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Abstract 
Subjective testing has long been used to quantify user 

preference in the field of imaging. The majority of subjective 
testing is done to analyze still images, leaving the ever-growing 
field of video overlooked. With little work put into this area of 
study, not much is known about the preferential behavior of 
dynamic auto control functions such as automatic exposure (AE). 
In this study, we focus on subjective preferences for two aspects of 
video auto exposure convergence: convergence time and 
convergence curve type, with each tested individually. This 
experiment utilizes a novel framework for subjective testing, where 
a collection of videos are captured with simulated changes in light. 
This method allows for much more precise control of the capture 
device and constitutes better repeatability of experiments, as 
opposed to recording real changes. A paired comparison model is 
employed to conduct the subjective analysis of the videos. In a web 
application, two videos are played side by side with a slight delay 
and the user is asked to pick which video they prefer. Results from 
the experiments show that users prefer monotonic, gradual 
transition in AE, with no sharp or abrupt changes. Users also 
preferred transition times of 266-500 milliseconds. 

Introduction 
Many of the current efforts in understanding image 

quality have focused on still captures [1,2,3]. While consumers 
have more access than ever to many different video-recording 
devices, little is known about their preferences. Even for auto-
control functions such as auto-exposure (AE), which is 
inherently dynamic, image quality assessments are usually 
performed on the final, converged image, not for an entire 
video [4].  

Subjective tests fill the void where objective metrics alone 
often fail to capture important insights and findings [2]. 
Dynamic auto-control behavior is of particular interest as 
video recordings are getting more and more popular and many 
new challenging use cases such as those in drones and 
automotive markets are emerging.  

Video subjective evaluation is more complicated than its 
still counterpart. It is especially difficult to capture test videos 
with the environment controlled dynamically in a consistent 
way and to present videos in a way that allows subjects to 
evaluate two videos simultaneously [6].  

This paper presents a framework for evaluating subjective 
preference, which we have found useful for video AE 
evaluation. We employ paired-comparison approaches [9] over 
using the Mean Opinion Score because scale definition in Mean 
Opinion Score experiments can be ambiguous in that their 
interpretation could be dissimilar among subjects [5]. In the 
proposed paired-comparison, two videos are compared at a 
time in a web application, which permits simultaneous video 
viewing. 

The proposed framework also includes a method for test 
video generation, which uses simulated changes in light to 

provide more accurate and repeatable light level transitions. 
This can prove to be useful in the process of designing and 
developing AE algorithms or quality metrics. Developers, 
designers and engineers alike can benefit from the knowledge 
of how a certain metric fits in with human perception. For 
example, we would like to know whether people care about 
convergence speed, which speed is preferred, and whether the 
preferred speed depends on the magnitude of the illumination 
change. This method can capture test videos to exhibit the 
intended AE dynamic behaviors with a simulated approach. 

This paper also presents experimental results with the 
proposed framework to gain insights on user preference for 
dynamic convergence behavior of auto-exposure algorithms, 
especially on convergence curve type and convergence time. 

Procedure 
Test planning 

We first define research questions and identify test 
scenarios.  

Sometimes we need to answer one research question for 
multiple setups, just in case people’s preference could be 
different for different types of exposure changes. For example, 
preferred convergence time may be different depending on the 
magnitude or the direction of lighting change [6]. In this work, 
we propose four setups: Big Up, where the lux level starts at 
7,000 Lux and increases exposure by 0.35 stops, Big Down, 
where exposure starts at 100 Lux and decreases by 4 stops, 
Small Up, where exposure starts at 600 Lux and increases by 
0.15 stops and Small Down, where the exposure starts at 600 
Lux and drops by 1 stop. Here, Big or Small denotes the 
magnitude of lux change and Up or Down signifies the 
direction of the lux change. Note that we had to use smaller lux 
changes in upward transitions to avoid saturation of the 
camera’s sensor after the lighting change.  

 

Test video generation 

Figure 1: Example video capture setup. The camera, feedback sensors and 
lights are all controlled by the host machine. The sensors are used to calculate 
exposure of the scene and to ensure exposure and uniformity remains constant 
across the X-Rite ColorChecker. 
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Figure 2: An example plot of the real and simulated scene over time.  
The forced exposure error allows for simulated changes in light rather 
than having to modify the lights to the desired transition. This figure 
illustrates an accelerated convergence curve. 

Figure 3a & b: A (above) shows exposure over time calculated from the video 
analysis script. B (below) is an example of how exposure can be back 
calculated. Actual scene illuminance is plotted for reference. 

Before subjective analysis can begin, test videos are 
generated for comparison.  

