-
covered-landscape and can be used to put an image in one of these 
histories. In addition, further detailed examination of frequency 
characteristics can be used to identify the fog areas that the cloud 
detector currently misses. 

Also, the Cloud Mask could be used to find shadows in the 
Shadow Mask with a matching shape of the detected clouds, 
similarly as done in [11]. Since clouds are easier to detect, this may 
improve the shadow detector results. Due to known sun angles, 
only the cloud height determines the locations of the corresponding 
shadows with respect to the cloud mask, which limits the search 
space. 

VI. Conclusions 
Inspired by previous work, an algorithm is designed that is 

able to detect clouds and shadows in optical Earth Observation 
satellite images. After careful considerations, the cloud detector is 
based on an adaptive scheme that applies Brightness Temperature 
Differences on an emissive and a reflective spectral band and 
further enhances contrast in this difference image. As a result, this 
cloud detector outperforms existing proposals and achieves an 
average recall of 94.6% as measured on an independent validation 
set of 8 images, with an average precision of 86.5% and an average 
Jaccard-Index of 81.3%.  

Based on a set of previous results that replaced the cloud-
contaminated areas with cloud-free data, the shadow detector 
iteratively constructs a reference image and subtracts this from the 
original image. The shadow detector then thresholds two of the 
spectral bands of this subtraction result. Finally, the shadow 
detector achieves an average recall, precision and Jaccard-Index of 
77.1%, 75.8%, and 57.5%, respectively, measured on the same 
validation set.  

For both cloud and shadow detection experiments, the dataset 
was quite limited due to specific selection of images and manual 
annotation issues. However, the proposed approach presents a 
better way of validation in the form of using annotated ground-
truth data of an expert. From all encountered previous work, as 
cited, none of the authors validated their work with pixel-based 
ground-truth data and used subjective interpretations, rather than 
objective precision and recall measurements with expert 
annotations. 

In comparison with related work, it has been shown that the 
introduced algorithm outperforms all related work found in the 
literature research, due to the incomplete validation techniques 
employed. This conclusion applies to both the cloud and the 
shadow detector. The proposed approach has been designed such 
that it is adaptive as much as possible and is also expected to be 
robust when snow is encountered, due to the selected IR spectral 
channels. Finally, there are various options described to improve 
the proposed approach, e.g. by making the reference image 
construction and/or the contrast stretch more advanced. 
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