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Abstract

This paper is devoted to analysis and further improvement of
Sfull-reference metrics of image visual quality. The effectiveness of
a metric is characterized by the rank correlation factors between
the obtained array of mean opinion scores (MOS) and the
corresponding array of given metric values. This allows to
determine the correspondence of a considered metric to a human
visual system (HVS). Results obtained on the database TID2013
show that Spearman correlation for the best existing metrics
(PSNRHMA, FSIM, SFF, etc.) does not exceed 0.85. In this paper,
extended verification tools that allow to detect the shortcomings of
the metrics taking into account combined distortions is proposed.
An example for further improvement of the PSNRHMA metric is
presented.

Keywords: image visual quality assessment, full-reference
metrics, metrics verification, multiple distortions, metrics analysis.

Introduction

Fast developments of information technologies leads to a
considerable expansion of the areas of applying digital images and
image quality assessment (IQA) [1, 2]. Visual quality metrics have
become very useful in image processing and analysis including
such applications as lossy compression, denoising, watermarking,
deblurring, classification, object detection, content based image
retrieval, etc. To provide a metric’s adequacy, peculiarities of
human visual system (HVS) are often taken into account in one or
another manner [2, 3].

Although tens of different visual quality metrics have been
proposed (see, e.g., [2, 3] and references therein), their
performance is still worth improving. For example, a verification
of more than twenty modern visual quality metrics for the largest
openly available database of distorted test images TID2013 [3] has
demonstrated that even the best metrics (FSIMc [4], SFF [5],
PSNR-HMA [6]) produce Spearman rank order correlation
coefficient (SROCC) with mean opinion score (MOS) of the order
0.85 and less. This shows that the above mentioned metrics are not
universal enough (although there are certain types of distortions for
which metrics adequacy is high enough). This makes desirable to

further improve metrics’ performance. Then, the metrics
drawbacks have to be detected first and this is one of the goals of
this paper.

Note that there are several ways to solve this task.
Researchers consider and incorporate more sophisticated models of
HVS, design combined metrics [7, 8] and/or employ learning
techniques for artificial neural networks etc. [9, 10]. Another
approach consists in creating new sets of test images (databases)
and obtaining the judgments from observers for distorted images [3,
11-15]. Further improvement of metrics’ performance can be
prevented by low accuracy of assessments for databases (if amount
of experiments was not high enough) and/or if some types of
distortions have not been taken into account.

One type of distortions that have attracted attention recently
can be treated as combined or multiple ones [16]. Really, almost
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all databases contain images with particular types of distortions as,
e.g., additive white Gaussian noise (AWGN), blur, distortions due
to JPEG or JPEG2000 and so on. Meanwhile, real life images are
frequently corrupted by multiple (combined) distortions. For
instance, digital image acquired in a condition of bad illumination
can suffer from blur due to incorrect focusing, noise, and
compression artifacts (other types can be present as well).
Depending on a type of the camera and conditions of image
acquisition, these distortions can appear themselves in different
ways. For example, DSLR cameras with good sensors suffer from
noise in less degree but distortions due to optics can become
prevailing. Lower cost digital cameras mounted in mobile phones,
smartphones, notebooks, might produce images with different
combinations of aforementioned types of distortions. To provide
an efficient and adequate assessment of visual quality for such
images, one needs to have HVS-metric(s) that are able to perform
well for such multiple distortions.

To partly alleviate this problem, LIVE Multiply Distorted
Image Quality Database (LIVE MD) [16, 17] has been created
recently that contains images with multiple distortions. The
database TID2013 also has a few sets of images with multiple
distortions. Analysis of metrics performance for such images is the
second task we deal in this paper. Based on the obtained results,
we show how a particular metric (PSNR-HMA) can be modified.

