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Abstract
Compressed sensing (CS) has been exploited for accelerat-

ing data acquisition in magnetic resonance imaging (MRI). MR
images can be then reconstructed from significantly fewer mea-
surements, i.e., drastically lower than that required by the Nyquist
sampling criterion. However, the compressed sensing method
usually produces images with artifacts, particularly at high re-
duction rates. In this paper, we propose a novel compressed sens-
ing MRI method, called CS-NLTV that exploits curvelet sparsity
(CS) and nonlocal total variation (NLTV) regularization. The
curvelet transform is optimal sparsifying transform with the ex-
cellent directional sensitivity than that of wavelet transform. The
NLTV, on the other hand extends the total variation regularizer
to a nonlocal variant which can preserve both textures and struc-
tures and produce sharper images. We have explored a new ap-
proach of combining alternating direction method of multiplier
(ADMM), adaptive weighting, and splitting variables technique
to solve the formulated optimization problem. The proposed CS-
NLTV method is evaluated experimentally and compared to the
previously reported high performance methods. Results demon-
strate a significant improvement of compressed MR image recon-
struction on four medical MRI datasets.

Introduction
Compressed sensing [1, 2, 3] is another way of speeding

the signal acquisition by providing means for smarter sampling.
Since 2006, compressed sensing or compressive sampling has
been receiving a considerable attention in theory and applications,
and among them magnetic resonance imaging is one whose im-
plied sparsity suggests the use of sparse sampling. Compared
to the standard sampling theory, MRI images are speed-limited
physically and constrained by the physiological nature [4], and
thus they are featured by immense sparsity. Exploring this spar-
sity while preserving accurate reconstruction is critical for medi-
cal diagnosis, and thus it is a major goal and a challenge of the re-
search in this area. The goal of the research is to speed up the scan
time of magnetic resonance imaging and produce a high-quality
imagery suitable for further accurate reading [5, 6].

Compressed sensing hypothesis [2] makes it possible to re-
cover magnetic resonance images from vastly under-sampled k-
space data without being constrained by Shannon/Nyquist re-
quirements. The process includes encoding, sensing, and decod-
ing processes. Most of the existing compressed MR imaging ap-
proaches are based on the linear model, i.e., Ax = b,A = SF ,
where S is a selection, or a sampling matrix; F is a 2D dis-
crete Fourier matrix, and b is the observed k-space data which
are significantly undersampled. Given the sparsity assumption
about x̂ which is an estimate of x, one possible solution would

be {min
x
|x|0 : Ax = b}, but since `0-minimization problem is NP-

hard [7], a reasonable alternative would be {min
x
|x|1 : Ax = b}.

Thus, the objective is to minimize absolute differences, i.e. the
variation, and it is useful to penalize by finite differences, there-
fore in the general formulation the TV is used for checking the
sparsity of the transform and the finite differences.

The review of the compressed sensing MRI methods shows
how to solve the above problem with different regularization and
penalty terms. Recent compressed sensing efforts in MR pursue a
best combination of sparsifying transforms [8, 9, 10, 11, 12, 13]
and a fast solution for obtaining a high-quality reconstruction.
Various methods have been presented to reconstruct MR images
from under-sampled data. Ma et al., introduced an operator-
splitting algorithm, total variation (TV) compressed MR imaging
(TVCMRI) [8]. By taking advantage of fast wavelet and Fourier
transforms, TVCMRI can process MR data fast and accurately.
Yang et al. [9] solved the same objective function presented in
[8] by a variable splitting method (RecPF) which is TV-based
`1−`2 MR reconstruction. This method uses alternating direction
method for recovering MRI images from incomplete Fourier mea-
surements. A fast composite splitting algorithm (FCSA) [10] is
proposed by Huang et al. FCSA is based on combination of vari-
able and operator splitting. It splits the variable x, into two vari-
ables, and exploits the operator splitting method to minimize the
regularization terms over the splitting variables. Nonlocal total
variation for MR reconstruction (NTVMR) [11], and the framelet
+ nonlocal TV (FNTV) [12] methods have been proposed lately.
It is analyzed in [13] that the use of the first order derivatives
has two major shortcomings; it creates oil-painting artifacts and
leads to the contrast loss. Out of those two methods which use
nonlocal TV regularization, FNTV delivers a better quality. The
FNTV is formulated to minimize the combination of nonlocal TV,
framelet and the least square data tting terms. Recently, shear-
let based methods are proposed generally for inverse problems
and specifically for MR reconstruction [14, 15, 16]. In [16], a
new framework, i.e., nonseparable shearlet transform iterative soft
thresholding reconstruction algorithm (FNSISTRA), is presented
by Pejoski et al. Along with the discrete nonseparable shearlet
transform (DNST) [17] as a sparsifying transform, the authors
used a fast iterative soft thresholding algorithm (FISTA) [18, 19].
The method has achieved a superior performance among all the
above state-of-the-art methods.

