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Abstract
In our previous work [1,2], we presented a block-based tech-

nique to analyze printed page uniformity both visually and metri-
cally. In this paper, we introduce a new sets of tools for feature
ranking and selection. The features learned from the models are
then employed in a Support Vector Machine (SVM) framework to
classify the pages into one of the two categories of acceptable and
unacceptable quality. We utilize three methods in feature ranking
including F-score, Linear-SVM weight, and Forward Search. The
first two methods are filter methods while the last is categorized as
a wrapper approach. We use the result from the wrapper method
and information from the filter methods as confidence scores in
our feature selection framework

Feature Selection
Feature selection [3, 4, 6] or feature ranking plays an im-

portant role in machine learning [5, 7]. The question always be-
ing asked is which features are actually relevant to classification.
Does having as many features as possible improve the accuracy?
It turns out that it doesn’t. In fact, only a number of features are
crucial to classification while the others may have a negative im-
pact. The accuracy will start decreasing after a certain amount of
features have been added. Not to mention more features means
adding more computation cost and data acquisition. In addition,
it increases the chance of overfitting. The selection of relevant
features also means reducing dimensionality and facilitating data
visualization, data understanding and interpretation.

There are three primary approaches [3, 9, 10] in feature se-
lection: filter approach, wrapper approach, and embedded ap-
proach. Filter approach uses statistical method to filter out the low
score features before classification. As a preprocessing method, it
doesn’t incorporate learning process [9] and it is finished before
stepping into classification. Its drawback is ignoring feature de-
pendencies. Wrapper methods [5, 11] combine feature selection
and pattern classification in finding features which are evaluated
based on classification results. The evaluation process uses ac-
curacy as a metric to select the subset of features that achieve
the least error rate. Wrapper methods typically involve cross-
validation during its evaluation process. The last approach is
embedded methods, which select features during the process of
building the model. The process of learning and selecting features
are incorporated. Embedded approach is less computationally ex-
pensive and less prone to overfitting than wrapper methods [4].

In this section, we review three methods in feature ranking
including F-score, Linear-SVM weight, and Forward Search. The
first two methods are filter methods while the third belongs to

wrapper approach. We use the result from the wrapper method
and information from the filter methods as confident scores in our
feature selection framework.

F-score
F-score [12,13] is a simple method to compute the separation

between two different classes. It belongs to the filter approach.
The score is the ratio of between-class variance divided by within-
class variance. The idea of F-score bears a great resemblance to
the idea of the very well-known thesholding method: the Otsu’s
method [14]. Given two classes (+) and (−) with n+ data points
of the positive class and n− data points of the negative class, F-
score is computed as follows:
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j = 1,2, ...,P

where x̄ j, x̄(+)
j , x̄(−)j denote the average of feature j of the entire

data, positive data and negative data respectively; x(+)
k, j is the kth

positive data of the jth feature , and x(−)k, j is the kth negative data

of the jth feature, P is the number of features.
From eqn. (1), the numerator denotes the variability between

two classes while the denominator shows the within-class vari-
ability. In order words, F-score is the metric of separation be-
tween classes:

F( j) =
between-class variance of feature j

within-class variance of feature j
(2)

As simple as its formulation may seem, F-score, however,
contains a serious drawback when it comes to mutual informa-
tion among features. In [15], the author used an example to show
the case where F-scores of each single feature is low but the a
combination of the two shows a great separation between the two
classes. In this case, F-score fails to reveal the information among
features. Figure 1 shows an example of two features whose F-
scores are low. The features, however, are appropriate for classifi-
cation since F-scores fail to reveal mutual information among the
two features. It turns out that a feature with a low F-score doesn’t
necessarily mean an inappropriate feature for classification. This
is an important characteristic that one needs to pay attention to
when using F-score as a tool in feature ranking.
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Figure 1. An example of two low F-scores corresponding to two features

[15]. In spite of the scores, the features are excellent for classification. F-

scores, in this case, fail to reveal mutual information between features.