Limitations of existing databases

Accuracy of verification of quality metrics sufficiently
depends on several factors and primarily on the choice of a
database of distorted images. Sometimes, to solve a particular task,
it might be enough to have a small number of test images with a
few types of distortions. However, to design an accurate and
universal visual quality metric, one needs a database that contain
images with various distortion types typical for practice where
MOS values are derived for sufficiently large number of
experiments carried out by observers. These requirements are
satisfied by existing databases in larger or less degree (comparison
of some databases is given in [3]). However, combined (multiple)
distortions are not well represented in the existing databases.

One option to reach our goal is to use the largest available
database TID2013. Recall that this database contains 25 reference
(distortion-free) color images of equal size where 24 images were
obtained (by cropping) from the Kodak database
http://rOk.us/graphics/kodak/. The 25-th reference image was
artificially created and added to 24 natural scene images with the
aim to analyze applicability of metrics to characterize a quality of
an artificial image. In fact, TID2013 is a considerable modification
of the database TID2008 [14]. TID2013 contains images with 24
types of distortions given in Table 1. TID2008 contained 17 types
of distortions and seven new ones with indices 18-24 were added
to better represent color distortions (## 18, 22, 23) or new
emerging applications for which analysis had not been done yet
(## 19-22, 24).
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http://r0k.us/graphics/kodak/.

Table 1. List of distortion types in TID2013 and used subsets

4 |Type of distortion (four a % S é_ % c_’g =
levels for each distortion) =3 25 Slo|le

1 |Additive Gaussian noise T I I O I T I

5 Additive noise mostly in N R
color components

3 |[Spatially correlated noise -+ |+ -] -] -]+

4 |Masked noise |+ |+ - -] -+

5 |High frequency noise S+ + -] - -]+

6 |Impulse noise |+ |+ - -] -+

7 |Quantization noise N N U N T

8 |Gaussian blur S+ |+ ]+ -] -]+

9 |Image denoising + |+ |+ -] --]+

10 [JPEG compression I N I R B

11 |JPEG2000 compression -l -+ -] -] -]+

12 |JPEG transmission errors - - -] -]+ -]+

13 JPEG2000 transmission oo o+l o s
errors

14 No_n eccentricity pattern I O P I
noise

15 Locgl block_-wise c_distortions N Y
of different intensity

16 |Mean shift (intensity shift) I O e

17 |Contrast change .-

18 |Change of color saturation | - | - | - | - | - | + | +

19 Mqltiplicative Gaussian N O
noise

20 |Comfort noise I e

21 !_ossy compression of noisy lelall]-]s
images

29 In)age_ color quantization oo o+l s
with dither

23 |Chromatic aberrations + |- -] -+ +]+

24 Sparse san_1p|ing and oo o+l o s
reconstruction

One more distinctive feature of TID2013 is that there are five
levels of distortions that approximately correspond to peak signal-
to-noise ratio (PSNR) values equal to 33, 30, 27, 24, and 21 dB.
This is usually enough for databases [13, 14] since these levels
cover the most important range of distortions starting from almost
invisible and ending by annoying ones. As the result, TID2013
contains 3000 distorted images (25 test images with 24 types and 5
levels of distortions).

Mean opinion score for each image was obtained as the result
of experiments in which almost 1000 volunteers from 5 countries
(Ukraine, Finland, Italy, France, and USA) took part. In each
experiment, each volunteer was asked to compare 2 distorted
images with the distortion-free etalon and to choose a better quality
image. Tests were done separately for each reference image.
Taking into account the recommended restrictions on test duration,
each distorted image was participated in 9 comparisons where a
winner was getting one point. Thus, MOS after averaging and
removing abnormal judgments varies in the limits 0...9 where a
larger MOS relates to better visual quality determined by subjects.
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The fixed numbers of test images, distortion types and levels
allow performing correlation analysis for all types (then,
characterization of metric universality is obtained), for certain sets
of distortions (where it becomes possible to analyze specific
features of metrics like, e.g., sensitivity to color distortions, some
groups are given in Table 1 and distortions included in them are
marked by +) and for a particular type of distortion.

