
2-D Octonion Discrete Fourier Transform: Fast Algorithms

In color imaging, the two-dimension discrete Fourier trans-

form (2-D DFT) is used to process separately color channels and

in the quaternion space the processing of the image with 2-D

quaternion Fourier transforms do consider interactions between

the color channels. The color image can be also considered in

different models with transformation to the octonion space with

following processing in the 8-D frequency domain. In this work,

we describe the algorithm for the 2-D two-side octonion DFT

(ODFT), by using two-side 2-D quaternion DFTs.

1. Introduction

There were many attempts to generalize the known concept

of the 2-D DFT, including the 2-D quaternion discrete Fourier

transform tailored to color images [1]-[5]. The two-sided quater-

nion discrete Fourier transformation (QDFT) was introduced

to analyze the 2-D linear time-invariant partial-differential sys-

tems [6]. The classical fast algorithms are based on represen-

tation of the QDFT by a combinations of a few classical DFT

transforms [7]. This allows us to obtain QDFT fast numerical im-

plementation with the standard FFT algorithms [15]-[18].

In this paper, we describe the concept of the two-side 2-

D octonion DFT (ODFT) and present its algorithm. The cal-

culation of the transform is reduced to calculation of two 2-D

QDFT which has fast algorithms [1, 7]-[9]. The octonion alge-

bra with the Fourier transform can be used in color imaging as

the 2-D ODFT, which found effective applications in color imag-

ing [20, 24], medical imaging [21]-[23], in image filtration [1, 42],

image enhancement [25, 37]-[41],. The octonion 2-D DFT can be

used not only in color imaging, but in gray-scale imaging as well,

and for that there are many models of transferring one or a few

gray-scale images into the octonion space.

2. Octonion and Images

It is known that the number of imaginary components that

could be added to the real numbers to define new arithmetics with

operations of addition, multiplication and division can be only 1,

3, and 7. The first two cases relate to the complex and quaternion

numbers [10], respectively. In this paper, we consider the arith-

metic of numbers with seven-component imaginary part, which

generalize the quaternion numbers and allow for adding, multi-

plying and dividing the numbers [1, 11, 12]. These numbers are

called octonions or Cayley numbers and were discovered inde-

pendently by the Irish mathematician John Graves (1806–1870)

and the English mathematician Arthur Cayley (1821-1895).

The quaternion numbers q were introduced as numbers from

the doubled complex plane C2, which are defined as q = z1 +
jz2 = (x1 + iy1) + j(x2 + iy2) = x1 + iy1 + jx2 + ( ji)y2. The

quaternions also can be defined as q = z1 + z2 j = (x1 + iy1) +

(x2 + iy2) j = x1 + iy1 + jx2 +(i j)y2, where the product (i j) is de-

noted by k. The quaternion are four-dimensional generation of a

complex number with one real part and three component imagi-

nary part. The imaginary dimensions are represented as i, j, and

k. Any quaternion q may be represented in a hyper-complex form

as q = a + bi + c j + dk = a + (bi + c j + dk), where a,b,c, and

d are real numbers and i, j, and k are three imaginary units with

multiplication laws:

i j = − ji = k, jk = −k j = i,

ki = −ik = − j, i2 = j2 = k2 = i jk = −1.

The number a is considered to be the real part of q and (bi+c j +
dk) is the “imaginary” part of q. The quaternion conjugate and

modulus of q equal

q̄ = a− (bi+c j +dk), |q|=
√

a2 +b2 +c2 +d2,

respectively. The property of commutativity does not hold in

quaternion algebra, i.e., there are many quaternions q1 6= q2, such

that q1q2 6= q2q1.
A (2,2)-representation was applied to quaternions and new

numbers defined, which first were called “double-quaternions,”

or “octives” by John Graves and then “octonions” [12]. The arith-

metic with octonions includes the operations of addition, multi-

plication, and division. Let q1 = a1 + q′1 and q2 = a2 + q′2 be

quaternion numbers, and let o be the double-quaternion, i.e., the

number of type

o = (q1,q2) = q1 +q2E = (a1 +q
′

1)+(a2 +q
′

2)E , (1)

