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Abstract
Although the concept of Regions Of Interest (ROI) is known

in video analysis, the ROI extraction problem has been hardly ad-
dressed in maritime surveillance, particularly for vessel detection
and tracking. A video captured by a maritime surveillance cam-
era may contain irrelevant regions, such as shorelines, bridges
and piers. As a result, non-relevant moving objects (e.g. cars
moving along the shorelines) can be misleadingly detected by the
vessel or ship surveillance system. This paper proposes a ro-
bust water region extraction method based on spatiotemporally-
oriented energy features in combination with a mean shift clus-
tering algorithm. The method targets not only the conventional
RGB surveillance data, but also data from thermal cameras. Ex-
perimental results reveal that the pixel-wise water segmentation
recall is 95.23% on average for the RGB images and 94.29% on
average for the thermal images, even in the presence of islands
or other complex shoreline shapes. The measured average preci-
sions are 93.88% and 95.41% for the RGB and thermal datasets,
respectively.

Introduction
Maritime surveillance is an important research topic, consid-

ering that it is vital to keep the maritime environment safe against
dangers like terroristic attacks and illegal activities such as out-
of-region-fishery, human and drugs traffic. In a general maritime
surveillance system, besides radar systems in large harbors, vi-
sual cameras are deployed along the shorelines which capture the
videos of the maritime environment. As the main task for such a
system, vessels moving in the maritime region should be detected
and their behavior analyzed. However, while aiming at finding
maritime vessels, the surveillance cameras also capture multiple
non-relevant regions in the scene, containing lots of moving ob-
jects, such as humans, trees, cars and clouds. As a result, sub-
optimal ship detectors may extract a lot of non-relevant objects as
maritime vessels. Consequently, the surveillance system is sup-
posed to segment the maritime region and then only analyze the
objects located in the extracted water region.

Despite the importance of ROI detection for maritime
surveillance, at present, there were no robust methods proposed
for maritime region detection. The main strategy explored in lit-
erature is detection of the horizon line to make the ROI smaller
[1–7]. Consequently, such methods can primarily deal with sim-
ple scenarios, where there are only sea and sky regions in the cap-
tured scene. Besides this, there are several methods that do not
attempt to find the ROI at all [8–14]. Such methods try to model
the background (which is mostly the water itself) and then extract
the target object directly by background subtraction. However,
by evaluating the empirical results presented by the mentioned

methods, we could not find work that illustrates object detection
output on frames with a dynamic background and moreover, the
test scenes contain generally only vessels as moving objects. Con-
sequently, when these methods are applied to a scene containing
a dynamic shoreline and city harbor regions with a lot of cars,
busses, pedestrians, etc., the detection output would include all
the moving objects at the shoreline as well. To address this issue,
in [15], a water-region detection method is proposed. This work
first performs a graph-based segmentation and then detects the
water regions, using an off-line trained SVM. The work in [16,17]
train a supervised classifier to perform pixel-based water detec-
tion. These methods make use of color, texture and spatiotempo-
ral statistics of images to form the feature vector. In [18], after a
pre-processing step focusing on increasing the invariance against
water reflections and colors, spatiotemporal descriptors are used
to locally classify the presence of water. This work generates
a water detection mask through spatiotemporal Markov Random
Field regularization of the local classifications. However, all these
methods are evaluated just on simple cases. In our research for the
industry-oriented European APPS project, we consider even more
complex scenarios. For example, maritime regions with circu-
lar shorelines that include islands containing lots of non-relevant
moving objects.

Spatiotemporally-oriented energy features, extracted
through a 3D filtering approach [19–21], provide a rich represen-
tation of pixels. Such a representation describes both the static
and dynamic aspects of the spatiotemporal behavior of pixels.
These features have been already used in many applications.
In [22, 23], authors use these features for object tracking. The
method described in [24] benefits from energy features for
dynamic texture recognition tasks. In [25], these features are
used along with a mean shift clustering algorithm to group
coherent regions. However, energy features are not adapted for
maritime surveillance yet. In our case, we aim at solving the
ROI detection problem for maritime surveillance, and propose
a method that deploys the spatiotemporally-oriented energy
representation of pixels for robust water detection, for both visual
camera and thermal camera signals.