In this paper, we propose a novel optimization scheme for
MR image reconstruction. The method integrates the curvelet
sparsity and the nonlocal total variation (NLTV); CS-NLTV. MR
images exhibit a vast sparsity especially in the transform domain
[20] such as for example, wavelets. Wavelet transform frequently
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cannot handle efficiently edges or curves or in general, singulari-
ties in higher dimensions. Therefore, we use the curvelet trans-
form which provides sparsity, excellent localization properties
and directional selectivity. On the other hand, the nonlocal total
variation, which is the total variation extension to a nonlocal vari-
ant. The NLTV preserves fine structures, details and textures, pre-
vents from oil-painting artifacts inherent to TV, and maintains the
contrast. Such a framework is expected to yield a higher quality
of MR images. The confirmation of this hypothesis is received by
our experimental study wherein we compare TVCMRI [8], RecPF
[9], FCSA [10], FNTV [12], and FNSISTRA [16] to the proposed
method. The rest of the paper is organized as follows. The pro-
posed CS-NLTV method is described in Section 2 and results and
performance comparison are presented in Section 3; followed is
Conclusion in Section 4.

CS-NLTV Method
Magnetic resonance imaging (MRI) model can be expressed

as

Ax = b. (1)

where x∈ RM is a MR image, A∈ RN×M is a measurement matrix
with N�M, and b ∈ RN is the observed data. The MR data can
be recovered by solving the following minimization problem

minimize
x

|φ(x)|1 subject to Ax = b (2)

Here |φ(x)|1 is a regularizing functional and φ is a sparsify-
ing transform. In the compressed sensing (CS) model of MRI,
A = SF , where S is a selection or a sampling matrix, F is the
2D discrete Fourier matrix, and b is the observed k-space data.
Assuming the sparsity of the model, the problem is ill-posed for
minimizing the least-squares function. Therefore, the following
cost function with a regularization term has been considered:

min
x
|φ(x)|1 subject to ‖Ax−b‖2

2 ≤ σ (3)

where σ is the variance of distortion in b. Here the `1-norm de-
noted by |.|1 and the `2-norm by ‖.‖2. The constrained optimiza-
tion in Eq. (3) is equivalent to the following unconstrained opti-
mization problem as it is formulated in [21]:

min
x
|φ(x)|1 +

λ

2
‖Ax−b‖2

2 (4)

where λ > 0 is a balancing constant which relies on the sparsity
of the underlying MR image x under linear transformation. Con-
sidering the problem, we propose and formulate the optimization
problem using a combination of both the nonlocal total variation
and the curvelet as regularizers. The proposed optimization prob-
lem to obtain reconstruction x̂ as follows:

x̂ = argmin
x

α|∇wx|1 +β ∑
k
|Ck(x)|1 +

λ

2
‖Ax−b‖2

2 (5)

where |∇wx|1 = ∑t |∇wxt |1 is the nonlocal total variation norm
and nonlocal weights w are computed from image estimate x̂.
C(x) is the combination of different subbands of curvelet trans-
form. α and β are the weighting parameters stressing two regu-
larization terms. The value of these two parameters in each loop,

are adaptively derived based on the variance of noise present in re-
constructed image from previous iteration. We stress more on the
curvelet regulaizer term if the estimated variance in each curvelet
subband is greater than a specified threshold. The variances of
the signal in every curvelet subband are computed by exploiting
the maximum likelihood estimator applied on the neighborhood
(a square) areas of coefficients.

