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Abstract
This work presents a background subtraction method based

on Independent Components Analysis (ICA) implemented on
a Field-Programmable Gate Array (FPGA) System-on-a-Chip
(SoC) with an embedded processor. A previous work showed
background subtraction utilizing ICA achieves better results than
Mixture Of Gaussians (MOG) when the background is dynamic.
However, that approach was developed for a computer and its
proposed mean of using ICA is too complex, requiring a high-end
computer for implementation. With the purpose of extending this
approach to current embedded vision systems, a method is de-
veloped for an FPGA-SoC with embedded processor. This recent
technology complements the parallelism of FPGAs with the gen-
eral purpose computing of processors, maintaining a small foot-
print and a low power consumption. In this work, background is
continuously updated by estimating the mean with Expectation-
Maximization (EM), foreground is extracted via FastICA, and
movement is determined by a threshold based on standard devi-
ation. The herein presented approach to these algorithms allows
exploiting the architecture of FPGA-SoCs, however, there are al-
ternatives which could replace these algorithms. The developed
method was tested on two image sequences and the accuracy of
movement detection was measured by the precision and the recall.

Introduction
Movement detection is a critical step for several computer

vision tasks which seek to understand scene dynamics. Some
example applications are vigilance, human movement analysis,
anomaly detection, robot trajectory planning, event detection, and
traffic analysis. Nevertheless, there are various challenging is-
sues in a real scenario such as periodic background movements,
lighting changes, shadows, camouflage, and camera noise [1]. As
vision systems need to endure more of these issues the move-
ment detection methods become more computationally demand-
ing and require expensive hardware. Recent technologies may of-
fer means to avoid this by exploiting the benefits of both parallel
and serial computing.

In order to select a movement detection method, a developer
must consider memory requirements, frame rate, and the accu-
racy required by the application [2]. The FPGA is one of the
devices most frequently used in literature, since it can achieve
high pixel-level parallelism while requiring low power consump-
tion. However, commonly these applications also benefit from
high-level programming schemes, which are more appropriate for
a processor. Similar needs have impulsed the commercializa-
tion of Systems-on-a-Chip (SoCs) which integrate one or multi-
ple embedded processors and an Field-Programmable Gate Array

(FPGA), referred simply as FPGA-SoCs in the rest of this paper.
Rodrı́guez-Andina et al. in [3] presented a review on the

latest advances in FPGA technology that are expected to greatly
impact industrial digital systems. Among them is using proces-
sors embedded within FPGA integrated circuits, particularly those
FPGA-SoC that include processors from the Cortex-A family.
Furthermore, they highlighted there are still just a few research
works using these new technologies, although many applications
could benefit from it. Also regarding FPGA-SoCs, Eberli [4] an-
alyzed some of their applications and concluded they will aid in
extending the usage of embedded systems to tasks which were
unfeasible some years ago. According to the analysis, the main
advantage of these technologies is the developer being able to
use the processor as a control mechanism, while utilizing FPGA
logic to accelerate numerical processing. A method completely
implemented on hardware (FPGA) can achieve a higher process-
ing speed in comparison to one implemented only using software
(processor). However, some operations and data types increase
the complexity of developing a solution utilizing only hardware.
Thus, usually a balance must be met between hardware and soft-
ware [5]. Therefore, using these FPGA-SoCs may ease develop-
ing embedded vision systems by employing methods which prop-
erly combine processors and the parallelism of FPGAs.