This paper is organized as follows. Section 2 explains the
proposed method. Section 3 presents the experimental results val-
idation. Section 4 concludes the paper.

Water Segmentation Pipeline
This section provides a brief overview on the water-region

extraction pipeline and explain its individual algorithms. The
method consists of the following four steps. First, a histogram of
energy features for each pixel is extracted. Second, the extracted
feature space is smoothened using the mean shift algorithm [25].
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Figure 1: Architecture pipeline of the water segmentation method.

Third, based on the smoothed feature vectors, pixels are grouped
into coherent regions of structures. Finally, our maritime region
identification criteria are applied as discussed above. In this step,
the energy histograms of pixels are accumulated to generate an
energy histogram for each cluster. Then, by jointly exploring the
bins of those histograms, clusters are detected that can be char-
acterized as a maritime region. The detected regions that do not
satisfy a minimum-size criterion, are omitted. Fig. 1 illustrates
the proposed pipeline.

A. Spatiotemporally-Oriented energy Features
Objects can move in arbitrary directions in a scene, provid-

ing specific spatiotemporal data structures for image regions dur-
ing consecutive frames. Therefore, these regions may have mo-
tion in any direction. Consequently, static 2D structures and/or
dynamic structures (e.g. flicker [19]) can appear anywhere and
be distributed over the region characteristics. Such spatiotempo-
ral structures can potentially appear in all pixels located inside
the region. Consequently, a discrete histogram can be constructed
for each pixel, which represents its spatiotemporal behavior. To
this end, the amount of the aforementioned 2D or 3D structures
contained by a pixel should be measured and collected together.

The above-explained concept is discussed in [19–26], where
the mentioned responses are described as spatiotemporally-
oriented energy features. The measuring procedure would be per-
formed through a set of 3D filter banks.

This paper deploys broadly tuned, steerable, separable 3D
Gaussian second-derivative filters (G2) and their Hilbert trans-
forms (H2) [20, 21], where responses are point-wise rectified and
summed. The local energy E(x) for a pixel can be specified by
the following equation:

E(x; θ) = [G2(θ)∗ I(x)]2 +[H2(θ)∗ I(x)]2 , (1)

where x=(x,y, t) indicates the pixel coordinates, the symbol * de-
notes the convolution operator and I(.) is the current video frame
from the image sequence. The parameter θ denotes the orienta-
tion of the filters used for energy feature extraction, i.e. the 3D
direction of the filter axes of symmetry. Unfortunately, the energy
measurements obtained by Eq. (1) are dependent on the image
contrast level. To solve this, energies need to be normalized [23]
with the following equation:

Ê(x; θ) =
E(x; θ)

∑θ̂
E(x; θ̂) + ε

, (2)

where ε is a constant to avoid instabilities when the energy values
are small and the summations in the denominator are performed
over all considered orientations.

The discussed SpatioTemporally-Oriented Energy (abbrevi-
ated further as STOE) features describe pixels according to their
static and dynamic characteristics. However, the STOE features
of the pixels without special structure (e.g. pixels of a blue sky)
would not contain any specific information. These pixels can be

characterized by a lack-of-structure feature [26], calculated ac-
cording to Eq. (3), given by

Ê(x; ε) =
ε

∑θ̂
E(x; θ̂) + ε

. (3)

A key aspect of the STOE features defined in Equations (1)–(3),
is the use of point-wise linear (i.e. here separable convolution and
addition) and point-wise non-linear operations (i.e. here squaring
and division), which intrinsically leads to a computationally ef-
ficient realization [23]. Meanwhile, due to the band-pass nature
of used filters, extracted energies will be invariant to the additive
image intensity variations [23].