Nonlocal Total Variation- NLTV
Nonlocal total variation (NLTV) in contrast to the TVs pixel-

level correspondence establishes the patch-level correspondence
[22]. For image x, the nonlocal weights can be formed for any
two spatial nodes i and j as follows:

ϖx(i, j) = e−
∫
R1

Gσ (t)(x( j+t)−x(i+t))2dt

σ2 (6)

where G is a Gaussian kernel with the variance σ2; and R1 is
the spatial neighborhood of i and j for similarity consideration.
The nonlocal gradient ∇wx(i, j) at i is described as a vector of all
partial derivatives ∇wx(i, .) [23]:

∇wx(i, j) = (x( j)−x(i))
√

ϖx(i, j), ∀ j ∈ R2 (7)

where R2 is the spatial neighborhood around i, whose nonlocal
gradient ∇wx(i, j) is calculated. The adjoint of Eq. (7) is derived
from the adjoint relationship with a nonlocal divergence operator
divw as:

〈∇wx,v〉= 〈x,divwv〉 (8)

divwv(i, j) =
∫

R2

(v(i, j)− v( j, i))
√

ϖx(i, j) d j (9)

Given the image x∈ RM = Rm×n with R1 = R(2a1+1)(2b1+1), R2 =
R(2a2+1)(2b2+1), weights nonlocal total variation are defined as

ϖx(k1, l1,k2, l2) = e−
∑

2a1
z1=0 ∑

2b1
z2=0 Gσ (z1 ,z2)(x(k1−a1+z1 ,l1−b1+z2)−x(k2−a1+z1 ,l2−b1+z2))

2

σ2

k1,k2 = 1, ...,m. l1, l2 = 1, ...,n.
(10)

Fig. 1 depicts the comparison of TV vs NLTV reconstruction
from a noisy MRI image.

Figure 1: Left: Noisy MRI image, middle: recovered using TV,
right: recovered using NLTV for respective image.

Curvelet Sparsity
Curvelet transform introduced by Candes [24, 25] is an

efficient geometric multiscale sparsifying transform. Unlike
wavelets, curvelets have directional sensitivity and anisotropy, op-
timal sparse representation, better `1-norm sparsity, and thus, they
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can efficiently characterize anisotropic features such as edges,
arcs and curves. Curvelet transform has been used for image
denoising, feature extraction and for solving inverse problems
[26, 27, 28]. The curvelets at scale 2− j, orientation θl , and po-
sition k = (k1,k2) are defined as

ϕ j,l,k(x) = ϕ j(RθJ (x−ρ
( j,l)
k )) (11)

where ϕ j is a mother curvelet, θJ = 2π · 2b− j/2c · l, J = ( j, l) in-
dicating the scale/angle, and

ρ
( j,l)
k = R−1

θJ
(k1 ·2− j,k2 ·2− j/2) (12)

Rθ =

(
cos(θ) sin(θ)
−sin(θ) cos(θ)

)
,R−1

θ
= RT

θ = R−θ (13)

The curvelet transform of function x is computed as

Cϕ (x)( j, l,k) = 〈x,ϕ j,l,k〉 (14)

The whole process can be performed in the frequency domain, by
introducing 2D frequency window as

U j(ω) = 2−3 j/4W (2− j|ω|)V (
2b j/2cθ

2π
) (15)

where W is the Meyer wavelet window dividing the frequency
domain into annuli |x| ∈ [2 j,2 j+1) and V is the angular window
dividing the annuli into wedges θJ . Then the curvelets can be
defined in frequency domain as

ϕ j,l,k(ω) =UJ(RθJ ω)e−i〈ρ( j,l)
k ,ω〉 (16)

The discrete curvelet transform in the frequency plane has tiling
in concentric squares and shears in Cartesian coronae. Due to the
advantages of curvelets as sparsifiers with their detail representa-
tion properties, the transform is adopted for implementation in our
method. We can implement k− th subband of curvelet transform
(Ck) as a mask in the frequency domain (Zk) [29].