Each video represents a certain AE dynamic behavior, 
such as a type of convergence curve or convergence time. More 
specifically, the AE behavior is in response to a step function in 
lighting. A step response is more convenient for algorithm 
development and evaluation because it has been well studied 
in control theory, and it is easy to translate it to engineering 
parameters such as convergence speed, acceleration, and jerk, 
which are related to the first, second, and third derivatives, 
respectively [11]. 

In this experiment, we use simulated lighting changes 
instead of real lighting changes for three reasons. First, it is 
difficult to find LED lights that can produce ideal, sharp step 
increases or decreases in light level. In our experiments, the 
transition took up to 100ms depending on the degree of lux 
change. Second, this simulation approach makes video 
generation more consistent by eliminating differences between 
test runs and lighting setups, which would happen if we use 
real lighting changes. Third, this methodology allows us to 
evaluate an arbitrary transition pattern, even if we have no 
idea how to build the control law that would produce such a 
response to a natural change in lighting. For example, 
oscillatory and sawtooth convergence, shown in Fig. 4, can be 
experimented with the use of simple override logics.  

An example of the physical setup used to record videos is 
shown in Fig. 1. The scene simply consists of an X-Rite 
ColorChecker in the center of the neutral background. The 
lights are positioned to uniformly illuminate the color checker. 
Lighting level can be controlled by a host machine. After the 
video is captured by a recording device, the video file, and the 

lux information recorded by the light sensors are transferred 
to the host machine. They are used to calculate exposure and 
exposure error as explained below in the video analysis section. 

Figure 2 illustrates how we simulated these lighting 
changes in more detail. In the real world, the lights are on and 
unchanged. Instead of a real change in lighting, we change 
exposure to force an error of known magnitude and direction 
on a single frame in the video stream through a modification in 
the camera driver. In this example, the change in exposure 
simulates an increase of light and produces instant 
overexposure. Then, the convergence curve which was 
programmed in advance will take over and converge to the 
proper exposure level. We tested several curve types (Linear, 
Accelerating, Decelerating, S-Shaped, Oscillatory, and Sawtooth) 
and several convergence times, as shown in Fig.4. 

Video Analysis 
To ensure the validity and accuracy of the simulated scene 

it is strongly recommended to double-check whether the 
exposure over time in the recorded videos are captured as 
intended. The video analysis tool takes in an input video and a 
text file that contains light sensor data and produces a plot of 
exposure and exposure error. 
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The analysis tool created with this framework calculates 
exposure error by comparing the known reflectances of the 
neutral patches (#20-23) on the X-Rite ColorChecker to the 
same patches in the captured test video. Patches 19 and 24 are 
omitted so any clipping present in the highlights or shadows 
will not affect the measurement. We then take the mean signal 
strength of the patches captured in the test video as the 
measured reflectance and compare it against the known 
reflectance of the same patches on the X-Rite ColorChecker, 
where the unit of exposure error is f-stop and the constant 2.2 
originates from gamma correction, as shown in Fig 3a. 

E𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙r =  𝟏
𝟐.𝟐

× log𝟐
𝒎𝒙𝒎𝒙𝒙𝒙𝒙𝒎 𝒙𝒙𝒓𝒓𝒙𝒓𝒓𝒎𝒓𝒓𝒙
𝒌𝒓𝒙𝒌𝒓 𝒙𝒙𝒓𝒓𝒙𝒓𝒓𝒎𝒓𝒓𝒙

  

Then, camera exposure can be back-calculated with: 
E𝒙𝒙𝒙𝒙𝒙𝒙𝒙 = 𝑴𝒙𝒎𝒙𝒙𝒙𝒙𝒎𝑴𝒙𝒙 × 𝟐−𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙  
 
In this way, we can plot the estimated exposure against 

the light intensity, as shown in Fig. 3b. 

Subjective comparison test 
For subjective comparison tests, we employ the paired 

comparison model where users are required to pick one video 
over another or state that they appear the same for every 
comparison [9]. 

The comparison tests are performed in a self-
administered way through a web application. We do not 
specify a viewing condition as the comparison is relative to just 
the two videos being displayed. The only condition required in 
this experiment is that the web application is used as a full 
screen, so the 50% gray background of the application fills the 

screen [10]. Before starting the tests, subjects are given 
instructions on the app as follows:  

“You are about to watch a sequence of super exciting 
videos! We will play two videos at a time, side by side. The one 
on the left will start slightly before the one on the right, so look 
at that one first. Each pair of videos will replay 3 times in a row. 
Tell us if you could tell the difference between the videos and 
which one you liked better. If you couldn't tell the difference, 
pick randomly! Once you make your choice, click submit and a 
new pair of videos will appear! 

