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Abstract 
This paper introduces a texture representation suitable for 

image synthesis of textured surfaces. An efficient representation 
for natural images is of fundamental importance in image 
processing and analysis. The automated analysis of texture is 
widely applied in a number of real-world applications, e.g., image 
and video retrieval, object recognition and classification. For 
texture representation we consider the orthogonal decomposition 
of two-dimensional signals (images) using spectral transform in 
the different basis functions. This paper focuses on the analysis of 
the following basis functions Fourier, Walsh, Haar, Hartley and 
cosine transform using system criteria analysis. This criterion 
includes error signal representation and computational cost. For 
correct calculation of the components of the system criterion we 
use statistical averaging. It is shown that the Haar transform can 
represent textural patches more efficiently with smaller average 
risk than other basis functions. The texture representations results 
compare favourably against other state-of-the-art directional 
representations. 

Introduction 
Texture plays an important role in numerous computer vision 

applications. Image texture represents an image area contributing 
repetition of patterns of pixel intensities arranged in some 
structural way. Textures are prominent in natural images (as in 
grasslands, brick walls, fabrics, etc.). Many useful properties for 
image description and interpretation are gained through texture 
observation and analysis such as granularity, smoothness, 
coarseness, periodicity, geometric structure, orientation etc. 

This paper introduces a texture representation suitable for 
image synthesis of textured surfaces. An efficient representation 
for natural images is of fundamental importance in image 
processing and analysis. The automated analysis of texture is 
widely applied in a number of real-world applications, e.g., image 
and video retrieval, object recognition and classification. For 
texture representation we consider the orthogonal decomposition 
of two-dimensional signals (images) using spectral transform in the 
different basis functions.  

The visual perception of textures has been an area of interest 
spanning a wide variety of disciplines from art to computer 
science. The fields of computer vision, perception, and graphics 
have each made significant contributions to our overall 
understanding of texture perception and representation, albeit in 
quite different ways. An efficient representation for natural images 
is of fundamental importance in image processing and analysis. 
The commonly used separable transforms such as wavelets axe not 
best suited for images due to their inability to exploit directional 
regularities such as edges and oriented textural patterns; while 
most of the recently proposed directional schemes cannot represent 
these two types of features in a unified transform.  

The quality of the final reconstruction produced by known 
algorithms informs us as to the utility of both the representation 

used for the original texture and the process by which that 
representation is used to generate novel images. However, for us to 
truly feel confident in relating the computational procedure used 
for texture synthesis to human perceptual processes it is helpful if 
the algorithm uses representations employed by the human visual 
system. Synthesis requires a time-consuming search process 
through the sample provided for analysis.  

Related Work 
The automated analysis of image textures has been the topic 

of extensive research in the past years. Any methods for analyzing 
of texture have been proposed in literature. There are well known 
approaches for texture feature extraction operating in the spatial 
domain (for e.g. gray level co-occurrence matrices), in the 
frequency domain (for e.g. Fourier spectrum measurements), or in 
the spatial-frequency domain (for e.g. energy of wavelet 
coefficients or contourlet coefficients). 

Existing techniques for modeling texture include co-
occurrence statistics [1, 2], filter banks [3], and random fields [4, 
5].  

Proposed work relates to texture analysis ([6-9] and 
references therein), perception ([10]), and synthesis ([11]).  Some 
work has been done in summarizing images (epitome [12]) and 
video [13, 14].  These methods do not handle textures explicitly 
and as a result, their reconstructed textures suffer. Other schemes 
aim to compact the spectral energy into few coefficients [15-17].  

Motivated by successes in spatial texture research, approaches 
have been proposed that uniformly treat a diverse set of dynamic 
patterns based on aggregate statistics of local descriptors. A 
seminal example of this approach was based on extracting first- 
and second-order statistics of motion flow field-based features, 
assumed to be captured by estimated normal low. 

Extracting and quantifying the texture features of image is 
central to texture-oriented image retrieval [18]. The texture 
features mainly include coarseness, directionality, contrast, line 
likeness, regularity, and roughness [19]. To analyze image texture, 
several approaches such as the statistical method and the structural 
method [20] have been proposed. The statistical method extracts 
the texture's characteristics and the relations between them and 
parameters according to the statistical information of peels gray 
degree. This method is usually used to analyze unregulated objects 
such as wood and lawn. The structural method describes the 
texture's structure and the relations between them and parameters 
according to the texture cell and their arranging orderliness. It 
could be used to analyze some regularly formed patterns such as 
cloth. 