Ck(x) = F∗diag(vec(Zk))Fx = Pk x (17)

where F is a vectorized form of the discrete Fourier transform
operator. Thus, the curvelet regularization can be defined as `1
optimization term:

min
x
|C(x)|1 = min

x
β ∑

k
|Pk x|1 = min

x
β ∑

k
|Ck(x)|1 (18)

Solution
The proposed optimization problem is formulated as follows:

argmin
x

α|∇wx|1 +β ∑
k
|Ck(x)|1 +

λ

2
‖Ax−b‖2

2 (19)

The proposed optimization problem has both `1 and `2-norm
terms and thus is difficult to obtain the solution in a closed-form.
The alternating direction method of multiplier (ADMM) [30] and
splitting variables method are used to solve the formulated prob-
lem as follows:

argmin
x

α|y1|1 +β ∑
k
|y2(k)|1 +

λ

2
‖Ax−b‖2

2

sub ject to y1 = ∇wx, y2(k) =Ck(x)

(20)

where y1 ∈ RM , and y2(k) ∈ RM are auxiliary variables. The La-
grangian function can be written as below:

L (x,y1,y2,u1,u2) =
λ

2
‖Ax−b‖2

2 +α|y1|1 +
η

2
‖∇wx− y1 +u1‖2

2+

β ∑
k
|y2(k)|1 +

Γ

2 ∑
k
‖Ck(x)− y2(k)+u2(k)‖2

2

(21)

where u1 ∈ RM and u2(k) ∈ RM are the newly defined scaled dual
variables. The problem is solved by iterating over Eqs. (22-26)
below:

x(n+1) := argmin
x

L (x,y(n)1 ,y(n)2 ,u(n)1 ,u(n)2 ) (22)

y(n+1)
1 := argmin

y1

L (x(n+1),y1,u
(n)
1 ) (23)

y(n+1)
2 := argmin

y2

L (x(n+1),y2,u
(n)
2 ) (24)

u(n+1)
1 := u(n)1 +(∇wx(n+1)− y(n+1)

1 ) (25)

u(n+1)
2 := u(n)2 +(C(x(n+1))− y(n+1)

2 ) (26)

The optimal solution for the sub-problem by Eq. (22) requires
finding roots of its derivatives that leads to the following equa-
tions:

λAT Ax−λAT b+ηdivw(∇wx− y1 +u1)+

Γ(∑
k

P∗k Pkx+∑
k

P∗k (y2(k)−u2(k))) = 0 (27)

Minimization in Eqs. (23) and (24) can be attained by shrink-
age operators such as:

y(n+1)
1 := Shrink(∇wx(n+1)+u(n)1 ,ϑ1) (28)

y(n+1)
2 := Shrink(C(x(n+1))+u(n)2 ,ϑ2) (29)

where ϑ1 =
α

η
, ϑ2 =

β

Γ
and

Shrink(x,ξ )n = sign(xn) max{|xn|−ξ ,0} (30)

Results
We test the proposed CS-NLTV method on 256× 256 MRI

images of brain, chest, artery, and the cardiac image presented in
Fig. 2. Five high performance methods are chosen to be compared
to the proposed method, i.e., TVCMRI [8], RecPF [9], FCSA
[10], FNTV [12], and FNSISTRA [16]. The methods are stud-
ied with the random subsampling technique. We demonstrate re-
sults for the fixed number of iterations that is 50 iterations as the
methods under comparison reported on their performance with
this number as a stopping point and for four sampling ratios, i.e.,
15, 20, 25 and 30%.
Fig. 3 and 4 show SNR plots, where SNR= 10 log10