To characterize a relation between a quality metric and MOS,
usually rank order correlation factors of Spearman (SROCC) and
Kendall are employed since they do not require fitting operation
(that can be done in different ways) needed to calculate standard
Pearson correlation factor. The use of SROCC allows determining
general accuracy without detailed analysis. A more detailed study
can be performed if distortion types are collected in groups as it is
shown in Table 1 where 7 groups are presented. The problem of
evaluating quality for images with combined distortions is
considered in the paper. Therefore, the group of multiple
distortions (“MD”) has been added to Table 1. There are the
following MDs: #9 is filtering of noisy images, #21 is compression
of noisy images, and #23 is a chromatic aberration (can be
considered as a combination of blur and color component shifting).

Another database used by us in further analysis is the recently
proposed LIVE MD. It contains distorted images for 15 test images,
all of size 1280x720 pixels. There are 5 types of distortions where
3 are particular ones and 2 types of combined distortions of our
interest, namely:

1) Blur;

2) JPEG;

3) Additive noise;

4) Blur followed by JPEG;

5) Blur followed by Noise.

Each particular distortion type (1...3) has 3 intensity levels
with the chosen values of the corresponding parameters: parameter
oG = 3.2, 3.9, 4.6 pixels, parameter of DCT matrix quantization Q
= 27, 18, 12 and variance o>x = 0.002, 0.008 and 0.032. These
levels were chosen for perceptually separating of the resulting
distorted images from each other and from the references.
Meanwhile, these distortions were kept to be within a realistic
range.

The combined distortions of types #4 and #5 are combinations
of three levels of each already mentioned types of particular
distortions with the same intensity levels. As the result, the LIVE
MD consists of the two test sets (blur with additive noise and blur
with JPEG) 225 test images each. There are 90 images with
particular types of distortions (45 for each type) and 135 with the
combined distortions.

Subjective assessment experiments have been done for each
part separately and different volunteers have been attracted to them.
Totally, 37 volunteers took part in experiments (19 and 18,
respectively) who evaluated quality of each distorted image
separately using 100-point scale (etalon images’ quality has been
assessed as well). Semantic labels ‘Bad’, ‘Poor’, ‘Fair’, ‘Good’
and ‘Excellent’ were marked at equal distances along the scale to
guide the subjects. Visual quality has been finally determined as
difference MOS, i.e., as difference between estimates for etalon
and the corresponding distorted image.

For both considered databases and methods of image quality
assessment for them, there are certain limitations. The database
LIVE MD contains only two types of combined distortions — blur
with noise and blur with JPEG and only three levels of distortions
are considered.
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A rather small number of volunteers have participated in
experiments that influences verification accuracy. An example of
estimation errors is demonstrated in Fig. 1 which shows MOS
values vs. PSNR for blur that have been obtained for the same
images for two independent subsets. Difference in MOS values can
exceed 10, for example, for images 15b1 and 02b3 where index
relates to the reference image and sub-index shows the type and
level of distortion.
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Figure 1. The scatter-plot of PSNR values for LIVE MD blur distortion vs. MOS

MOS accuracy is one of the key factors that determine the
effectiveness of the metrics verification. To assess the impact of
this factor and to determine the requirements to the number of
necessary subjective experiments for the TID2013, these studies
were carried out in [18]. A model of subjective experiment which
took into account the following was constructed:

1) data of TID2008 experiments, which contain full details of
each test pass;

2) the relative image quality estimation technique as described
in detail above;

3) the model of subjective choice between two images at each
stage of the comparison, depending on their quality, which also
takes into account the probability of accidental clicking on one of
them and subjective error of each image quality estimation.

As it was shown by the simulation results on TID2008, MOS
accuracy comparing to the true quality values (subjective
estimation error is equal to 0) at level of SROCC = 0.99 requires
minimum 20 experiments for each test image and at least 50 to
achieve the accuracy more than 0.995. It is necessary to consider
the relative approach to estimation and using nine comparing steps
in each experiment. Subjective experiments of TID2013 provide
high accuracy, since about 1000 experiments, which give an
average 40 for each reference image. The database LIVE MD has a
sufficiently less accuracy since participants carried out less than 20
experiments for each image.