In the work presented by Schmid et al. [6], various FP-
GAs and processors were integrated into a system for estimating
the orientation of a mobile robot by combining stereo vision and
an Inertial Measurement Unit (IMU). The weight of the system
was suitable for some UAVs, however, it could benefit from us-
ing FPGA-SoCs. Also combining stereo vision and an IMU, an
odometer for a micro-UAV was implemented on an FPGA-SoC
in [7]. Han and Oruklu in [5] employed an FPGA-SoC for detect-
ing traffic signs and sending them to a computer, accomplishing
real-time processing. An object detection scheme implemented
on an FPGA-SoC was presented by Heo et al. in [8]. A robotic-
oriented Simultaneous Localization And Mapping (SLAM) sen-
sor was designed by Nikolic et al. in [9]. The sensor included an
FPGA-SoC. The FPGA was employed for calculating Harris and
Features from Accelerated Segment Test (FAST), while the pro-
cessor executed the SLAM algorithms. In [10], background sub-
traction via Mixture Of Gaussians (MOG) was implemented on an
FPGA-SoC. The results indicate the power consumption was 600
times lower than a solution completely based on ARM processors.
These works highlight some of the benefits of including FPGA-
SoCs within embedded vision systems, however, these technolo-
gies may also enable utilizing some higher accuracy methods that
currently are only suitable for high-end computers.

Jiménez-Hernández in [11] presented a background subtrac-
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tion approach based on Independent Component Analysis (ICA).
This approach correctly detected movement both indoor and out-
door. Moreover, it was robust against lighting changes and shad-
ows. Also, it achieved a better accuracy than MOG, which is one
of the most commonly used background subtraction approaches.
Nevertheless, it is not suitable for an embedded system, did not
explore parallelism, and the resulting frame rate is too slow for
most applications. Thus, in our present work we exploit the archi-
tecture of FPGA-SoCs to develop and implement an ICA-based
background subtraction method suitable for an embedded system.
This is mainly accomplished by examining algorithms to find op-
portunities for parallelism and distributing the required operations
among the FPGA and the processor, approaching the processor as
a flow-control unit and the FPGA as a hardware accelerator. The
accuracy of the results obtained from the FPGA-SoC is measured
and implementation details are discussed, which could be easily
extended to devise other methods for embedded vision systems
utilizing FPGA-SoCs.

This paper is structured as follows. Firstly, a general descrip-
tion of the main electronic devices and algorithms used within this
work is presented. Next, these algorithms are integrated into the
background subtraction method and implementation details are
discussed. Then, experimental results are exhibited and evalu-
ated. Finally, conclusions and future work are presented.

Main electronic devices and algorithms
This section describes the main features of FPGAs and pro-

cessors to provide a general understanding of their different ad-
vantages. Also, some algorithms that will serve as components of
the background subtraction method are described.

Processor
This device is responsible for most of the processing in Per-

sonal Computers (PC). Developing software for this technology
is relatively fast and its popularity has lead to a wide variety of
readily available operating systems, programming languages, li-
braries, and development kits. Multi-core processors enable some
limited spatial parallelism and high clock rates are possible, how-
ever these features are usually restrained within embedded de-
vices in exchange for a lower power consumption and a smaller
footprint.

FPGA
FPGAs are reconfigurable logic which can be programmed

to perform as a digital circuit. FPGAs usually include hard-
ware resources such as lookup tables, flip-flops, DPS slices, RAM
blocks, among others. These devices are highly versatile enabling
developers to select different levels of spatial and temporal paral-
lelism. One of the major challenges when designing with FPGAs
is that complex projects demand a substantial software develop-
ment effort and might eventually exhaust the hardware resources
of the FPGA.

Mean estimation based on Expectation-
Maximization

Expectation-Maximization (EM) is a resource-efficient solu-
tion for maintaining an updated mean as it does not require storing
previous inputs within a buffer. A simple mean estimation is given

by

O+ = (1−α)O+αI, (1)

where O+ is the updated mean output, O is the previous mean
output, I is the most recent input, and α is a learning rate param-
eter adjustable in the set (0,1). This mean estimation might adapt
to either slow or sudden changes depending on the choice of α .