All components of the scene have their own spatiotem-
poral characteristics. As mentioned above, STOE features are
rich spatiotemporal behavioral descriptors for pixels and regions.
Therefore, the proposed method performs segmentation of mar-
itime/water regions using the STOE features. In general, it is
not possible to detect a specific region by using just one STOE
feature, since in most cases there are multiple types of compo-
nents sharing the same specific characteristic(s) in the scene (e.g.
a high-energy feature value in flicker). However, it seems to be
possible to identify a specific region by jointly exploring several
STOE features simultaneously, which is the main concept for the
maritime region segmentation in this paper. The method proposes
to represent each pixel by 8 energy features: 2 static horizontal
and vertical orientations, 5 dynamic orientations (flicker, right-
ward, leftward, upward, and downward motion) and 1 so-called
lack-of-structure feature.

Although these features contain useful information about
spatiotemporal behavior of pixels, they lack localization infor-
mation. This is because energy features are outputs of a spa-
tiotemporal filtering stage. Consequently, they rely on neighbor-
ing pixels gray-level values. As a result, two pixels belonging
to the same object (although containing the same spatiotempo-
ral behavior) may have different energy representation. There-
fore, the sharp discontinuities in energy representation of neigh-
boring pixels should be smoothened, to attenuate the noise and
enhance the spatiotemporal coherency between pixels of a spe-
cific region which contain similar spatiotemporal behavior. To
implement this, we deploy a mean shift clustering method.

B. Mean Shift Algorithm
Feature space analysis is a useful approach to investigate

characteristics of a scene. This paper uses STOE features to rep-
resent static and dynamic pixel characteristics. There are several
methods to perform the feature space analysis. One well-known
method is the mean shift algorithm, which regards the feature
space as an empirical distribution [27]. This subsection provides
a brief overview on mean shift, considering that the STOE fea-
tures are applied to the mean shift framework to cluster the scene
into coherent regions of structure. This method tries to smooth the
feature space by associating feature points with a mode during an
iterative procedure. The algorithm would stop when all feature
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points associated with a particular mode, become close enough to
each other in the feature space and share a common value. Mean
shift is a nonparametric clustering method, thus it does not require
any prior knowledge about the amount and shape of clusters.

Hence, mean shift replaces the feature vector of each pixel
with the mean of feature vectors of similar pixels located in the
neighborhood of that pixel. From this point of view, the mean shift
algorithm requires three inputs: (a) radius msR, specifying candi-
date pixels for calculation of mean value for the current pixel, (b)
similarity threshold msSimTr, determining which pixels located
inside the radius msR are allowed to take part in calculation of
mean value for the current pixel, and (c) convergence threshold
msCngTr, specifying when (i.e. after how many iterations) the
convergence occurs for each pixel and the mean shift procedure
should stop.

After performing the mean shift smoothing algorithm, pix-
els with similar feature vectors are grouped together in order to
form clusters. The proposed grouping method is presented in the
following section.

C. Labeling Algorithm
After the mean shift algorithm, pixels sharing similar fea-

ture vectors are clustered into coherent regions of structures. In
this paper, we propose a Raster Order based Labeling Algorithm
(ROLA) assigning the same cluster label to similar pixels that are
just one pixel (horizontally and/or vertically) distant from each
other.

ROLA consists of two main phases: label assignment and
label correction. The method starts from the pixel located at the
top-left corner of an image and continues towards the right until
the first row is completely labeled. Then it repeats for succeeding
rows.

The method assigns the label zero to the first pixel and in-
creases the label counter by one. The method compares the cur-
rent pixel with its four adjacent pixels, located at the right, down-
left, down, and down-right sides (if existing). The comparison
method can be selected based on the type of feature vectors. Here,
we represent pixels with spatiotemporal energy histograms and
therefore, measure their similarity using the Bhattacharyya co-
efficient [28]. However, when describing pixels based on other
feature vectors (e.g. RGB values), the similarity can be measured
with other metrics like Euclidean distance.