Despite its drawback, F-score is still very widely used in
practice due to its simplicity. F-score can be calculated in solely
two loops. The inner loop contains the calculations of F-score
for each feature, which include the means of the two classes, the
mean of the entire data, and stddevs of the two classes. The outer
loop is to run the entire features of our model. In a typical sce-
nario, features with lowest scores will be dropped in an adaptive
thresholding i.e. the selection of F-score thresholding is based on
the error rate once the features have been dropped. The threshold
results in the least error rate will be accepted. We use F-score as
a confidence measure in comparison with other methods of fea-
ture ranking. F-score itself doesn’t suffice in a feature selection
framework.

We have 176 features in our entire data set of 347 sample
pages [1, 2]. We first linearly scale each feature j separately to
[0÷1] using the the formula:

f scaled
i ( j) =

fi( j)−m j

M j−m j
, i = 1,2, ....,n; j = 1,2, ..,P (3)

where

M j = max{ fi( j)}n
i=1 and m j = min{ fi( j)}n

i=1

n is the number of the entire data instances i.e. n = n++n−
P is the number of features.

The linear scaling serves two purposes. First, it helps make
data compact and the visualization (if applicable) efficient. Sec-
ond, it makes the selection of sigma in our Radial Basis Kernel or
Gaussian kernel in SVM more efficient. After the linear scaling,
we compute F-score for each feature using our training dataset in
eqn. (1). We then normalize F-scores using the following equa-
tions:

Fscaled( j) =
F( j)−m

M−m
, j = 1,2, ..,P (4)

where

M = max{F( j)}P
j=1 and m = min{F( j)}P

j=1

P is the number of features.
The results of F-score and its normalization are shown in Fig.

2 and Fig. 3. The highest scores are listed in Table . Table 4 shows
full meaning of feature expressions.

Figure 2. F-score of 176 features.

Linear Support Vector Machine Weight
Support Vector Machine (SVM) [16] is a popular method

in machine learning. It is considered one of the best-known
techniques in a binary classification [17]. SVM uses linear or
non-linear kernels to construct linear or non-linear discriminant
boundary. The idea of using SVM as a means to ranking features
has been well investigated in different references [18, 19]. In or-
der to find weights of each feature, a linear SVM is used to find
the vector w:

w = (w1, w2, ..., wP)

where P is number of features. The rank of each feature j is mea-
sured by its absolute value of w j.

Rank of feature j = |w j|

The intuition behind this method lies in the classification
of SVM. In the solution of linear SVM, an instance xi, i =
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Figure 3. Normalized F-score of 176 features.

{1,2, ...,n} is classified according to the sign of the equation:

y(x) = w ·x+b (5)

w =
n

∑
i=1

αiyixi (6)

yi = {+1,−1} and b is bias

xi’s with αi 6= 0 are support vectors. In fact, only support
vectors contribute to creating decision boundary while the rest
(with αi = 0) do not. When y(x) > 0, x is classified to the (+)
class. Otherwise, it belongs to the (-) class. It is noticed from
eqn. (6) that only support vectors contribute to formulate w. Each
support vector is RP. Equation (5) apparently reveals w∈RP con-
tributes to decision making. The features whose |w j| is small does
not contribute significantly to the classification (eqn. 5); whereas
the features with greater value of |w j| will play an important role
in the final classification. In other words, features with greater
|w j| are more dominant features and considered relevant features
while those with lighter |w j| are irrelevant and can be removed in
feature selection. This theory seems very intuitive [18] and can
be used as a preprocessing method in feature ranking. In reality,

30 highest F-scores and normalized F-scores (nFscore) of all
the features.