One drawback of images in TID2013 from the viewpoint of
combined metric analysis is that the gradations of component
distortions are not varied since their joint contribution is adjusted
to fit five aforementioned PSNR values. Besides, distortion types
in TID2013 have been chosen based on digital image processing
applications. Taking into account the aforementioned limitations,
below we employ data from both databases for increasing
reliability of conclusions.
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Verification of visual quality metrics

Performance analysis for multiple distortions is especially
important for HVS-metrics which are the best for particular types
of distortions. Because of this, we will consider metrics that have
provided the best results for all types of distortions for TID2013.
Recall that SROCC values exceeding 0.8 are provided by the
following five metrics: FSIMc, SFF, PSNRHA [6] and
PSNRHMA, SRSIM [19]. Some results are presented in Table 2.
Recall that SRSIM operates with grayscale images or with
luminance components of color images.

Table 2. Five the best metrics by the TID2013

# | Metric |Noise | Actuall Simple| Exotic| Color [MD | Full

1|FsiMc [0.9020.915[0.947 [0.841[0.775]0.94 |0.851
2|sFF [0.879]0.906]0.95 |0.821(0.832/0.904 |0.851
3|PoNR10.923(0.938 |0.953 |0.825|0.632|0.869 [0.819
4|FoNR10.915(0.934|0.937 |0.814|0.675(0.851|0.813
5|SRSIM [0.907 [0.921]0.955 |0.856]0.561]0.945]0.807

These results show that the analyzed metrics provide high
SROCC values (about 0.9 and larger) for basic types of distortions
met in practice (these types are collected in subsets ‘“Noise”,
“Actual” and “Simple”). Meanwhile, for the subset “Exotic” and,
especially, the subset “Color”, the SROCC values are smaller and
can be as low as 0.6...0.7. This means that these subsets contain
particular distortion types that “cause problems” for the considered
HVS-metrics. To determine them, Table 3 presents SROCC values
for two types of distortions where additive white Gaussian noise
(distortion type #1) is one of them.

Table 3. SROCC values for the most “problematic” distortion
type in TID2013 (in pair with AWGN)

PSNR- |[PSNR-
# FsiMe  [sFE |PRRT PO SRSIM
1&2 0.913 0.841 0.889 0.904 0.920
1&6 0.791 0.843 0.861 0.869 0.806
1&12 ]0.870 0.838 0.776 0.816 0.865
1&14 ]0.810 0.690 0.559 0.624 0.764
1&15 [0.721 0.747 0.789 0.799 0.841
1&16 |0.876 0.830 0.854 0.882 0.847
1&17 ]0.668 0.708 0.765 0.798 0.639
1&18 [0.535 0.840 0.424 0.286 0.045
1&23 1]0.894 0.806 0.696 0.759 0.912
The results presented in Table 3 allow determining

problematic types of distortions for the considered metrics. For
example, images with distortion type #14 (shifts of 8x8 pixel
blocks with respect to their true position) are hard for three
considered HVS-metrics (marked by bold). The reason for this is
the following. Such shifts can be hardly noticed in textural test
images and in homogeneous regions of test images although they
clearly appear themselves at edges distorting their shape. If
distortion has not been noticed, an observer might put a high mark
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to image quality although a full-reference metric gets decreased
value. Distortion type #17 deals with the contrast changing. The
problem of dealing with this type of distortion is connected with
the fact that people like contrast enhancement if it is natural (is not
too large) while almost all metrics react to both contrast increasing
and decreasing as to image degradation. Note that “favorable”
contrast enhancements have not been determined yet and, thus, this
peculiarity of HVS is not fully incorporated in existing HVS-
metrics. Distortion type #18 that deals with color saturation
appears only in color components. Four out of five considered
metrics do not adequately assess visual quality of images with this
type of distortions. This distortion type is the most problematic for
the metrics PSNR-HA and PSNR-HMA. For the metric SRSIM
such result could be expected since it does not react to color
distortions at all. Distortion type #23 — chromatic aberrations is
also rather hard for the metrics PSNRHMA and PSNRHA that
have to be improved in the sense of taking into account color
feature. The metric SFF has certain problems with this type of
distortions too. Therefore, even the best HVS-metrics have
problems with one or several types of distortions.