‖x‖2
2

‖x−xn‖2
2
, x is

the original image and xn represents the reconstructed image after
n interations. SNR values are measured for the above quantities
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of subsampling ratios, with random subsampling. As it follows
from the plots, the proposed CS-NLTV method has achieved a
better performance compared to its counterparts and specifically,
over a best among the reference methods that is by FNSISTRA.
This high performance of CS-NLTV is derived from nonlocal to-
tal variation which locates sharper edges and suppresses artifacts;
and it is due to the exceptional spatial localization and directional
selectivity of the curvelet sparsity.

Figure 2: Top: left to right: brain, chest, artery images. Bottom:
left to right: cardiac image and random variable subsampling.

Figure 3: Performance of methods with random variable subsam-
pling for cardiac and brain images.

Figure 4: Performance of methods with random variable subsam-
pling for artery and chest images.

Conclusion
In this paper, we have presented a new MRI compressed

sensing method, the CS-NLTV. The method utilizes curvelet spar-
sity and the nonlocal total variation to gain on directional sensi-
tivity and selective regularization at different levels. We have for-
mulated the optimization problem for the reconstruction process
and solved it originally, i.e., by combining alternating direction
method of multiplier, adaptive weighting, and splitting variables
technique. The method is able to reconstruct MR images with a
high quality, which is assessed visually and using the objective
quality metric. High SNRs yielded by the method quantify its
high performance. The conducted experiments and the analysis
of different reconstructed medical MRI datasets with a range of
sampling ratios have demonstrated a superior quality of recon-
struction by the proposed method in comparison to five high per-
formance reference methods, including the state-of-the-art FN-
SISTRA method.

References
[1] E. J. Cands, J. Romberg, and T. Tao, Robust uncertainty principles:

Exact signal reconstruction from highly incomplete frequency infor-
mation, IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489509, 2006.

[2] D. L. Donoho, Compressed sensing, IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 12891306, 2006.

[3] E. J. Cands, J. K. Romberg, and T. Tao, Stable signal recovery from
incomplete and inaccurate measurements, Comm. Pure Appl. Math.,
vol. 59, pp. 12071223, 2006.

[4] M. Lustig, D. Donoho, JM. Pauly, Sparse MRI: The application of
compressed sensing for rapid MR imaging. Magn Reson Med, 58,
No.6, 1182-1195. 2007

[5] M. Lustig, D. Donoho, J. M. Santos, and J. M. Pauly, A look at how
CS can improve on current imaging techniques, IEEE Signal Process.
Mag., vol. 25, no. 2, pp. 7282, Mar. 2008.

[6] E. Cands, J. Romberg, and T. Tao, Robust uncertainty principles: Ex-
act signal reconstruction from highly incomplete frequency informa-
tion, IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489509, Feb. 2006.

[7] B. K. Natarajan. Sparse approximate solutions to linear systems.
SIAM Journal on Computing, 24:227234, 1995.

[8] S. Ma, W. Yin , Y. Zhang, A. Chakraborty, An efficient algorithm
for compressed MR imaging using total variation and wavelets. In:
Proceedings of CVPR. 2008.

[9] J. Yang, Y. Zhang, and W. Yin, A fast alternating direction method
for TVL1-L2 signal reconstruction from partial Fourier data, IEEE J.
Select. Topics Signal Processsing, vol. 4, no. 2, pp. 288297, 2010.

[10] J. Huang, S. Zhang, and D. Metaxas, Efficient MR image recon-
struction for compressed MR imaging, Med. Image Anal., vol. 15,
no. 5, pp. 670679, 2011.

[11] Gopi V. P., Palanisamy P, Wahid KA, Babyn P, MR image recon-
struction based on iterative split Bregman algorithm and non-local
total variation, J Comput Math Method Med 2013:116, 2013.