Fscore nFscore Feature
0.5281 1 ’stddevDDL’
0.4193 0.7939 ’stddevMDL’
0.3683 0.6974 ’maxLevel DDLccp’
0.3683 0.6974 ’2ndmaxLevel DDLccp’
0.3650 0.6911 ’maxDDL’
0.3489 0.6606 ’maxMDL’
0.3354 0.6351 ’max MDLccp’
0.3159 0.5981 ’maxLevel MDLccp’
0.3159 0.5981 ’2ndmaxLevel MDLccp’
0.3144 0.5953 ’max DDLccp’
0.2919 0.5527 ’stddev MDLccp’
0.2541 0.4811 ’maxLevel MDEccp’
0.2541 0.4811 ’2ndmaxLevel MDEccp’
0.2389 0.4523 ’mean DDLccp’
0.2118 0.4010 ’mean MDLccp’
0.2107 0.3989 ’min MDEccp’
0.2046 0.3874 ’min DDLccp’
0.1911 0.3618 ’maxSize DDLccp’
0.1891 0.3580 ’mean MDEccp’
0.1832 0.3469 ’maxSize MDLccp’
0.1749 0.3311 ’min MDLccp’
0.1696 0.3211 ’mean plus Lccp’
0.1685 0.3190 ’meanDDL’
0.1604 0.3037 ’max plus Lccp’
0.1595 0.3020 ’maxLevel DDEccp’
0.1595 0.3020 ’2ndmaxLevel DDEccp’
0.1543 0.2921 ’meanMDL’
0.1518 0.2874 ’stddev DDLccp’
0.1513 0.2864 ’2ndmaxLevel plus Lccp’
0.1511 0.2861 ’min plus Lccp’

features with |w j| greater than some threshold value are retained.
The threshold is set by the sparsity criteria [18].

In many references [18–20], linear-SVM is used to rank fea-
tures. Although the usage of non-linear SVM is doable, the re-
sult of the usage is questionable. For instance, from the current
space of x = (x1,x2), a non-linear SVM is used to map to a higher
dimensional space x’ =

(
x1,x2,x1× x2,x2

1 + x2
)
. The question is

whether the weights of x1×x2 or x2
1+x2 serve to acknowledge the

weights of the original features i.e. x1 and x2. The answer is not.
That’s the reason why in most literature [18–20], a linear-SVM is
widely utilized to find weights of features in filter approach.

In many any applications, an SVM Recursive Feature Elimi-
nation (SVM RFE) [21] is often discussed. This method works in
the same manner of Linear-SVM weight except it is manipulated
in many iterations. At the completion of each iteration, a feature
is dropped if the value of its |w j| is the minimum among all the
remaining features’ |w j|. The number of iterations (equivalent to
the number of desired features) is specified by user. In fact, the
number of features dropped in each iteration is also user-specified.

Figure 4 show the results of linear-SVM weights and its nor-
malized values, in which C = 5 is chosen. In fact, a change in
C will not impact |w j| too much. C is tested with different val-
ues but the results look quite similar. In [21], C = 100 is rec-
ommended. The corresponding values of the 30 highest weights
are provided in Table . As a comparison with F-score ranking,
there exist 13 common features among the 30 highest weights
from the two methods of using F-score and linear-SVM weights.
Apparently, the two methods yield different results with differ-
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ent weights. However, a consistency of weights of a few features
can be seen such as stddevDDL, stddevMDL, maxMDL, maxDDL.
Obviously, some information from the two preprocessing meth-
ods (F-score and Linear-SVM weight) can be applicable in feature
ranking and incorporated into the next method (Forward Search)
which is discussed in the section to follow.

Figure 4. Normalized linear-SVM weight.

Forward Search
One of the core drawbacks of filter methods is the lack of tak-

ing feature correlation or feature dependency into account. One
solution is to measure a group of features at a time through ex-
haustive search. This method, however, involves exhaustive com-
putation due to the possible combinations of features i.e. 2N com-
binations where N is the number of features. It is therefore barely
employed in practice. A feasible solution is Forward Search and
Backward Elimination which offer a good balance between com-
putational cost and accuracy. The methods are also called consec-
utive search methods [22].

Forward search or Sequential Forward Search (SFS) [23] is
a well-known method in feature selection. The feature subset of
added features is initially empty. At each iteration, a single fea-
ture is added to the set. This feature is the one whose presence in

30 highest linear-SVM weights (LSVMW) and its normalized
weights (nLSVMW) of all the features.