Scatter-plots for the metrics SFF and PSNR-HMA that
demonstrate problems of assessing visual quality for images with
distortion type #23 are presented in Fig. 2. Black color relates to
points that correspond to images with distortion type #1 whilst blue
color points relate to images with distortion type #23. Each point
consists of several numbers where large digits relate to reference
image index, the upper index is a distortion type and sub-index
relates to the intensity level. In both cases, the metrics
underestimate visual quality of images with distortion type #23
(MOS values are mostly larger for the same value of HVS-metric).

The method of analysis used above is based on correlation
calculation for a pair of distortion types. It allows one to estimate
not only an accuracy of ranking for a given type of distortion but
also a degree of its coincidence for subjective judgments. The
database LIVE MD has blur as the basic type of distortions. Thus,
let us use this type as one of the distortion type in pairwise
comparisons. For this purpose, let us calculate SROCC for images
corrupted by blur and images with other types of distortions. The
obtained results are presented in Table 4.

Table 4. Results of pair-wise rank correlation for blur and
considered type

# FSIMc |SFF PSNRHMA |[PSNRHA |SRSIM
1&2 ]0.903 |0.907 |0.821 0.789 0.908
1&3 ]0.856 |0.856 |0.786 0.749 0.860
1&4 ]0.749 |0.768 |0.520 0.468 0.758
1&5 10.789 |0.794 |0.577 0.538 0.787

The metrics FSIMc, SFF, and SRSIM that are all based on
SSIM demonstrate similar results. The cases of combined
distortions (types ## 4 and 5) are the most complicated for them
although - SROCC values are about 0.75...0.8.

For the metrics PSNR-HMA and PSNR-HA, the results are
worse although they have demonstrated quite good performance
for TID2013 in aggregate. In general, the presented results
demonstrate that it is worth improving performance for multiple
types of distortions for all five considered metrics, especially for
PSNR-HMA and PSNR-HA. Note that blur assessment errors can
result in a biased estimation of the distorted image visual quality
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for images with multiple distortions that have blur as one of
components (Table 4). Scatter-plots for each distortion for the
metric PSNRHMA are presented in Fig. 3.

TID2013 (distortions #1 & #23)

6 |
)
O4t
=
2r
04§%623
o2
0 . ; . .
0.75 08 0.85 09 0.95 1
SFF
(a)

20 25 30 35 40 45
PSNRHMA

(b)
Figure 2. The scatter-plot of the metrics SFF (a) and PSNR-HMA (b) values
for TID2013 distortions #1 and #23 vs. MOS

Analysis of scatter-plots shows that there is a sufficient
dispersion of metric values for each distortion level. Let us
consider some examples when, in our opinion, the metric
PSNRHMA works erroneously. Fig. 3a presents the case of JPEG
only distortions where we would like to mark the images 03j1 and
09;3 given in Figures 4a and 4b, respectively. MOS values for
these images differ a lot (its values are equal to 86.6 and 56.5,
respectively) while the metric has practically the same values -
35.8 and 36.2 dB, respectively. The image 093 has considerable
blocking artifacts and less saturated colors. For the same type of
distortion, the images marked as 12j3 and 09j1 have the same
MOS=79 but the values of PSNRHMA values differ by 7.6 dB
(they are equal to 31.9 and 39.4 dB, respectively). These data
allow stressing the problem of PSNRHMA that consists in
underestimation of quality for images with bright colors (#3 and
#12). Besides, the metric has highly assessed the quality of the
image 09j3 despite of rather high level of JPEG distortions.
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Figure 3. The scatter-plot of MOS vs. PSNR-HMA values for LIVE MD particular and combined distortions: JPEG (a), additive noise (b), blur+JPEG (c) and
blur+noise (d)
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Figure 4. MOS and PSNRHMA values for examples of single distortions: 03j1 (MOS = 86.6, PSNRHMA=35,8 dB) (a); 09j3 (MOS = 56.5, PSNRHMA=36,2dB) (b);
09n2 (MOS = 55.7, PSNRHMA = 33.9 dB) (c); 10n3 (MOS = 74.3, PSNRHMA = 31.1) (d).
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Let us consider another example — the images 9n2 and 10n3
(see Figures 4c and 4d, respectively). They have the metric values
equal to 33.9 dB and 31.1 dB whilst MOS values are equal to 55.7
and 74.3, respectively. In this case, the image 10n3 corrupted by
the noise of higher intensity has, according to human judgments,
better visual quality. Analyzing these images, we can note that at
the image with palace there are large quasi-homogeneous image
regions that correspond to fragments of sky and square. Noise in
them is seen well whilst in fragments with details and textures that
correspond to palace itself the noise is masked. The image #10 is
the railway station from inside. Brick walls and peculiarities of
architecture partly mask noise in almost all areas, probably,
because of this is not noticeable well.