[12] Gopi V. P., Palanisamy P, Wahid KA, Babyn P, MR image recon-
struction based on framelets and nonlocal total variation using split
Bregman method, Int Journal CARS, 9:459472, 2014.

[13] Osher S, Burger M, Goldfarb D, Xu J, Yin W, An iterative regular-
ization method for total variation-based image restoration. Multiscale
Model Simul 4:460489, 2005.

[14] W. Guo, J. Qin, and W. Yin, A new detail-preserving regularity
scheme, Rice CAAM, Tech. Rep. 13-01, 2013.

[15] A. Pour Yazdanpanah, E. E. Regentova, G. Bebis. Algebraic itera-

8
IS&T International Symposium on Electronic Imaging 2017

Image Processing: Algorithms and Systems XV



tive reconstruction-reprojection (AIRR) method for high performance
sparse-view CT reconstruction. Applied mathematics & information
sciences. Vol. 10, No. 6, 2016.

[16] S, Pejoski, V, Kafedziski, and D Gleich, Compressed Sensing MRI
Using Discrete Nonseparable Shearlet Transform and FISTA, IEEE
Signal Processing Letters, vol. 22, mo. 10, 2015.

[17] W.-Q. Lim, Nonseparable shearlet transform, IEEE Trans. Image
Process., vol. 22, no. 5, pp. 20562065, 2013.

[18] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding
algorithm for linear inverse problems, SIAM J. Imag. Sci., vol. 2, no.
1, pp. 183202, 2009.

[19] W. Hao, J. Li, X. Qu, and Z. Dong, Fast iterative contourlet thresh-
olding for compressed sensing MRI, Electron. Lett., vol. 49, no. 19,
pp. 12061208, 2013.

[20] L. He, T.-C. Chang, S. Osher, T. Fang, and P. Speier. MR image
reconstruction by using the iterative refinement method and nonlinear
inverse scale space methods. UCLA CAM Report, pp. 06-35, 2006.

[21] E. Cand‘es, M. Wakin, and S. Boyd. Enhancing sparsity by
reweighted L1 minimization. Preprint, 2007.

[22] A. Buades, B. Coll, J. M. Morel, A review of image denoising al-
gorithms, with a new one, Multiscale modeling & simulation, 4, pp.
490-530, 2005.

[23] G. Gilboa, and S. Osher, Nonlocal operators with applications to
image processing, Multiscale modeling and simulation, 7, pp. 1005-
1028, 2008.

[24] Goldstein T., Osher S., The split Bregman method for L1 regularized
problems. SIAM J. Imag. Sci. vol. 2, no. 2, pp. 323343, 2009.

[25] E. Cands, L. Demanet, D. Donoho, and L. Ying, Fast discrete
curvelet transforms, Multiscale Model. Simul., vol. 5, no. 3, pp.
861899, 2006.

[26] E. Cands and D. Donoho, New tight frames of curvelets and opti-
mal representations of objects with piecewise singularities, Commun.
Pure Appl. Math., vol. 57, no. 2, pp. 219266, 2004.

[27] A. Pour Yazdanpanah, E. E. Regentova, Sparse-view CT reconstruc-
tion using curvelet and TV-based regularization. Image Analysis and
Recognition, vol. 9730, pp. 672-677, 2016.

[28] Starck JL, Candes EJ, Donoho DL. The curvelet transform for image
denoising. IEEE Trans Image Process. vol. 11, no. 6, pp. 67084, 2002.

[29] Wu H., Maier A., Hornegger J., Iterative CT Reconstruction Us-
ing Curvelet-Based Regularization. Bildverarbeitung fr die Medizin,
2013.

[30] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Dis-
tributed optimization and statistical learning via the alternating di-
rection method of multipliers, Foundations and Trends in Machine
Learning, vol. 3, no. 1, pp. 1122, 2011.

IS&T International Symposium on Electronic Imaging 2017
Image Processing: Algorithms and Systems XV 9