where E is a symbol to be defined for a unit which commutates

with the real numbers. Considering the imaginary parts of the

quaternions, q′1 = ib1 + jc1 + kd1 and q′2 = ib2 + jc2 + kd2, we

obtain the octonion number with the eight componentnumber o =
(a1,b1,c1,d1,a2,b2,c2,d2) = a1 + ib1 + jc1 +kd1 +a2E + Ib2 +
Jc2 +Kd2. Thus, we can write octonions in the form of

o = a+ ib+ jc+kd +AE + IB+JC +KD, (2)

where a,b,c,d and A,B,C,D are real numbers. Here, we denote

the numbers iE , jE , kE by I, J, and K, respectively. The first com-

ponent, a, is considered to be the real part of the octonion, and the

remaining seven components together compose the “imaginary”

part of o. The operation of addition of octonions o1 = q1 + q2E

and o2 = r1 + r2E , is performed component-wise,

o1 +o2 = (q1 +q2E)+(r1 + r2E) = (q1 + r1)+(q2 + r2)E .

The conjugate of the octonion o = q1 +q2E is defined as

ō = a− (ib+ jc+kd +AE + IB+JC +KD)
= (a− ib− jc− kd)− (AE + IB+JC +KD)
= q̄1 −q2E .

(3)

All seven numbers i, j,k,E ,I,J,K are called imaginary units.
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1. The multiplication of two octonions o1 = q1 + q2E and

o2 = r1 + r2E , which is defined as

o1o2 = (q1r1 − r̄2q2)+(r2q1 +q2r̄1)E , (4)

to preserve the multiplication of quaternion numbers and to satisfy

the property |o1o2|2 = |o1|2|o2|2. The module o1 of the octonion

o1 = q1 +q2E is calculated by
√

o1ō1 and equals

o1ō1 = (q1 +q2E)(q̄1−q2E)+ = (q1q̄1 + q̄2q2)

+(−q2q1 +q2q1)E = |q1|2 + |q2|2

= (a2
1 +b2

1 +c2
1 +d2

1 )+(a2
2 +b2

2 +c2
2 +d2

2 )

= (a2
1 +b2

1 +c2
1 +d2

1 )+(A2
1 +B2

1 +C2
1 +D2

1).

(5)

Therefore, ō1o1 = |q1|2 + |q2|2 = o1ō1.
The basic multiplications of imaginary units and the real

number 1 are shown in Table 1.

1 i j k E I J K

1 1 i j k E I J K

i i 1 k j I E K J

j j k 1 i J K E I

k k j i 1 K J I E

E E I J K 1 i j k

I I E K J i 1 k j

J J K E I j k 1 i

K K J I E k j i 1

Table 1. Multiplication rules of the octonion unit numbers

Example 1 Consider two octonions

o1 = 1+2i−3 j +4k +E +2I +3J−K,
o2 = 2− i+2 j +2k−3E +4I +J +2K.

The multiplication of these octonions equals o1o2 = 2+8 j+
24k−8E +7I +J −39K. For comparison, o2o1 equals

o2o1 = 2+6i−16 j−4k +14E +9I +13J +39K 6= o1o2.

Since E2 = I2 = J2 = K2 = −1, we obtain the following:

|o|2 = a
2 +b

2 +c
2 +d

2 +E
2 + I

2 +J
2 +K

2. (6)

For example, for the octonion o = 1 + 2i− 3J − 4K, the square

of its module |o|2 = 1+22 +32 +42 = 30. The multiplication of

octonions is not associative, i.e., not for all octonions o1, o2, and

o3, the equality (o1o2)o3 = o1(o2o3) holds.

Consider the square of the octonion o = q1 + q2E , where

q1 = a1 + q′1 and q2 = a2 + q′2. As directly follows from (5), the

square of the octonion, o2 = oo, can be written as

o
2 = −(a

2
1 +a

2
2)−

(

|q′1|2 + |q′2|2
)

+2a1o = −|o|2 +2a1o.

If we consider that o = a1 + o′, where the imaginary part of the

octonion is o′ = q′1 +q2E , then the square of the octonion can be

written as

o2 = 2a1o−|o|2 = 2a1(a1 +o′)−
(

a2
1 + |o′|2

)

= a2
1 −|o′|2 +2a1o′.