The key moment for the metric PSNRHMA is that it already
takes into account masking effects of image fragments. However,
this can be not perfect. Thus, we can expect that the metric
performance can be improved by means of better incorporation of
masking effects in the metric’s calculation.

As it follows from the analysis of the results for the LIVE MD
database, the test images there are “quite complex” for the metric
PSNRHMA,; even particular (not multiple) distortion types lead to
considerable diversity of the metric values. Then, one can expect
that increasing the number of distortion levels (nine for multiple
distortions instead of three for particular distortion types) will lead
to higher diversity of estimates (see data in Figures 3¢ and 3d) and,
in turn, to smaller SROCC.

Analysis of the scatter-plot confirms some conclusions given
above. Images with essential contribution of JPEG distortions have
overestimated quality (for the image 01blj3 the metric value
exceeds 32 dB) whilst larger MOS values are observed for images
with predominant blur contribution. Figures 5a and Sb present
images with multiple distortions 01b3j3 and 04bl1jl (blurtJPEG)
for which the metric and MOS values disagree to each other (MOS
= 34 and PSNRHMA = 28.4 dB vs MOS = 69 and PSNRHMA =
25 dB, respectively).

Similar situations are observed for multiple distortions of the
type noisetblur. The corresponding scatter-plot in Fig. 3d is
characterized by smaller diversity of metric values and larger
compactness of data for the considered distortion levels. This
means that the metric performs more adequately for this situation.
The problem with incorporating masking effect for the case of
these distortions is less than for the already considered cases. One
possible reason is that in forming distorted images noise is added
to already blurred images. Due to this, details are smeared and
their masking effect decreases.

Despite of the aforementioned drawbacks, the databases LIVE
MD and TID2013 allow detecting disadvantages and problematic
situations even for the best HVS metrics that, for other simpler
databases, might have SROCC values of about 0.9...0.95, i.c. to
seem almost perfect.

Using the metric PSNRHMA as an example, we have
demonstrated how to determine the reasons why this metric does
not provide SROCC close to 0.9 or larger for several types of
distortions in TID2013 and LIVE MD. In particular, it has been
shown that the main problem is with color distortions that have
been confirmed by data for distortion type #18 in TID2013. It is
also desirable to improve the modeling of masking effects by better
incorporation of peculiarities of HVS.

32

Figure 5. MOS and PSNRHMA values for examples of multiple distortions:
01b3j3 (MOS=33.9, PSNRHMA=28.4 dB) (a); 04b1j1 (MOS=69,
PSNRHMA=25 dB) (b).

Modifications of PSNRHMA

To improve adequacy of PSNRHMA, we have carried out
several modifications with the main intention to improve
performance for combined distortions by the TID2013. The
following changes have been introduced and analyzed:

1) More accurate values of contrast sensitivity function (CSF)
for DCT blocks of size 8x8 pixels in color space YCbCr have been
used. In the original metric, these values have been calculated
based on the quantization table recommended for JPEG standard
[20]. Because of some limitations of this table, researchers have
proposed many modifications for JPEG image processing [21, 22].
According to verification on TID2013, one of tables proposed in
[21-23] was chosen.