A  recent  research  trend  is  the  use  of  statistical generative  
models  to  jointly  capture  the  spatial  appearance  and  dynamics  
of  a  pattern.  Recognition is realized by comparing the similarity   
between   the estimated model parameters. Several variants of this 
approach have appeared, including:  autoregressive (AR) models 
[21-23] and multi-resolution schemes [24-25].  By far the most 
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popular of these approaches for recognition is the join 
photometric-dynamic, AR-based Linear Dynamic System (LDS) 
model, proposed in [26]. 

For some images such as building and car, which need to 
integrate the shape and texture features, the traditional methods 
such as gray co-occurrence matrix based algorithm cannot extract 
effectively the shape information in the images. 

Some algorithms model textures as a set of features, and 
generate new images by matching the features in an example 
texture [27- 29]. These algorithms are usually more efficient than 
Markov Random Field algorithms. Heeger and Bergen [27] model 
textures by matching marginal histograms of image pyramids. 
Their technique succeeds on highly stochastic textures but fails on 
more structured ones. Simoncelli and Portilla [29] generate 
textures by matching the joint statistics of the image pyramids. 
Their method can successfully capture global textural structures 
but fails to preserve local patterns. 

For image processing, there are two methods [30]: one is to 
process the image in the space domain and the other is to change 
the image from the space domain to the frequency domain and, 
after processing, change it back from the frequency domain to the 
space domain. 

It follows that images with high space frequency characterize 
tiny changes or detailed contents, whereas images with low space 
frequency characterize the outline of a big object or trend of 
change. This is the basis of image processing in the frequency 
domain. 

Many techniques apply processing in the frequency domain. 
One difficulty with the Fourier transform is that it has relatively 
poor spatial resolution, as Fourier coefficients depend on the entire 
image. Methods based on the Fourier transform do not perform 
well in practice, because it lacks spatial localization. The classical 
way of introducing spatial dependency into Fourier analysis is 
through the windowed Fourier transform [31].  

Gabor filters gives better spatial localization; but, their 
usefulness is limited in practice as there does not exist a single 
filter resolution at which one can localize a spatial structure in 
natural textures [32]. Carrying similar properties to the Gabor 
transform, wavelet transform representations have also been 
widely used for texture analysis. Gabor filters and wavelet-based 
techniques on the other hand compute the textural characteristic by 
first transforming the image into the frequency domain and then 
dividing the domain into several frequency subbands.  

The distribution of energy in each of these subbands is used 
as the basis for distinguishing different textures. The difference 
between the two techniques lies on the way the frequency domain 
is divided, as well as on the types of the filter used. The wavelet 
transform has emerged to provide a more formal, solid and unified 
framework for multiscale signal analysis, with implementations 
that are generally more efficient than existing equivalent methods 
[33]. 

In digital signal processing systems is widely used spectral 
representation. It is good agreement with the algorithms of digital 
processing and allows a compact description of signal. To 
minimize signal descriptions and hence computational complexity 
needed based on some criteria to choose a system of basis 
functions with regard to the properties of the signals. It should also 
take into account the possibility of a simple hardware or software 
implementation. The basis functions selection largely determines 
the efficiency of image processing algorithms. Despite the 
permanent progress of computer technology, the task of reducing 
the description of signals and saving computing resources is 

relevant. The most commonly used functions are trigonometric, 
Walsh, Haar and other orthogonal systems of functions for digital 
spectral analysis. Of course, the problem of the choice of basis 
expansions of signals depends of properties of the set of analyzed 
signals. But the choice of the optimal basis for minimum error 
criterion submission hampered by the lack of sufficient a priori 
information. So, Karhunen-Loeve basis is optimal for the 
stationary random processes for criterion of minimum mean 
squared error. It is used only when known the correlation function, 
which rarely corresponds to the real situation.  

In solving computation complexity applications as texture 
synthesis it seems appropriate to make a choice of basis spectral 
decomposition using system criteria, including the error signal 
representation and computational cost of spectral analysis 
procedures. 