(7)

If the octonion is pure imaginary, i.e., a1 = 0, then the square

o2 = −|o′|2 is a negative number.

When the octonion o = a1 + o′ is unit, i.e., |o|2 = 1, and its

square o2 = −1, then it follows from (7) that the following holds:

a2
1 − |o′|2 + 2a1o′ = −1. This equality can be solved only when

2a1o′ = 0, which means that a1 = 0 and therefore o = o′. Then,

|o|2 = 1 and o2 = −1, i.e., the octonion is a unit pure octonion

(with its real part equals zero). The examples of pure unit octo-

nions are i, j,k,E ,I,J,K, and

o1 =
i+ j +k +E + I +J +2K√

10
, o2 =

i+ j −2I +J

7
.

We consider the exponential function and representation of

octonions in a polar form.

2. The exponential function on octonions o is defined by the

Taylor series as

e
o = exp(o) = 1+

∞

∑
n=1

on

n!
. (8)

Now, we consider a pure unit octonion which we denote by

λ = λ ′ = iλi + jλ j +kλk +EλE + IλI +JλJ +KλK .

Let ϑ be the real number which stands for the variable angle.

Since λ 2 = −1, by using the Taylor series, we can define the ex-

ponential function as

exp(λ ϑ ) = cos(ϑ )+λ sin(ϑ ). (9)

The conjugate octonion exponential function is exp(−λ ϑ ) =
cos(ϑ )−λ sin(ϑ ).

The octonion o can be written as o = a+λ ϑ , where the λ is a

pure octonion and ϑ is a real number. Therefore we can write the

following general formula for the octonion exponential function:

e
o = e

a+λ ϑ = e
a
e

λ ϑ = e
a (cos(ϑ )+λ sin(ϑ )). (10)

Example 2 Consider the octonion o = 1 + i− 2 j+ k+ 2E + I−
J +2K which can be written as

o = 1+λ ϑ = 1+
i−2 j +k +2E + I − J +2K

4
4.

For this octonion, a = 2 and the angle

ϑ = |o′| =
√

1+22 +1+22 +1+1+22 =
√

16 = 4,

and the pure unit octonion

λ =
i−2 j +k +2E + I − J +2K

4
.

The exponential number exp(o) is calculated by

e
o = e

1

(

cos(4)+
i−2 j +k +2E + I − J +2K

4
sin(4)

)

.

Denoting by C = e/4 ≈ 0.6796, we can write the octonion expo-

nent as eo = e1 cos(4)+C sin(4)(i−2 j+k +2E + I − J +2K).
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3. Color-to-Octonion Images

A discrete color image fn,m in the RGB color space can be

transformed into imaginary part of quaternion numbers form by

encoding the red, green, and blue components of the RGB value as

a pure quaternion (with zero real part): fn,m = 0+(irn,m+ jgn,m +
kbn,m). In quaternion imaging, each color triple is treated as a

whole unit [2], and it thus is expected, that by using quaternion

operations, a higher color information accuracy can be achieved.

The zero real part of the quaternion image makes it pure quater-

nion, and we could use the gray-scale component in the real part

fn,m = an,m +(irn,m + jgn,m +kbn,m)

=
rn,m+gn,m+bn,m

3 +(irn,m + jgn,m +kbn,m).
(11)

When using the CMYK color model [2, 14], with the primary

colors cyan (C), magenta (M), yellow (Y), the quaternion image

is four-component image with the real part equal the black (K)

color, fn,m = kn,m +(icn,m + jmn,m +kyn,m).
There are different ways to compose or transfer color images

into the octonion space and then introduce the concept of the oc-

tonion image. We consider one of such ways, by using the RGB

color model. Let N×M be the size of the fn,m image components,

i.e., n = 0 : (N −1) and m = 0 : (M−1), and let N and M be even

numbers. We consider that the image is the color image trans-

formed to the quaternion space as shown in (11). This quaternion

image with four components can be transformed to the octonion

space, by composing the following “octonion image”:

on,m = fn,m + fn+1,mE

= an,m + irn,m + jgn,m +kbn,m+

+Ean+1,m + Irn+1,m +Jgn+1,m +Kbn+1,m,

(12)

where n = 0 : (N/2− 1), m = 0 : (M− 1). The octonion image

on,m = ( fn,m, fn+1,m) is of size (N/2)×M. We also can consider

the “octonion image” with the following composition:

on,m = fn,m + fn,m+1E

= an,m + irn,m + jgn,m +kbn,m

+Ean,m+1 + Irn,m+1 +Jgn,m+1 +Kbn,m+1.