LSVMW nLSVMW Feature
2.1885 1 ’stddevDDL’
1.5412 0.7042 ’stddevMDL’
1.4996 0.6852 ’stddevDDE’
1.4831 0.6776 ’stddev MDLccp’
0.7562 0.3455 ’maxMDL’
0.6124 0.2798 ’maxLevel plus Bccp’
0.5991 0.2737 ’maxSize minus Lccp’
0.5801 0.2650 ’maxDDL’
0.5734 0.2620 ’2ndmaxLevel plus Lccp’
0.5443 0.2487 ’min plus Accp’
0.5422 0.2477 ’maxSize plus Lccp’
0.5305 0.2424 ’max MDLccp’
0.5045 0.2305 ’stddevMDE’
0.4981 0.2275 ’second minLevel minus Lccp’
0.4977 0.2274 ’min DDLccp’
0.4917 0.2246 ’min plus Bccp’
0.4763 0.2176 ’min MDEccp’
0.3751 0.1713 ’min plus Lccp’
0.3668 0.1676 ’stddev MDEccp’
0.3566 0.1629 ’stddevA’
0.3547 0.1620 ’maxLevel plus Lccp’
0.3213 0.1468 ’maxLevel DDEccp’
0.3213 0.1468 ’2ndmaxLevel DDEccp’
0.3200 0.1462 ’min DDEccp’
0.3190 0.1457 ’second minLevelminus DDLccp’
0.2930 0.1338 ’maxDDE’
0.2916 0.1332 ’mean MDLccp’
0.2830 0.1293 ’min plus SDEccp’
0.2808 0.1283 ’min minus Bccp’
0.2740 0.1251 ’max minus Lccp’

the set will yield the most accuracy increase among all the yet-to-
be-added features. The process is evaluated in a cross-validation.
In [23], Mao incorporated Gram–Schmidt orthogonal transform
into SFS and each feature can be then evaluated independently.
One characteristic of Forward Search is that once a feature is
added to the feature subset, it will not be removed later. This is
actually a drawback of Forward Search since it makes it unable to
correct any error it may have created in earlier iterations. Contrary
to Forward Search, Backward Elimination starts with a full set of
features [24]. At each stage, a single feature is dropped such that
its disappearance will cause the least accuracy drop. Backward
Elimination isn’t feasible when the number of features is huge. In
fact, the number of retained features isn’t huge in practice. Plus,
the evaluation through cross-validation is computationally expen-
sive and inefficient in Backward Elimination when the number of
features is large. Zhang used a method called ”Adaptive Forward-
Backward Greedy Algorithm” in [25] to fix the problem. At every
step of forward search, a backward elimination is conducted to
remove the least relevant features in the feature subset. By doing
backward elimination, error of adding irrelevant features in previ-
ous steps can be excluded during the forward search process. In
spite of its error correction functionality, this method is compu-
tationally expensive due to the backward process when the num-
ber of added features becomes bigger. In this paper, we conduct
Forward Search in a number of times with different randomized
order of the data. We will then inspect those features with high
frequency of appearance for feature ranking.
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SVM Forward Search Algorithm for Feature
Selection

1. Model Selection
C (in non-linearly separable SVM) and σ (in RBF kernel)
need to be assigned specific values before conducting For-
ward Search. C and σ are chosen in an exhaustive search
in a RBF-SVM with a 5-fold cross validation utilizing full
set of features. Again, our data consists of 347 pages each
of which has 176 features. Each test page has been graded
by a print quality expert (golden eye) and is classified into
one of four categories: A (good PQ – pass), B (fairly good
PQ – pass), C (bad PQ – fail), and D (very bad PQ –
fail). This is our ground truth. In fact, we only take pass
and fail into consideration which means a binary classifi-
cation. We randomize data, and split it into training and
testing set in a 5-fold cross validation. We use 4 folds for
training and the remaining fold for testing. Selected C and
σ are the ones that yield the best average accuracy (in a
5-fold cross-validation) though exhaustive search of C =
[0.1,0.2, ...,1,2, ...,10,20, ...,100,200, ...,10,000] and σ =
[.01, .02, ...,1]. Due to linear data scaling to [0÷1], restrict-
ing the search for σ in [.01, .02, ...,1] is rational. A refined
search for C is also conducted in the proximity of the newly
found C. When C and σ are selected, their values remain
unchanged during feature selection. Figure 5 shows the re-
sult of our analysis. C = 0.2 and σ = .83 are chosen at the
best accuracy of 77%.