After measuring similarities, the method assigns label num-
bers to the adjacent pixels. If the similarity of neighboring pixels
is higher than a threshold grpSimTr, then the neighbor will pre-
empt the label from the current pixel. Otherwise, it will be left
without any label. Now, the labeling pointer moves to the next
pixel. If the next pixel has no label assigned, it would take the new
label number stored in the label counter and the counter would be
incremented. However, if the new pixel already has a label, the
ROLA would proceed to the comparison iteration for that pixel
and try to assign the label to its neighbors.

During the comparison step, the method may face a situation
in which an adjacent pixel is already labeled with a different la-
bel than the current pixel label, but has proper similarity to the
current pixel higher than the threshold grpSimTr. This is a cor-
rection case which occurs when previously labelled non-adjacent
pixels inherently belong to the same cluster, but have been labeled
to different clusters, due to the horizontally-directed labeling pro-

31 2 2 2
31 2 2 3
31 1 3 3

1 1
(a)

11 2 2 2
11 2 2 1
11 1 1 1

1 1
(b)

Figure 2: Example of the correction phase of the ROLA grouping
method.

cedure. However, at the current row, these two clusters with dif-
ferent labels become adjacent to each other. Fig. 2 illustrates the
correction case. In Fig. 2a, pixels that have the same color are
similar pixels (in this paper, according to their energy histograms)
and should finally be clustered together, since they have just one
pixel distance to each other. Pixels labeled as unity and those
that have the label 3 are inherently belonging to the same cluster.
However, they have different labels and should be incorporated to
form a unified cluster. The method detects this error when try-
ing to propagate the label of the second unity in the third row and
enters the correction phase to solve the problem. The corrected
region is shown in Fig. 2b.

In the correction phase, the ROLA tries to incorporate the
incorrectly assigned clusters. The algorithm takes both the labels
of the current pixel and that adjacent pixel, and then assigns the
smaller label to all pixels of the cluster with the higher label. Af-
terwards, values of other labels higher than the eliminated label
are reduced by one. The algorithm finalizes the correction phase
by reducing the label counter by one.

ROLA is specified in a pseudo code given below. The pre-
sented algorithm groups the neighboring similar pixels. The Simi-
larityFunction used in the code is a function which measures sim-
ilarity between pixels. In this paper, we use the Bhattacharyya
coefficient, considering that we represent pixels with energy fea-
tures. However, based on the application, other metrics could be
deployed as well. Fig. 3 illustrates the performance of the group-
ing method.

D. Maritime Region Identification
In maritime surveillance, all mobile objects on the water

should be detected and tracked. However, a scene captured by
a surveillance camera normally includes some parts of the back-
ground (e.g. shorelines, ports, buildings, vegetation) as well.
Consequently, the detection system may occasionally consider a
non-relevant object moving on the background as an object of in-
terest. Therefore, it is important to first detect and extract the
maritime region of the scene. Then, detection and tracking can be
applied to that region and the moving objects located within the
extracted region can be further examined.

(a) (b)
Figure 3: Grouping method performance.
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Algorithm 1 ROLA algorithm in pseudo-code.

1: Initialize LabelCounter = 0, and Label(1 : M,1 : N) =−1, where M
and N are the number of rows and columns of image, respectively.

2: for ((row = 1 : M) and (pixel = 1 : N)) do
3: if (Label(row, pixel) ==−1) then
4: LabelsTable(row, pixel) = LabelCounter; LabelCounter =

LabelCounter+1;
5: else
6: for (i = 1 : 4) do
7: R, and P = coordinates of Right, Down-

Left, Down, and Down-Right adjacent pixels; [SimVal] =

SimilarityFunction(FeaturePoint(row, pixel),FeaturePoint(R,P));
8: if (SimVal > grpSimTr) then
9: if (Label(R,P) ==−1) then

10: Label(R,P) = Label(row, pixel);
11: else
12: [Label,LabelCounter] =

CorrectionFunction(Label,row, pixel,R,P,LabelCounter);