FastICA
ICA is a method employed for solving the classical cocktail

party problem, a blind source separation where several compo-
nents have been mixed and must be recovered. The basic ICA
model [12] supposes there are N linear and statistically indepen-
dent components si (i = i, ...,N) and these components cannot be
directly observed. Instead by utilizing N sensors, N signals xi
(i = 1, ,N) are observed which are different linear combinations
of the source components si. This model is expressed as follows:

X = AS, (2)

where A is the unknown mixing matrix, X and S are the ma-
trix representations of the vectors xi and si, respectively. In this
model, it is possible to calculate an estimate, s̃i, of the source
components with only the mixed —signals xi by calculating an
unmixing matrix W , where W = A−1. This estimate is given by

S̃ =WX , (3)

where S̃ is the matrix representation of the estimated independent
components s̃i.

FastICA is a Newthon-Raphson based iterative method
which calculates such an unmixing matrix [13]. The main Fas-
tICA expression is as follows:

w+
i = E{Z(g(wT

i Z))T }−E{ġ(wT
i Z)}wi, (4)

where wi is a vector of the unmixing matrix which estimates one
of the source components, Z is obtained by whitening the vec-
tors xi, and g and ġ are the first and second derivatives of a
nonlinear nonquadratic function (such as g = tanh(θ) and ġ =
1− tanh(θ)2), respectively. Each wi is randomly selected at first
and Equation (4) must be repeated until the direction of wi con-
verges, normalizing wi before each iteration.

Development and implementation of the
background subtraction method

In this section, the background subtraction method is de-
scribed and implementation details concerning both the FPGA
and the processor are discussed. The method consists of three
main blocks: background modeling, foreground extraction, and
movement detection. These blocks are described in the following
subsections.

Background modeling
Each pixel of the background is estimated by using the EM-

based mean estimation described in Equation (1). When adjusting
the value for the parameter α , a useful initial value is 1

k . k be-
ing the number of frames a moving object is expected to remain
within the same area, this depends both on the size and speed of
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the object. This algorithm is adequate for FPGA-SoCs as every
pixel is calculated independently, it does not require storing pre-
vious images on Block RAM, and it only employs multipliers and
adders, which are easily implemented on the FPGA.

Foreground extraction
This process is based on the approach proposed by Jiménez-

Hernández [11], where the complete sequence of images, each
one considered a vector xi, is used as the input of ICA and the out-
put consists of components representing background, foreground,
and noise. Each component is categorized in accordance with
the amount of information it provides, with most information be-
ing provided by the background and the least by the noise. This
comparison is made by examining the eigenvalues obtained by the
Singular Value Decomposition (SVD) of W−1, i.e., a larger eigen-
value corresponds to a larger amount of information. Suppressing
the eigenvalues associated with the background and noise compo-
nents allows recovering only the foreground information, com-
pleting the foreground extraction step. This approach requires
storing the complete sequence of images which is unfeasible for
an FPGA-SoC since memory-wise it would either demand an
FPGA with a massive number of RAM Blocks or transferring the
complete sequence from the processor to the FPGA on each new
frame.

Hence, this work proposes using only two images as the in-
put for ICA, the first input (x1) being the most recent frame and
the second one (x2) representing an estimate of the background.
Moreover, in order to facilitate an implementation on an FPGA-
SoC, the FastICA main expression is reformulated:

w+
i,k =

M

∑
j=1

zk, jg(wi,1z1, j+wi,2z2, j)− ġ(wi,1z1, j+wi,2z2, j)wi,k, (5)

where M is the number of pixels, wi,k is an element of the matrix
W , zk, j is an element of the matrix obtained by whitening the vec-
tors xi, and g and ġ are defined as in Equation (4). Note that wi,1
and wi,2 should be updated simultaneously, as they conform (w)i
from Equation (4).

With this reformulation the contribution of each pixel j can
be calculated independently and a simple addition may be per-
formed at a latter stage, these characteristics are suitable for par-
allelism. Pixels can be divided into a predefined number of bins,
in accordance with the resources available on the FPGA. Further-
more, each bin can be processed in parallel employing a pipeline,
achieving both spatial and temporal parallelism.