2. Repeat 7 times with different random generators

• Split data into training and testing set into 5 folds. Use
4 folds for training and the remaining fold for testing

• Initially set feature subset S = /0
• Add a feature to S such that the average accuracy in

a 5-fold cross-validation is the maximum in a SVM
classification (best average accuracy)

• Stop when accuracy doesn’t improve or start falling or
when the number of features approaches a predefined
cutoff

3. Find the mean and stddev of accuracy according to the num-
ber of added features

4. Rank features according to their frequency and median or-
der of occurrences in Forward Search. For instance, fea-
ture i appears 7 out of 7 times and its orders are A =
{1,1,4,2,3,4,4}. It will be placed in the top positions of
most frequently appeared features (7 out of 7) and then
ranked based upon its relative order of appearances ( =
median(A) = 3) when it is compared with features of the
same number of occurrences. Select features until accuracy
starts dropping

Figure 6(a) shows the performance of Forward Search in 7
trials. As can be seen, the accuracy attains its maximum around
.85 when the number of added features in approximately 20. Af-
terwards, the accuracy starts declining gradually. Figure 6(b)
shows the mean and mean plus/minus stddev of all the curves in
Fig. 6(a). Apparently, the two figures provide information about
the number of features that is sufficient to achieve the best result
in classification.

We next need information about the highest ranked features.
Using results of 7 trials of Forward Search, we then:

1. record the order of each feature’s occurrence in the feature
subset

2. count the number of occurrence in 7 trials
3. find the median order of all occurrences each feature
4. rank feature according to their number of occurrence (first

priority) and then their median order of all occurrences (sec-
ond priority)

Figure 7 and 8 demonstrate the results of our analysis in raw
data and normalized data (using eqn. (3)) in Forward Search. In-
formation about F-score and Linear-SVM weights is also incorpo-
rated. Horizontal axes are features ranked according to their num-
ber of occurrence (first priority) and then their median order of all
occurrences (second priority) (from left to right: highest to lowest
rank). As can be seen, features with highest F-scores and Linear-
SVM weights appear in the first orders. Also, a few features with
low scores still occur i.e. emphasizing the drawback of the filter
methods (F-score and Linear-SVM weight). Table provides the
details of all the data of Fig. 7 and Fig. 8. It is noticeable that
feature #4 have the best scores of F-score and Linear-SVM weight
but it is ranked 4th in Forward Search, while feature #1 has sec-
ond best in F-score and Linear-SVM weight. Undoubtedly, these
two features are among the most important features in the feature
set. Highly ranked features will be employed in specific applica-
tion [8].

Figure 5. Receiver Operating Characteristic (ROC) curve to search for C,

σ in RBF-SVM for best accuracy using full set of features. The values of C,

σ are then kept unchanged during Forward Search.