13: function[Label,LabelCounter] =

CorrectionFunction(Label,row, pixel,R,P,LabelCounter)
14: for (x = 1 : row+1) and (y = 1 : N) do
15: if Label(x,y) == max(Label(row, pixel),Label(R,P)) then
16: Label(x,y) = min(Label(row, pixel),Label(R,P));
17: else if (Label(x,y)> max(Label(row, pixel),Label(R,P))) then
18: Label(x,y) = Label(x,y)−1;

19: LabelCounter = LabelCounter−1;
20: end function

In this paper, we propose a method to extract the water part
of the scene. To this end, we choose to represent the pixels of the
image by their energy features, since these features describe both
static and dynamic attributes of pixels. This property plays an
important role in our method, considering that the maritime region
differentiates itself from its surroundings with intrinsic dynamic
behavior. Continuously moving waves feed this intrinsic dynamic
behavior, which can be rarely found in background parts. Prior to
energy extraction, we perform temporal subsampling of the video
sequences, considering that this makes maritime region behavior
even more dynamic.

After extracting the energy representation of pixels accord-
ing to Section 2.A, we use the mean shift filtering frame work to
smoothen the feature vectors of pixels. Then, the filtered image
is clustered into coherent regions of structures by applying the
grouping algorithm explained in previous section.

The core function to this step accumulates the energy his-
tograms of all pixels located inside each cluster in order to make
an energy histogram for that cluster. However, for RGB se-
quences, we horizontally divide the scene into 3 equal zones
and experimentally multiply the flicker bins of two upper zones
by 2, considering that those zones appertain to far places where
the flicker bin of pixels do not have comparative amounts to the
near pixels. For thermal images, we apply this to pixels which
are located between 0.4 and 0.75 of the image height. The mar-
itime clusters are found according to their energy representations.
The Eq. 1 specifies the criteria for maritime region detection. If
the sum of two static features per number of cluster pixels is be-
tween the thresholds StaticLtr and StaticHtr and the amount of the

flicker bin per number of cluster pixels is higher than the threshold
FlickerTr, the cluster is considered to belong to a maritime region.
However, if both static horizontal and vertical bins of a cluster are
exceeding the threshold StaticHrVrTr, the cluster would be con-
sidered as a background, since static structures inside the water
part can be created by just horizontally or vertically structured
waves. Additionally, the lack-of-structure bin has to be larger than
the threshold UnstrctrTr. As the output of this step, the method
makes a water map for the frame, by assigning a unity value to
pixels that are distinguished as “maritime and assign zero value
to pixels that are distinguished as “background.

Statement 1:
{StaticLtr < (EH(x,y,1)+EH(x,y,2))< StaticHtr} and
{(EH(x,y, t,3)> FlickerTr)} and {(EH(x,y, t,8)>UnstrctrTr)}
Statement 2:
{(EH(x,y, t,1)> StaticHrV rTr)} and
{(EH(x,y, t,2)> StaticHrV rTr)}

WaterMap(x,y) =


1, (statement 1 == true)

and (statement 2 == false);
0, otherwise.

(4)

The method may result in a few false positive detections,
when background is classified as a water area. Likewise, false
negatives may also occur, when some regions inside maritime re-
gion are detected as non-maritime. However, such regions are
small and are generated because of temporary changes in illumi-
nation, appearance of objects, waves, moving ships, etc. To solve
this problem, we propose two techniques.

First, we invert all regions which contain less than D pix-
els. With this technique, the background regions falsely marked
as positive, change to negative, while maritime regions marked as
negative, change to positive. As a result, the technique merges
all small noise regions with their surroundings. The second tech-
nique mostly solves the problem caused by big ships which are
present in the water. Evidently, according to Eq. (1), ships are
never detected as maritime region, but instead generate large holes
in the detected water region. However, ships are mobile and rarely
stay stationary at one place for a long time. Therefore, we pro-
pose to repeat the whole algorithm for T times during the captured
video and calculate the mean value of created water maps. After
this temporal averaging technique, if the value of a final water-
map pixel is higher than the threshold MapMeanTr, we conclude
that the pixel belongs to the maritime region, and mark it as back-
ground pixel otherwise.