(13)

The octonion image on,m = ( fn,m, fn,m+1) is of size N × (M/2).
As an example, Figure 1 shows the color image

(rn,m,gn,m,bn,m) of size 256× 256 in part a. The octonion image

on,m with components of size 128× 512 each was calculated by

(12). Three i, j, and k-components of on,m as one color image in

the RGB model together with the color image composed by the

I,J, and K-components of on,m are shown in part b.

Figure 2 shows the gray-scale image an,m of size 256× 256

in part a, and the real part and E-componentof the octonion image

together in part b. Thus, the 256× 256 color “tree” image of the

RGB model is presented as the “octonion” image with its eight

components of size 128× 256 each, as shown in Figure 3. The

gray-scale image an,m of the color image, which is the real com-

ponent of the octonion image on,m is shown in part a. The three

components, i.e., the (i, j,k)-part of the imaginary part of the oc-

tonion image on,m is shown in b, as the color image in the RGB

model. In part c, the imaginary E-components of on,m is shown, as

a gray-scale image. The color image in d represents the (I,J,K)-

part of the imaginary part of the octonion image on,m. The images

in part a and b represent the first quaternion image qn,m and two

color image
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Figure 1. (a) The color “tree” image and (b) the (i, j,k) and

(I,J,K) color images.
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Figure 2. (a) The gray-scale image an,m and (b) E-components

of the octonion “tree” image.
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Figure 3. (a) The gray-scale component, (b) the (i, j,k)-

component color image, (c) the E-component, and (d) the

(I,J,K)-component color image of the octonion “tree” image.

images in parts c and d represent the second quaternion image fn,m

of the octonion image on,m. The 256×256 color “tree” image has

been transferred to the 128×256 octonion image.

In the similar way, the 362× 500 “flowers” image can be

transferred to the 181×500 octonion image, as shown in Figure 4.

real part
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Figure 4. (a) The gray-scale components, (b) the (i, j,k)-

component color image, (c) the E-component, and (d) the

(I,J,K)-component color image of the octonion “flowers” image.

The color image can also be divided by two halves, and each

halve can be transformed to the quaternion space and two quater-
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nion images qn,m and fn,m are composed, which together result

in a octonion image. In this simple model, two parts q and f are

not much correlated, in comparison to the model described above.

If we have a sequence of color images or gray-scale images, by

taking a few such images new octonion images can be composed.

For instance, eight gray-scale images of the same size each can

be united in one octonion image, and two color images can be

united in one octonion image. The gray-scale image also can be

divided by eight parts of size (N/4)× (M/2) or (N/2)× (M/4)
and considered as components of the octonion image.

4. Two-side 2-D octonion DFT

The octonion discrete Fourier transform (ODFT) is a new concept

which allows for processing a few gray-scale or color images, as

well as images with their local information as one octonion 8-D

image in the spectral domain. This concept generalizes the tradi-

tional complex and quaternion 2-D DFTs and can be effectively

used for parallel processing up to eight of gray-scale images or

two color images. We consider the two-side 2-D ODFT of the

octonion image of size N × M. The octonion numbers are dual

quaternions, i.e., any octonion o is represented by q1 +q2E , where

q1 and q2 are quaternions. The 2-D ODFTs can be calculated by

the 1-D and 2-D QDFTs (for more detail, see [1]).