In the videos that you are about to see, pay attention to 
how the lighting changes and how long it changes for. We want 
to know how to best transition from one lighting level to 
another. 

Ready?" 
 
The comparisons then start, as shown in Fig. 5. 

Figure 5: Example pair comparison from web application used in user study. 

Figure 4: Exposure error plots of all convergence curves used in the Big-up lighting scenario, where the camera is adapting to a light source that 
gets significantly brighter than its current state.  From top left to bottom right: Accelerated Convergence, convergence starts slow and quickens 
as the camera approaches its normal state; Decelerated Convergence, convergence starts with rapid change and slows as the camera 
approaches its proper exposure; Linear Convergence, rate of change remains constant over the entire convergence period; S- curve 
Convergence, changes is slower at the beginning and end with more rapid rate of change in the middle; Saw-tooth convergence, a stair step 
function which incrementally, and abruptly changes until convergence is reached; Oscillation Convergence, multiple iterations of decreasing 
over and under compensation to find the proper exposure. 
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Each comparison runs videos three times and the user can 

replay the videos additional times if necessary. There is also a 
1.5-second delay between the start of the two videos to allow 
the user to watch each transition separately, but still, make a 
direct comparison between the two. The time it takes for a user 
to choose between videos is recorded. This can be an indicator 
of how difficult the comparison was and helps identify possible 
random guesses, where the time to compare the videos is too 
short. 

Redundant comparisons are intentionally added, to 
determine whether the subject is paying attention or how 
skillful the subject is at comparisons. For each user, we showed 
one duplicate comparison in each set of videos [10]. Ideally, the 
subject should answer consistently to which video they 
preferred. Additionally, there is one comparison in which the 
same video is shown side-by-side, where the subject should 
answer “No” to the question “Are they different?”. This 
indicates that they can successfully identify videos.  

Randomization of sequences 
Video sequences are randomized at runtime so that every 

user is presented videos in a different order, removing any 
potential bias caused by a specific ordering of videos. When 
multiple groups of comparisons are performed as explained in 
test planning, video sequences will be grouped and played 
together, not interleaved. The order in which the groups are 
displayed are randomized as well. Within every group, every 
video is compared against every other video, which makes 
analysis much easier and provides more samples. Subjects are 
given a break after each group to prevent them from losing 
their concentration when the full set of tests is expected to take 
a relatively long time.  

Statistical analysis 
 The first step in analyzing the data is to determine the 

total wins and losses of each AE behavior. It is a simple task, 
but there are a couple of details that need to be decided on. 
First, we have three choices to handle with redundant tests: 

1. Redundant test results are not factored into the final 
count. The drawback is that this would not exploit all 
the comparison data.  

2. Results are calculated with redundant scores and 
each of the tests carries the same weight. The 
drawback is that the comparison which has a 
redundant test has twice the weight as the others. 

3. Results are calculated both with and without 
redundant scores, but the weight for the redundant 
tests is reduced to half each.  

We settled on option 3 because it doesn’t penalize two 
matching redundant trials but can also represent a split in user 
preference. If a user switches their answer in redundant 
response it shows that there isn’t a clear, definitive preference 
and the scoring should reflect that. 

 Secondly, there are two choices on how to handle tests in 
which the user could not tell the difference between the two 
videos: 

1. They are not counted in the total tally. 
2. They are counted in the total tally. 
We settled on option 1 so the results would not be skewed 

by any false positive results. Once the tally is calculated, we 
apply statistical analysis [7,8]. The final score reported is a z-
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Figure 6: Results plots of Small lighting categories from Round 1 of 
convergence curve tests.   
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Figure 7: Result plots of Big lighting categories from Round 1 of convergence 
curve tests.   
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score, which is a statistic normalized by mean and standard 
deviation: 

 𝒁𝑺𝒓𝒙𝒙𝒙 = 𝑿−𝑴𝒙𝒎𝒓
𝑺𝒓𝒎𝒓𝒎𝒎𝒙𝒎 𝑫𝒙𝑫𝑫𝒎𝒓𝑫𝒙𝒓 

 

To get a total z-score for each configuration we first 
calculate a z-score based on the number of wins in each pair 
and then sum all the z-scores for that configuration. The z-
score plus/minus 1.96 are marked in the plots as its confidence 
interval of 95%. 

Results 
To get insights on user preferences for auto-exposure 

dynamic behavior we applied the test framework outlined 
above. We focused on two aspects of AE behavior: convergence 
curve type and convergence time. 

This user study aimed to use a diverse selection of users to 
best represent many different types of consumers and markets 
[10]. A total of 35 users participated in this experiment, some 
of which were software engineers, image quality and tuning 
experts, videographers, both professional and amateur, and 
average consumers with little knowledge of cameras and their 
workings.  