Empirical Validation
In this section, we validate the extraction method on 22 RGB

and 17 thermal image sequences. The constant ε in Equa-
tions (2)–(3) is set to 1% of the maximum energy values among
all the energies. Oriented energies are extracted using basic filters
with the kernel size of 5× 5× 5 pixels (i.e. height × width ×
depth). The sequences are captured with the frame rate of 25 fps
and with the resolution of 1924×1080 pixels. We perform frame
sub-sampling by a factor of 25 (after this temporal subsampling,
the method operates on 1-fps sequences) to make the dynamic
water behavior more discriminative and spatially downsample the
sequences by a factor of 4 to decrease the computational burden.

In the mean shift filtering stage, a window of 11× 11× 3
pixel size (i.e. height × width × depth) specifies the neigh-
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borhood of each pixel. Other parameters of the mean shift al-
gorithm for RGB videos are set to: msSimTr=0.9 and msC-
ngTr=0.99. The grpSimTr threshold used in the ROLA group-
ing is set to 0.9995. Other method parameters specified in
the previous section are set as: StaticLtr=0.01, StaticHtr=0.3,
FlickerTr=0.03, UnstrctrTr=0, StaticHrVrTr=0.1, D= 400, Map-
MeanTr= 0.6. For thermal videos, we reuse the RGB parame-
ter values except for: msSimTr=0.92 and msCngTr=0.99, grp-
SimTr=0.9997, StaticLtr=0, StaticHtr=0.1, FlickerTr=0.01, and
UnstrctrTr=0.3.

Fig. 4 and Fig. 5 illustrate the results of the method on 6 RGB
and 6 thermal sequences, respectively. In each row, the original
image and the extracted water region(s) are depicted. Although
maritime surveillance cameras are commonly positioned to cap-
ture mostly the water ways, we have validated the method on
non-standard challenging sequences containing islands and sev-
eral types of shorelines (city, vegetation), to illustrate the robust-
ness of the method in water region extraction.

For vessel detection applications, a pixel-level accuracy of
the water-region extraction is not required and an approximate
layout of the water regions is sufficient. Since vessels occupy a
significant amount of pixels in a scene, small parts of water ways,
missing in the extracted water map, would not hinder the ship de-
tection. Therefore, although the extracted water regions do not
exactly fit to the ground truth maps, they provide sufficient infor-
mation to differentiate vessels from irrelevant moving objects.

Tables 1 and 2 present quantitative analysis of the method
performance on RGB and thermal sequences, respectively. Ac-
cording to tables, the pixel-wise water segmentation recall is
95.23% on average for the RGB images and 94.29% on average
for the thermal images, even in the presence of islands or other
complex shoreline shapes. The measured average precisions are
93.88% and 95.41% for the RGB and thermal datasets, respec-
tively.

As mentioned above, we propose to obtain the water map by
applying the water detection method for T times in a sequence and
by calculating the average over the resulting outputs, to remove
irrelevant regions and decrease the water pixel miss rate. Then
we validate this temporal averaging technique on a few available
sequences that are of sufficient length for serious testing, apply-
ing different number of T iterations and time-intervals (number
of frames skipped between iteration number T ), which are spec-
ified in Tables 1 and 2 by columns with values T and Interval,
respectively. Fig. 6, illustrates an example of such a case, where
the method is applied with T = 8 and Interval = 200 on a test
sequence captured from the Rhine river in Rotterdam harbor, The
Netherlands. In this figure, in addition to the original frame and
the final maritime region, three segmentation outputs along with
the mean frame are depicted. The presented figure and the table
data show that the method extracts the maritime region quite well.