2) The metric PSNR-HMA contained an algorithm of contrast
change and accounting a mean shift. Optimization of it was carried
out for TID2008. New distortion types were added to TID2013,
and most of them are relate to color components. Therefore,
considering this fact, especially low SROCC for distortion #18
(change of color saturation), weight values can be redefined
separately for luminance and color components.

3) The paper [24] presents description of calculating the
masking effect. To exclude overestimation of its influence in
heterogeneous blocks of size 8x8 pixels (edges in the first order), it
was proposed to calculate the correcting factor (8 in the equation (2)
in [24] ) as

_K+V+V+n
4.V

sum
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where V is a local energy of a block of size 8x8 pixels and Vi...V4
denote local energies of 4x4 pixels blocks that comprise the given
block. The main problem of this approach describing the masking
effects arises if edge is not straight and has an orientation close to
diagonal. The second modification deals with more universal and
accurate detection of heterogeneities in 8x8 pixel blocks. We
analyze below several methods of edge detection and gradient
mapping such as Sobel, Canny, Roberts, Prewitt, logarithmic.
Good performance has been recently demonstrated by phase
congruency employed in the metric FSIMc [4]. Thus, this detector
has been used in analysis as well. Below we present only the best
results. Note also that edge detector performance depends upon a
selected threshold.

4) It is also desirable to take into account a heterogeneity area.
For this purpose, we propose to use the following formula for the
correcting factor:

>y
5:C~i, ?2)
64

where [ i is an ‘informativity’ (characterized by the presence of

non-uniform image areas with actual information) value for the
pixel with indexes i and j. For calculating [ ; we used the methods

that were previously discussed in item 3). All of them have been
normalized, with their values varying in the range 0...1.

Since the methods have different sensitivity to heterogeneities,
informativity values of a single pixel can differ significantly and
affect the masking effect of the block. Taking this into account and
examining its impact, the coefficient P with values (1/3, 1/2, 1, 2
and 3) has been added.

The coefficient C is added to account for nonuniformity in a
block of 8x8 pixels is determined by the following expression:

C- 1 : 3)
64— N(I, >T)+1

The parameter N( Il_j >T) was added due to the following

reason. In the case of quasi-homogeneous area values of ]ij are

close to 0, therefore the masking effect for an image block of 8x8
pixels is almost absent. For a non-homogeneous area occupying

the entire block, we have an opposite result. Its values of [ j are

higher and depend on the texture characteristics. But on an edge
with a significant difference of luminance value, an informativity
for the corresponding pixel is also close to 1, whereas the block
has no such masking properties. Therefore, the correction
parameter has been added which determines the number of pixels

in the block with values of 1 ; higher than threshold T (see Fig. 6).
As we can see, for the texture occupies the entire block,

parameter C is equal 1 and does not affect on the value of the
masking effect. For partially uniform block we reduce it.
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(b) (c)

(d) (e)

Figure 6. Test mage (a), its gradient map (b) with & (c) and phase congruency
(d) with & (e)

Using (2), the study of modification performance and
expedience of their use has been done. Some of the results are
presented in Table 5 for different methods of calculation of block

informativity, different functions [; and thresholds. The

introduced modification of CSF has been employed in all six
variants of the modified metric given in Table 5, the sign “—“ mean
that the corresponding modification has not been used. In the
column “Informativity”, the following notations are used for the
studied detectors: 1 — Canny, 2 — phase congruency, 3 — gradient
(Prewitt). The column Threshold presents the threshold values
used in (2).