Transition curve type 
There are multiple ways to converge from a certain AE 

state to another and the research question in this experiment 
was whether curve types are important to human perception 
and if so, which are preferred.  

In the first round, six curve types were tested: accelerating, 
decelerating, linear, S-curve, oscillatory, and sawtooth, 
illustrated in Fig 4 for Big-up case. Here we tested with all four 
types of lighting conditions to see if there are different 
preferences for different lighting scenarios (Big-up, Big-down, 
Small-up, Small-down).  

The results showed that users did not prefer non-smooth 
transitions between light levels. Sawtooth and oscillatory 
transitions scored significantly lower than the rest of the 
transitions which were all smooth continuous curves. This 
trend persists in both small and big changes, as seen in Fig. 6 
and Fig. 7 respectively.  

In an attempt to clarify the results, we performed another 
round of testing where the less preferential, non-smooth 
transitions were removed. This aimed to create a larger 
distinction of preference between the top four transition 
curves: Accel, Decel, Linear, and S-curve. We also focused on 
large lux transitions and large convergence time, presuming 
that it would help convergence curves to be more 
distinguishable. 

As shown in Fig. 8, a decelerated transition curve 
remained preferential for the Big-down lighting. On the other 
hand, an accelerated convergence curve was the most 
preferred for Big-up lighting. However, it would be difficult to 
draw a definite conclusion for the following three reasons:  

1. This result was different from the previous round in 
Fig. 7, where the decelerated transition curve was 
preferred by users for both the Big-up and Big-down 
categories. 

2. The rankings were not consistent across Rounds and 
settings, as shown in Figs 6 and 7. 
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Figure 9:  Plots of transition time in Big and Small Lighting Scenarios.   
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Figure 8: Result plots of from Round 2 of convergence curve tests.   
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3. None of the results rejected null hypothesis that the 
z-scores of Accel and Decel are the same. 

Transition time 
Preferences of transition times were also tested for both 

upward and downward transitions. Six different convergence 
times were tested where time is measured in number of frames: 
2, 4, 8, 15, 25 and 35 frames with a frame rate of 30 frames per 
second. The tests were repeated for both Big and Small 
changes to investigate whether the magnitude of the light 
changes affects users’ preference on transition time. 

Figure 9 shows the results for transition time experiments. 
We averaged the z-scores for each of the Big and Small changes 
because the direction of lighting conditions appeared not to 
make meaningful differences. All four lighting scenarios 
yielded similar trends, which were all centered around the 
same range of values. Generally, users preferred convergence 
times of 8-15 frames, which corresponds 266 -500 
milliseconds. Users increasingly disliked trends that were 
longer or shorter than this range.  

 The magnitude of lighting changes had a slight effect: 
users preference slightly peaked at an 8 frame (266ms) 
transition for smaller light level transitions and a slight 
preference peaked at 15 frames (500ms) in larger transitions. 
However, when looking at the average number of wins for 
transition time, user preference was close to 17 frame or 
560ms for both Big and Small changes. This was calculated 
considering total number of wins (before z-normalization) and 
compensating for the different intervals between frame rates.  

Conclusions and Discussions 
In order to investigate the user’s preference towards the 

dynamic behavior of a camera’s auto-exposure within changing 
light conditions, this study proposed a novel subjective testing 
framework. This included the use of simulated light changes, 
which was used to generate test videos with very precise 
control and a web viewer that allows for simultaneous viewing 
and comparison of the two videos. A paired comparison 
evaluation is used to compare the subjective results of 
different types of convergent curves and rates.  

Experiments with this framework revealed some insights 
on subjective preferences on auto-exposure dynamic behavior. 
Users strongly disliked non-smooth, non-monotonic 
convergence curves; oscillatory curve and sawtooth curves 
consistently scored very low. Among the monotonic smooth 
convergence curves, some preference was observed. However, 
these preferences were all within the statistical variation range.  

Users preferred transitions that took between 8 and 15 
frames at 30 fps or 266 -500 milliseconds. While the direction 
of the change did not matter, the magnitude of change had a 
slight effect. Users prefered the slightly shorter 8 frame 
transition for smaller changes in light and the slightly longer 
15 frame transition for larger changes. The average number of 
wins for each time, adjusted for the framerate interval, shows 
that users preferred a transition of about 17 frames for all 
lighting conditions. 

The proposed test framework allowed for easy subjective 
testing of videos. The auto-exposure experiments in this paper 
are one of the many uses for this framework. The framework is 
left open ended so any videos can be placed in it, allowing for 
testing of other various auto control functions. This can include 

auto white balance, preferences in local tone mapping of 
videos, and noise reduction algorithms. 
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