The validation results portrayed by Tables 1 and 2 reveal
that the method provides high robustness in water region seg-
mentation even in the presence of complex-shaped shorelines and
islands. However, in our sequences there are scenes where the
method does not properly extract the water regions. These happen
especially where the flicker amount of energy histograms of wa-
ter pixels drops due to absence of minimal dynamicity in a water
part. Fig. 4d illustrates an example case where the missing wa-
ter pixels are detected as a background, because those pixels are

Table 1: Quantitative analysis of proposed method on the RGB
videos.

Recall Precision T Interval
Seq. 1 97.65 99.96 1 -
Seq. 2 98.20 99.92 1 -
Seq. 3 96.03 99.80 1 -
Seq. 4 95.13 99.37 1 -
Seq. 5 99.09 97.56 1 -
Seq. 6 94.10 92.54 1 -
Seq. 7 96.13 99.16 1 -
Seq. 8 93.29 98.53 1 -
Seq. 9 99.75 98.97 1 -
Seq. 10 91.18 98.91 1 -
Seq. 11 98.35 99.96 1 -
Seq. 12 97.27 99.19 1 -
Seq. 13 96.55 99.98 1 -
Seq. 14 98.32 54.36 1 -
Seq. 15 93.17 46.74 1 -
Seq. 16 83.60 85.40 5 500
Seq. 17 88.75 99.52 5 500
Seq. 18 98.06 99.20 5 300
Seq. 19 91.46 97.53 10 500
Seq. 20 98.45 99.97 10 200
Seq. 21 92.28 99.06 10 200
Seq. 22 98.29 99.67 8 200
Average 95.23 93.88 - -

located at a very far distance and contain low dynamics. Addition-
ally, in some other cases, there are regions belonging to non-water
objects having temporary dynamic behavior (e.g. windblown veg-

Table 2: Quantitative analysis of proposed method on the thermal
videos.

Recall Precision T Interval
Seq. 23 96.78 85.26 1 -
Seq. 24 95.41 99.94 1 -
Seq. 25 92.95 100 1 -
Seq. 26 95.31 100 1 -
Seq. 27 93.73 95.86 1 -
Seq. 28 91.11 97.98 1 -
Seq. 29 96.97 100 1 -
Seq. 30 82.78 100 1 -
Seq. 31 88 99.97 1 -
Seq. 32 97.04 100 1 -
Seq. 33 96.84 98.68 1 -
Seq. 34 95.61 98.23 1 -
Seq. 35 97.25 99.58 1 -
Seq. 36 94.92 100 10 500
Seq. 37 95.56 81.39 10 500
Seq. 38 98.41 66.44 10 500
Seq. 39 94.32 98.71 10 600
Average 94.29 95.41 - -
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(a) Seq. 10, Original Frame/Extracted Water Region (b) Seq. 16, Original Frame/Extracted Water Region

(c) Seq. 21, Original Frame/Extracted Water Region (d) Seq. 17, Original Frame/Extracted Water Region

(e) Seq. 18, Original Frame/Extracted Water Region (f) Seq. 14, Original Frame/Extracted Water Region
Figure 4: Water region extraction on 6 RGB sequences. In each case from left to right: original frame, and the extracted water region.

(a) Seq. 24, Original Frame/Extracted Water Region (b) Seq. 34, Original Frame/Extracted Water Region

(c) Seq. 36, Original Frame/Extracted Water Region (d) Seq. 8, Original Frame/Extracted Water Region

(e) Seq. 13, Original Frame/Extracted Water Region (f) Seq. 38, Original Frame/Extracted Water Region
Figure 5: Water region extraction on 6 thermal sequences. In each case from left to right: original frame, and the extracted water region.
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(a) (b) (c)

(d) Mean Frame (e) Extracted Water Region
Figure 6: Temporal averaging technique solving water occlusions made by moving vessels. The first row illustrates three images of the
Sequence 22. The second row shows the corresponding segmentation outputs. The third row depicts the mean frame resulting from the
temporal averaging technique and the final extracted water region.

etation, building under light variations or moving clouds) which
are segmented as water. Fig. 5f depicts such cases, where the se-
quence is captured during nighttime and lots of light variations
occur on buildings and streets. In this case, a large irrelevant part
of the scene is detected as water. Although such regions are of-
ten removed by the presented temporal averaging technique, for
remaining cases we plan to combine other features (e.g. artefact
structures by HOG features) to define stronger criteria, preventing
such regions from incorrect labeling.