Conclusion
This paper discusses feature ranking and selection in differ-

ent methods. In filter methods, we explained how to use F-score
and linear-SVM weight. Though filter methods are easy to imple-
ment, their main drawback is the inability to reveal mutual infor-
mation among features. The other mentioned method is wrapper
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27 highest ranked features according to their number of occurrence and their median order of occurrence in 7 trials in Forward
Search

# Feature #Occur Fscore LSVMW nFscore nLSVMW
1 ’stddevMDL’ 7/7 0.4193 1.5412 0.7939 0.7042
2 ’maxLevel MDLccp’ 7/7 0.3159 0.0823 0.5981 0.0376
3 ’stddev MDLccp’ 7/7 0.2919 1.4831 0.5527 0.6776
4 ’stddevDDL’ 7/7 0.5281 2.1885 1 1
5 ’meanL’ 7/7 0.0261 0.1406 0.0494 0.0642
6 ’maxL’ 7/7 0.0114 0.0749 0.0215 0.0342
7 ’maxMDE’ 7/7 0.1263 0.0358 0.2391 0.0163
8 ’stddev minus Lccp’ 7/7 0.0689 0.2639 0.1304 0.1205
9 ’stddev plus Accp’ 7/7 0.0157 0.0852 0.0297 0.0389
10 ’meanMDE’ 7/7 0.0856 0.1571 0.1620 0.0717
11 ’stddevMDE’ 7/7 0.1081 0.5045 0.2046 0.2305
12 ’meanDDE’ 7/7 0.0792 0.0589 0.1499 0.0269
13 ’max MDEccp’ 7/7 0.1169 0.1143 0.2213 0.0522
14 ’stddev minus SDEccp’ 6/7 0.0499 0.1887 0.0944 0.0862
15 ’max plus Accp’ 6/7 0.0160 0.2191 0.0302 0.1001
16 ’min minus Lccp’ 6/7 0.1000 0.1956 0.1893 0.0893
17 ’maxDDE’ 6/7 0.1172 0.2930 0.2219 0.1338
18 ’maxSize plus DDLccp’ 5/7 0.0238 0.1317 0.0450 0.0601
19 ’stddev minus Bccp’ 5/7 0.0367 0.1991 0.0694 0.0909
20 ’stddev MDEccp’ 5/7 0.0666 0.3668 0.1261 0.1676
21 ’mean MDLccp’ 4/7 0.2118 0.2916 0.4010 0.1332
22 ’meanMDL’ 4/7 0.1543 0.0687 0.2921 0.0313
23 ’max DDEccp’ 4/7 0.1077 0.2210 0.2039 0.1009
24 ’min MDLccp’ 4/7 0.1749 0.2341 0.3311 0.1069
25 ’min minus SDEccp’ 4/7 0.0515 0.1933 0.0975 0.0883
26 ’maxSize plus Bccp’ 4/7 0.0488 0.1666 0.0924 0.0761
27 ’stddevDDE’ 4/7 0.1488 1.4996 0.2817 0.6852

Abbreviations of features in Figures. 2, 3, 4, 7, 8 and in the tables

Expression Meaning
stddev standard deviation
ccp connected component
max maximum value
min minimum value
maxSize maximum size in connected component map
maxLevel highest level in connected component map
2ndmaxLevel second highest level in connected component map
plus positive part in uniformity maps
minus negative part in uniformity maps
n normalized
nFscore normalized F-score
LSVMW Linear Support Vector Machine Weight
nLSVMW normalized Linear Support Vector Machine Weight

method, which is shown to make up for this drawback. Wrap-
per methods combine feature selection and pattern classification
in finding features which are evaluated based on classification re-
sults. The evaluation process uses accuracy as a metric to select
the subset of features with the least error rate. One of the wrapper
methods used to rank features is Forward Search. We explained
how Forward Search worked and implemented the method in 7
trials with different randomized orders of the data set. In each
trial, we used 5-fold cross validation in each step of adding a
new feature to the feature subset. The added feature is the one
that yields the highest average accuracy in a 5-fold cross valida-
tion. We repeated the process 7 times with 7 different random-
ized orders. Due to the different results of subsets (in 7 trials),

we ranked features according to their number of occurrence and
their median order in 7 trials. Finally, we demonstrated our re-
sult of Forward Search incorporated with features’ F-scores and
linear-SVM weights. Highly ranked features are then used in the
construction of a significantly better Receiver Operating Charac-
teristic (ROC) curves when compared with using all features [8]
in our application.
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