After calculating W , the independent components are esti-
mated by Equation (3) and the mixing matrix A is obtained by
W−1. Since there are only two input vectors, A will comprise two
eigenvalues. The larger one being associated with the background
and the second one merging both foreground and noise informa-
tion. Thus, the foreground can be estimated by

X∗ = A∗S̃, (6)

where the first row of X∗ is the foreground (represented as a vec-
tor) and A∗ is obtained by suppressing the larger eigenvalue of
A.

Movement detection
After the foreground image is obtained, one must determine

which pixels correspond to movement. Restraining from restoring

the mean after whitening the vectors xi will result in a foreground
image where the pixels that correspond to the background have
values close to zero. Assuming the probability density function
(pdf) of these pixels is Gaussian, the problem of classifying a pixel
as movement is reduced to determining whether the pixel belongs
to this Gaussian distribution.

An immediate approach to this problem is using a standard
deviation based threshold, where the mean µ is zero (since mean
was not restored) and the standard deviation σ is estimated by
utilizing the entire foreground image. Hence, movement is deter-
mined by

M(p) =

{
0 if abs(p)≤ βσ

1 otherwise,
(7)

where p is the intensity of the pixel in the foreground image and
β is an adjustable parameter. This algorithm is divided in two
steps, the standard deviation must be calculated first and afterward
the inequality is carried out. Both steps offer opportunities for
parallelism. Furthermore, since the mean µ is zero, obtaining the
standard deviation is reduced to

σ =

√√√√ M

∑
j=1

(x∗1, j)
2, (8)

where x∗1, j is an element of the first row of X∗, i.e., a pixel of
the foreground image. At this stage, movement detection may be
improved by various techniques, such as a morphological filter.
However, the results presented in this work are simply the output
of Equation (7).

Implementation details
While it would be faster to perform every operation on an

FPGA, it could require a higher developing effort and an FPGA
with a massive amount of hardware resources. By properly
combining both the FPGA and the processor, implementing the
method is faster and a low-cost FPGA can be employed. There-
fore, increasing the feasibility of integrating the parallelism of
FPGAs into an embedded vision system. The approach herein
presented uses the processor to control the flow of the procedure
and performs most of the operations that are either difficult to
implement on the FPGA or require a large amount of hardware
resources. On the other hand, the FPGA is treated as a hardware
accelerator. It is used in steps where a large block of informa-
tion needs to be processed (such as a complete image) and some
parallelism available.

However, steps that require exchanging large inputs or out-
puts need further considerations, since the communication be-
tween the processor and the FPGA might slow down the process
and additional hardware resources are expended. Large inputs can
be avoided by storing the current image x1 and the estimate of the
background x2 on the FPGA and when a new large input is re-
quired the processor can send only enough data to calculate the
required input. E.g., when implementing Equation (5) instead of
sending the 2-by-M matrix Z, the FPGA only needs to receive the
2-by-2 whitening matrix Wh in order to calculate Z as follows:

Z =Wh[x1−E{x1} x2−E{x2}].T , (9)
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where E{x1} and E{x2} are the average intensity values of x1
and x2, respectively, which can be easily calculated during a pre-
vious step. Equation (9) implies some additional multiplications
and additions, nevertheless, these can be implemented within the
FastICA pipeline. Thus, the difference in processing time is neg-
ligible.

In this work, the method is implemented on a Xilinx’s
Zynq7000-based ZedBoard [14] and communication between the
processor and the FPGA is achieved through Xillybus [15].

Although the scheme for exploiting parallelism on the move-
ment detection block has already been devised, it is yet to be im-
plemented on the FPGA. Therefore, no measurements of the im-
plementation’s frame rate are currently available.

Experimental results and evaluation
The proposed background subtraction method was tested us-

ing two sequences extracted from the PETS database [16], each
one consisting on 310 images from a train station with an im-
age size of 320 by 200. Figures 1 and 2 show some of the results
from sequences 1 and 2, respectively. These results were obtained
using only gray scale images, however, the method could be ex-
tended to different color spaces.