As it follows from the analysis of data in Table 5, the
modifications lead to metric performance improvement. More
accurate values of CSF using new quantization table result in
improved results for all distortions (see the rightmost column
“Full”) as well as for subsets “Color”. The modified informativity,
in general, provides better results as well although the influence of
the used informativity parameter and threshold can be essential.
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Table 5. Results for the best modifications of the PSNR-HMA

>
g3 0
E=} [0} © = S} =
*| |8l s | B|E| 8| 2|3 |
5|l 2| < | o | W|o©
"'_E -
PSNR-HMA |0.915|0.934 |0.937 |0.814 |0.675 |0.85 |0.813
1 - 0.911]0.931 [{0.933 (0.8 0.73 |0.828 |0.821
2 1 - [0.913]0.934 |10.934 |0.81 [0.722|0.835|0.827
3 1 [0.2]0.919|0.938 |{0.946 |{0.812|0.71 |0.841{0.83
4 2 | 0.2 {0.915]0.933|0.948 |0.813 |0.72 |0.848|0.825
5 3 /0.2 092 |0.938|0.949|0.813 |0.7 0.846 | 0.831
6 3 |0.1[0.922|0.939|0.951|0.828 | 0.805 | 0.862 | 0.854

We have considered several methods of informative region
selection with most quality work of two of them: Prewitt and phase

congruency. Their examples are shown in Fig. 6b and 6d. However,

in the proposed FSIMc, phase method has several disadvantages. It
is too sensitive to gradients and edges, thereby underestimating the
texture masking effect. The second problem with it is a large
computational complexity. The computation of the modification
will take more than 4 times longer (more than 1 second for an
image size of 512x384). Therefore, we chose the Prewitt method.

The last step of the new metric optimization is a recalculation
of the contrast change and mean shift. Mean shift coefficient is
remained almost unchanged (it has changed from 0.04 to 0.045).
Original contrast weights of 0.002 and 0.25 for new Y component
were changed to 0 and 0.37. For color components, new values
became 0.25 and 2, respectively. Final verification of the metric on
TID2013 allows determining optimal values of threshold (0.1) and
power P =2 in (2).

The obtained result outperforms all considered metrics for
groups “Actual” and “Full”. All changes (see the results for the
modification #6) positively impact the metric’s performance for all
groups, especially for “Full” and “Color”. For the group of
combined distortion, SROCC of modification #6 has increased by
0.01. In Table 6, the results for the image database LIVE MD are
presented.

Table 6. Results of the 6" modification for LIVE MD

Metric Pairs of distortion

1&2 1&3 1&4 1&5
PSNRHMA | 0.821 0.786 0.520 0.577
Mod #6 0.795 0.753 0.484 0.550

Although Accuracy has increased for groups "Noise",
"Actual" and “MD” by the 0.01-0.02, values for pairs of combined
distortions in LIVE MD (with noise and JPEG compression
distortion) have decreased, as it includes a noise and distortion
JPEG. We hope that better ways to calculate correcting factor can
be found in future to provide an appropriate trade-off.
Alternatively, weights for intensity and color components using
different CSFs can be applied. Perhaps, effects of regions of
interest, macro and portrait imaging can be somehow taken into
account as well.

34

Conclusions

The paper presents result of performance analysis of full-
reference metrics of visual quality for images corrupted by
multiple distortions. Verification of several metrics that belong to
the best known ones (FSIMc, SFF, PSNRHMA) has been carried
out for the databases TID2013 and LIVE MD using specific
methodology of analysis. This has allowed us to determine the
main issues (groups of “unfavorable” distortion types) for the
existing metrics and the methods of their improving.

It has been shown that one of the main aspects is an adequacy
to color distortions. One reason is that many existing metrics have
been designed for grayscale images and later they have been
modified and applied to color images.

An important way to improve metric performance is to better
model HVS sensitivity to color distortions and masking effects.
Other peculiarities of HVS such as regions of interest are worth
considering too. As a particular case, modifications are introduced
to the metric PSNRHMA to partly correct drawbacks detected for
it. Due to these modifications, SROCC has been increased by more
than 0.04 for the database TID2013, reaching 0.854. This was due
to better correspondence for new types of distortions in this
database, especially, color ones.
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