Given two pure unit octonions λ1 and λ2, which we consider

equal to the pure unit quaternions µ1 and µ2, the two-side 2-D

OQFT of the octonion image on,m can be defined as

Op,s =
N−1

∑
n=0

M−1

∑
m=0

W
np
µ1

(

on,mW
ms
µ2

)

=
N−1

∑
n=0

W
np
µ1

(

M−1

∑
m=0

on,mW
ms
µ2

)

,

(14)

where p = 0 : (N−1) and s = 0 : (M−1). The basis functions are

defined by the exponential coefficients

Wµ1 = Wµ1 ;N = cos(2π/N)−µ1 sin(2π/N),
Wµ2 = Wµ2 ;M = cos(2π/M)−µ2 sin(2π/M).

We denote the kernel of the transform by (Wµ1 ,Wµ2 ). To calculate

the 2-D two-side ODFT, the row-column method can be used.

Along each row (when n is fixed) the M-point right-side ODFT is

calculated, and then along each column (when m is fixed) of the

obtained data, the N-point left-side ODFT is calculated.

One can also apply the 2-D QDFTs to calculate this trans-

form. To show that, we consider the first and second quaternion

components of the image on,m = qn,m + fn,mE and write

Op,s =
N−1

∑
n=0

W
np
µ1

(

M−1

∑
m=0

qn,mW
ms
µ2

)

+
N−1

∑
n=0

W
np
µ1

(

M−1

∑
m=0

( fn,mE)Wms
µ2

)

.

It not difficult to show the following property:

(qn,mE)Wms
µ2

= (qn,mW
−ms
µ2

)E . Therefore, we obtain

Op,s =
N−1

∑
n=0

W
np
µ1

(

M−1

∑
m=0

qn,mW
ms
µ2

)

+
N−1

∑
n=0

W
np
µ1

(

M−1

∑
m=0

fn,mW
−ms
µ2

)

E .

It should be noted, that W−ms
µ2

= W
m(M−s)
µ2

= W ms
−µ2

.

Thus, to calculate the two-side 2-D ODFT, we can perform

the two-side 2-D QDFT of the quaternion image qn,m and the two-

side 2-D QDFT of the quaternion image fn,m. The first two-side

QDFT is calculated with the kernel (Wµ1 ,Wµ2 ), and the second

one with the kernel (Wµ1 ,Wµ2 ), or (Wµ1 ,W−µ2 ). Let Qp,s be the

two-side QDFT of the image qn,m and let Fp,s be the two-side 2-D

QDFT of fn,m, with the kernel (Wµ1 ,Wµ2 ) both. Then,

Op,s = Qp,s +Fp,M−sE .

If Fp,s is the two-side 2-D QDFT of fn,m, with the kernel

(Wµ1 ,W−µ2 ), then Op,s = Qp,s +Fp,sE .

As an example for the “tree” color image, Figure 5 shows the

2-D QDFT, Qp,s, of the image gn,m in part a, and the 2-D QDFT,

Fp,M−s, of the image fn,m in part b. These two 2-D QDFTs define

the 2-D ODFT of the octonion image on,m. The magnitude of the
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Figure 5. The 2-D QDFT of the quaternion image (a) gn,m and

(b) fn,m. (c) The 2-D ODFT of the octonion “tree” image on,m.

2-D ODFT of the image on,m is shown in part c. All transforms

are cyclically shifted to the center.

4.1 1-D left-side and right-side QDFTs

We describe briefly the algorithm for calculating the right-side 1-

D QDFT [7]. Let qn = (an,bn,cn,dn) = an + ibn + jcn + kdn be

the quaternion signal of length N. The transform is defined as

Qp = Q1(p)+ iQi(p)+ jQ j(p)+kQk(p) =
N−1

∑
n=0

qnW
np
µ ,

where p = 0 : (N − 1), and µ is a pure unit quaternion number

µ = m1i+m2 j +m3k, µ2 = −1. Let ϕnp be the angle (2π/N)np.
For a real signal xn of length N, we define the following cosine

and sine transforms being the real and imaginary parts of the 1-D

DFT of this signal:

Cx(p) = <(Xp) =
N−1

∑
n=0

xn cos(ϕnp),

Sx(p) = =(Xp) =
N−1

∑
n=0

xn sin(ϕnp),

(15)

when p = 0 : (N − 1). Let C(x) and S(x) be the vectors of co-

efficients (Cx(0),Cx(1),Cx(2) . . . ,Cx(N − 1)) and (Sx(0),Sx(1),
Sx(2) . . . ,Sx(N − 1)), respectively. The four vectors of coeffi-

cients Q1(p), Qi(p), Q j(p), and Qk(p) are also defined as Q1,
Qi, Q j, and Qk. If we denote the N-point 1-D DFTs of the parts

an, bn, cn, and dn of the quaternion signal qn by Ap, Bp, Cp,
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and Dp, respectively, we can calculate the 1-D QDFT. The vector

(Q1(p),Qi(p),Q j(p),Qk(p))′ in matrix form can be written as









<(Ap)
<(Bp)
<(Cp)
<(Dp)









+









0 m1 m2 m3

−m1 0 −m3 m2

−m2 m3 0 −m1

−m3 −m2 m1 0

















=(Ap)
=(Bp)
=(Cp)
=(Dp)









.

Here, <(A) and =(A) denote the real and imaginary parts of

a complex number A, respectively.

The left-side 1-D quaternion DFT (ls-QDFT) is defined as

Qp = Q1(p)+ iQi(p)+ jQ j(p)+kQk(p) =
N−1

∑
n=0

W
np
µ qn.

The calculation of the transform (Q1(p),Qi(p),Q j(p),Qk(p))′

can be written in matrix form as [1]









<(Ap)
<(Bp)
<(Cp)
<(Dp)









+









0 m1 m2 m3

−m1 0 m3 −m2

−m2 −m3 0 m1

−m3 m2 −m1 0

















=(Ap)
=(Bp)
=(Cp)
=(Dp)









.

By using the fast Fourier transforms [17]-[19, 26, 33, 35], the cal-

culation of the left and right-side QDFTs by the above equations

is effective. The inverse two-side 2-D ODFT is calculated by the

similar formula

on,m =
N−1

∑
p=0

W
−np
µ1

(

M−1

∑
s=0

Op,sW
−ms
µ2

)

, (16)

when n = 0 : (N − 1) and m = 0 : (M− 1). We also can consider

the following definition of the two-side 2-D ODFT:

Op,s =
M−1

∑
n=0

(

N−1

∑
n=0

W
np
µ1

on,m

)

W
ms
µ2

. (17)

For this transform, the column-row method can be used. Along

each column (when m is fixed) the N-point left-side ODFT is cal-

culated, and then along each row (when n is fixed) of the obtained

data, the M-point right-side ODFT is calculated. Thus, since

the operation of multiplication for octonions is not associative,

the row-column and column-row two-side ODFTs are different.

All above 2-D octonion transforms can be calculated by the 2-D

QDFT, for which fast algorithms exist [1],[7]-[9],[23, 24].

Together with the two-side 2-D ODFT, the concepts of the

right-side and left-side 2-D ODFTs can be used in imaging. Such

one-side transforms can be effectively calculated not only by

the row-column method, but with the concept of the tensor and

paired representations, which were effectively applied for color

and quaternion images [1, 37]-[41]. The tensor representation

is effective for the prime size of the images and the paired for

the case when the sizes are power of 2, prime, or even numbers.

Such representation allow for reducing the calculation of the 2-D

QDFTs to the calculation of the 1-D QDFTs over the splitting-

signals which represent the image and can be used for image pro-

cessing [27]-[36]. Therefore, the calculation of the 2-D QDFT

as well as 2-D ODFT can be reduced to separate calculation of

the 1-D transforms, and application of transforms in color image

enhancement [37]-[41], filtration [17, 42, 26, 42] and image re-

construction [43]-[55].

5. CONCLUSION

The two-dimension two-side octonion discrete Fourier transform

(2-D ODFT) is described in the octonion algebra. This transform

can also be used in different models of gray-scale image repre-

sentation in the octonion space. The calculation of the two-side

2-D ODFT can be accomplished was shown by using the fast 1-D

left and right-side quaternion discrete Fourier transforms with any

quaternion exponential kernel, when calculating two 2-D two-side

QDFTs which define the two-side 2-D ODFT.
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