The evaluation of these results is limited to the movement
detection, for which the ground truth is available. A pixel-based
approach was used [17], obtaining the precision and the recall.
First, we obtained true positives (T P), false positives (FP), true
negatives (T N) and false negatives (FN) for each frame. Then,
the precision (P) of each frame was obtained by

P =
T P

T P+FP
, (10)

whereas the recall (R) is calculated as follows:

R =
T P

T P+FN
. (11)

Tables 1 and 2 present the precision and recall values for
the results displayed in Figures 1 and 2, respectively. For both se-
quences α and β (see Equations (1) and (7)) were selected as 0.02
and 2.50, respectively, for both sequences. The average precision
and recall values of sequence 1 were 0.88 and 0.72, respectively.
On the other hand, the calculated precision and recall averages for
sequence 2 were 0.81 and 0.64, respectively. When calculating
these averages, frames with little or no movement were discarded
as these resulted in extreme values. Thus, 240 frames were con-
sidered from each sequence.

Results show both foreground extraction and movement de-
tection are correctly obtained. Examining the results of Figure 2,
it is observed that the mean estimation (b) retains too much infor-
mation of the previous movement. This would indicate a lower
value of α is required for sequence 2, as it contains a larger mov-
ing area. Alternatively, different background models may be ex-
plored in order to increase robustness or a morphological filter
could be used.

Table 1. Precision and recall calculated from the results of
sequence 1.

Precision Recall

(1) 0.94 0.86
(2) 0.94 0.47
(3) 0.89 0.67
(4) 0.71 0.81
(5) 0.74 0.82

Sequence
Average 0.88 0.72

Table 2. Precision and recall calculated from the results of
sequence 2.

Precision Recall

(1) 0.92 0.81
(2) 0.85 0.93
(3) 0.82 0.62
(4) 0.72 0.63
(5) 0.78 0.52

Sequence
Average 0.81 0.64

Conclusions
This work presented an ICA-based background subtraction

method developed for and implemented on an FPGA-SoC with
embedded processor. The approach proposed for designing the
method allows exploiting the architecture of the FPGA-SoC, aim-
ing to increase the feasibility of using these technology in embed-
ded vision systems. Furthermore, considerations regarding imple-
mentation are discussed.

The method was divided into three main blocks: updating
the background model via an EM-based mean estimation, extract-
ing the foreground using ICA, and detecting the movement with
a threshold based on standard deviation. Opportunities of paral-
lelism are discussed for each block. In the results obtained by
implementing the method on the FPGA-SoC, both foreground ex-
traction and movement detection are correctly determined on two
different image sequences.

The evaluation of these results was restricted to the move-
ment detection, by using a ground truth to calculate precision and
recall. Using the first image sequence, the average precision and
recall values were 0.88 and 0.72, respectively. For the second im-
age sequence, the average precision and recall values were 0.81
and 0.64, respectively. The lower values obtained for the second
sequence could be explained by a poor background estimation,
originated by a larger moving area which would require a lower
learning rate of the mean estimation.

Future work includes: exploring alternative background
models that could also benefit from paralelism, measuring the
processing speed of the proposed implementation against an exe-
cution employing only the embedded processor without the par-
alelism of the FPGA, and evaluating the robustness of the method
against particular disturbances, such as lighting changes.
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Original Mean Foreground Ground Movement
Image Estimation Extraction Truth Detection

(1)

(2)

(3)

(4)

(5)

(a) (b) (c) (d) (e)
Figure 1. Results obtained from sequence 1

Original Mean Foreground Ground Movement
Image Estimation Extraction Truth Detection

(1)

(2)

(3)

(4)

(5)

(a) (b) (c) (d) (e)
Figure 2. Results obtained from sequence 2.
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