It is important to mention that the method incorporates eight
thresholds for decision making. As a result, the method highly
depends on the threshold values, which makes it hard to tune. For
instance, there is an overall trade-off between thresholds which
affect the size of initial groups (i.e. the thresholds of the mean
shift smoothing and the ROLA grouping blocks) and thresholds
determining if a group should be labeled as a water region. By de-
creasing the grouping thresholds, the size of generated groups in-
crease and more pixels are included into one larger cluster. In this
clustering process, non-relevant pixels may join a cluster while
including water pixels as well. This leads to labeling of irrelevant
regions as water in the identification step (independent of identi-
fication threshold values). Besides this, increasing the grouping
threshold values may lead to smaller initial clusters. As a result,
the water pixels which do not contain noticeable flicker amount
in their energy histogram may gather in a group separated from
wavy water pixels. Consequently, quiet water pixels would have
less chance to be identified as a water region against the water
identification thresholds.

In Fig. 7, we illustrate one example to make the threshold-
dependency problem more evident. Fig. 7a illustrates the original
frame. In Fig. 7b and 7c, the detected water regions with two
different thresholds are depicted. The detected water region in
Fig. 7b includes the sky as well. This happens due to the dark
scene, where both the sky and the water do not have significant
difference between their borders. Additionally, clustering thresh-
olds have low values for this case, such that the sky pixels have
been grouped together with the water part. At the identification
step, the method labels all the sky pixels as water. But in Fig. 7c,
we have increased the grouping thresholds, such that pixels are
grouped with more similar pixels. Consequently, the method clus-
ters the water and sky separately.

Conclusions
Despite the importance of ROI detection for maritime

surveillance methods (i.e. vessel detection, tracking and classifi-
cation), state-of-the-art methods lack an accurate water extraction
in a pre-processing stage. Although a few algorithms exist which
extract the water regions using classifiers and/or features like
color, texture and spatiotemporal statistics of pixel groups, these
methods were only evaluated on data sets with simple scenes.

In this paper we have therefore proposed and validated an
algorithm that is robust in water extraction from complex scenes
containing various scenes on rivers, channels, lakes and sea sides,
having shorelines with curved shapes, islands, bridges, and wind-
blown vegetation. Besides this, the validation datasets were cap-
tured from different camera heights, during daytime and night-
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(a) Main Frame (b) Extracted Maritime Region (c) Maritime Region With Other Thresholds
Figure 7: Threshold dependency. From left to right: (a) original frame from Sequence 14, (b) representative water region extracted with
the thresholds specified in the paper, and (c) water region extracted with higher grouping thresholds.

time and under variable weather conditions (e.g. sunshine, clouds,
wind, rain).

The proposed algorithm is based on exploiting
spatiotemporally-oriented energy features which provide a
rich source of information when they are jointly exploited. In
the proposal, up to 8 features are used, involving both static
directions and motion directions and a lack-of-structure feature.
The mean shift algorithm smooths the outcomes and clusters
the scene into coherent regions. The third part of our proposed
system is a raster-order based labeling algorithm (ROLA) to
assign the same labels to clusters with corresponding properties.

Another important contribution is the method ability to ex-
tract water regions in thermal images. Thermal sensors provide a
beneficial modality for the maritime surveillance tasks, since they
are able to capture data even during nights and foggy situations.
Due to the low resolution of thermal images, water extraction be-
comes an even more challenging task. To our best knowledge,
methods on water extraction from thermal data were not reported
in the literature yet. The new presented method features surpris-
ingly high recall (95.23 - 94.29% on average) and precision (93.88
- 95.41% on average).
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