The objective of our work is to analysis texture 
representations in different basis functions for image synthesis 
using system criteria analysis 
 

Proposed analysis 
Decomposition of the image ),( yxf  in a Fourier series in 

basis )y,()(
, xu m
vu  is written in the form: 
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If number of series is limited then approximation error 
presented as: 
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where  [ ]⋅ρ  is a distance of some metric, ),;,(ˆ )( NMyxf k  is a 
partial sum M  and N  terms of the series, k is a number of a 
process. 

Calculating the number of Fourier coefficients in the basis 
)y,()(

, xu m
vu associated with computational cost ),( NMQm . 

If number of series is limited then cost function presented as: 
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The total cost function includes booth approximation error 
and computation complexity. 

Averaging this function, we obtain value of conditional risk 
which depends from the basis: 
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where ),( yxw  is the probability for every subclass signal, ><  
is statistical averaging. 
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Table 2. The dependence of the root mean square error of 
approximation of the textures from the number of terms of the 
series 

 

2-D 
transformation 

The number of terms of the series 

2 4 8 16 32 64 

Texture “Gaussian” 
Fourier 0,671 0,265 0,093 0,067 0,043 0,022 

Cosine 0,884 0,408 0,098 0,070 0,044 0,022 

Hartley 0,704 0,307 0,094 0,068 0,043 0,022 

Walsh 0,883 0,596 0,303 0,165 0,091 0,044 

Haar 0,883 0,596 0,303 0,165 0,091 0,044 

Texture “Clouds 

Fourier 0,230 0,214 0,181 0,133 0,068 0,023 

Cosine 0,230 0,224 0,198 0,143 0,074 0,025 

Hartley 0,230 0,213 0,183 0,139 0,072 0,024 

Walsh 0,230 0,226 0,204 0,158 0,112 0,060 

Haar 0,230 0,226 0,204 0,158 0,112 0,060 

 

Table 3. The average risk of approximation of the texture 
“Gaussian” for different basis and cost functions 

 

2-D 
transformation 

The number of terms of the series 

2 4 8 16 32 64 

Cost function   mmm
k QW 2)( ε=  

Fourier 43,2 54,2 40,2 110,4 225,6 277,0 

Cosine 31,2 53,2 18,6 50,0 98,9 119,1 

Hartley 33,7 43,6 23,4 62,0 123,6 149,6 

Walsh 6,2 22,8 35,2 55,9 84,6 93,8 

Haar 10,9 22,0 23,2 27,9 33,8 31,3 

Cost function   mmm
k QW ε=)(  

Fourier 64,4 203,8 430,1 1647,4 5265 12782,2 

Cosine 35,3 130,4 188,8 715,5 2250 5410,1 

Hartley 47,9 142,2 247,5 917,5 2868 6870,2 

Walsh 7,1 38,2 116,2 338,5 930,9 2147,9 

Haar 12,4 36,9 76,8 168,9 372,2 715,9 

 

Table 4. The average risk of approximation of the texture 
“Clouds” for different basis and cost functions 

 
2-D 

transform
ation 

The number of terms of the series 

2 4 8 16 32 64 

Cost function   mmm
k QW 2)( ε=  

Fourier 5,0 35,0 151,5 436,7 567,4 315,9 

Cosine 2,1 15,9 75,3 209,7 277,1 146,9 

Hartley 3,6 21,1 87,5 261,4 348,1 176,7 

Walsh 0,4 3,3 15,9 51,3 129,0 173,9 

Haar 0,7 3,2 10,5 25,6 51,6 57,9 

Cost function   mmm
k QW ε=)(  

Fourier 22,0 164,1 835,5 3275,9 8349,8 13651,5 

Cosine 9,1 71,5 380,1 1465,5 3766,4 6010,2 

Hartley 15,6 98,9 479,2 1883,2 4813,8 7465,0 

Walsh 1,8 14,4 78,2 324,2 1149,5 2924,4 

Haar 3,2 13,9 51,7 161,8 459,6 974,7 

 

Conclusions 
We present a novel texture representation approach suitable 

for image synthesis of textured surfaces. For texture representation 
we consider the orthogonal decomposition of two-dimensional 
signals (images) using spectral transform in the different basis 
functions. This paper focuses on the analysis of the following basis 
functions Fourier, Walsh, Haar, Hartley and cosine transform using 
system criteria analysis. For system criteria analysis we use error 
signal representation and computational cost. It is shown that the 
Haar transform can represent textural patches more efficiently with 
smaller average risk than the other basis functions. 
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