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Abstract
Dust in the scanner may cause vertical streaks in the scanned

image since it reflects some part of the incident light. In this paper,
we propose a method for detecting streaks in the scanned images
that are a direct result of dust on the scanner glass. This lets
customers resolve the issue without calling the maintenance. The
solution includes denoising, conversion to opponent color space,
calculation of ∆E ′, calculation of features, and classification. We
denoise the image in order to remove halftones in case the image
was halftoned. Opponent color space lets us look separately at lu-
minance channel and chrominance channels. We have developed
three features that use the data in luminance and chrominance
channels. Eventually, we will use these features to detect streaks,
and distinguish them from content.

1. Introduction
Sheet-fed scanners allow customers to obtain scans of stacks

of pages a lot faster and with less interaction compared to flatbed
scanner. In sheet-fed scanners the page is fed automatically while
the scan head remains stationary. Dust, that sticks to the scan
head glass, causes vertical streaks in the scanned image, which
are not part of the original paper. An example of an image with
dust streak obtained using sheet-fed scanner is shown in Fig. 1.
Figure 2 shows a zoom of the region of the image with dust streak.

This work builds on recent image quality work focused on
printer and scanner products that was conducted in our labora-
tory, and which addressed assessment of page non-uniformity [1]-
[6], fine-pitching banding [7]-[11], ghosting [12], local defects
[13],[14], fading [15],[16], scanner MTF [17], and scanner mo-
tion quality [18].

Rosario et al. proposed an algorithm for detecting streaks
in printed images [19]. However, they assume that the scanned
image does not have content on it. In our case, we are designing
an algorithm to work on any image.

Given part of the image, some of the dust streaks are very
hard to distinguish from the content streaks. People can connect
image components and figure out whether the streak was caused
by dust or was intended to be in the image. There are research
studies that perform object mapping for an image. However, these
algorithms have high complexity and cannot be adopted to the
hardware implementation. Therefore, currently the dust identifi-
cation makes errors in prediction.

We categorize these errors into two types: misses and false
alarms. Miss occurs when the detection algorithm does not find a
real streak caused by dust. False alarm occurs when the detection
algorithm finds a streak, which was not caused by dust. The aim
is to have a small number of false alarms while detecting most of
the real dust streaks.

Figure 1. Scan of an image with dust streak

In this paper1, we propose a solution to finding vertical
streaks in the image that were caused by dust in the scanner. Next
sections will cover the proposed procedure, the results and con-
clusion.

2. Procedure
2.1. Preprocessing

We start with a scanned image that is stored in linear RGB
color space. If the image is gamma corrected, then gamma uncor-
rection is done first, and followed by the procedure below.

First, the image is converted from RGB color space to CIE
L*a*b* color space. CIE L*a*b* is an opponent color space that
stores luminance and chrominance in separate channels. After
conversion, we need to apply a descreening algorithm to remove
halftones. Since dust causes only vertical streaks in the scanned
image, a one-dimensional vertical Gaussian filter of size 9 and
σ = 3 was used for descreening. Figure 3a shows an original
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Figure 2. Crop of an image with dust streak

image and Fig.3b shows a descreened image. Here is the equation
for descreening:

g(x,y,c) =
4

∑
k=−4

f (x,y+ k,c)gaus(k), (1)

where f (x,y,c) is an input image in L*a*b*, gaus(k) is a gaussian
window of size 9, and g(x,y,c) is a descreened image.

The next step is to obtain a two-dimensional ∆E ′. ∆E ′ is a
measure of how different a given pixel is from neighbor pixels
in the horizontal direction. We used median function to find the
representative of the local window, which is our baseline. We
then subtract the baseline from the image to compute ∆E ′. The
baseline and ∆E ′ are defined in Eqs. 2 and 3. Most of the streaks
caused by dust are very narrow, 1 to 3 pixels wide. We used only
luminance (L∗) channel for computing ∆E ′ because it contains
most of the information about the content of the image. Also, dust
streaks are usually light or dark shade of the neighboring pixels.

baseline(x,y,c) = median(g(x−5,y,c), ...,g(x+5,y,c)) (2)

∆E ′(x,y) = g(x,y,L∗)−baseline(x,y,L∗) (3)

Next, the image is split into vertical column strips with width
w = 13 pixels and an overlap o = 6 pixels. Splitting the image
into column strips allows us to look at small local changes in ∆E ′.
Column strip size of 13 pixels lets us process the image quickly
while still being able to find local distortions. An example of a
column strip row is given in Fig. 4.

(a) Original image (b) Descreened image (c) Descreened image
with annotatiions

Figure 3. Crop of an image on Fig. 1

2.2. Features
The next step is the extraction of features. We have devel-

oped 3 features that enable us distinguish dust streaks from con-
tent.

2.2.1. Feature 1. Locally averaged peak location deriva-
tive magnitude (PLD)

This feature looks for vertical lines and streaks in the image.
For a given column strip, we find locations of local peaks and
valleys in each row. In this paper, we don’t distinguish between a
valley and a peak. We only look at what the magnitude of the ∆E ′

is at a particular point. However, we are not using absolute value
of ∆E ′ because that way we will not be able to find correct edges
of the peaks or valleys. Figures 4 and 5 show the same column
strip row using ∆E ′ and |∆E ′|, respectively. In Fig. 4 there are
two peaks at locations 6 and 9 and two valleys at locations 2 and
7. However, when using absolute value, there is only one peak at
location 6 with width of 5 pixels. This is the reason for not using
absolute value of ∆E ′.

Figure 3c shows a crop of a descreened image with anno-
tations. The green lines are the edges of the column strip. The
blue marks are the peak locations in each row. In the areas where
background is smooth, the peak locations form a vertical line. In
the area where the dust streak goes through hair, the blue dots are
not vertically aligned.

After finding the peak locations we find the magnitude of
the peak location derivative in the vertical direction. Then, we
average it across 21 rows. The PLD is defined as f1(x,y) and is
calculated the following way:

f1(x,y) =
∑

9
k=−10 |pl(x,y+ k)− pl(x,y+ k−1)|

20
, (4)

where pl(x,y) is a peak location in column strip x and row y. If
this feature has a low value, then it means that there is a vertical
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Figure 4. Example of a column strip row

Figure 5. Example of a column strip row using absolute value of ∆E

streak in this column strip.

2.2.2. Feature 2. Peaking factor (PF)
This feature shows the relative strength of the peak in the

column strip row. If the peaking factor has a very high value, then
it is most likely to be a content, such as a line. If the peaking
factor is low, then the peak is very weak and, consequently, not
noticeable. We define peaking factor as a ratio of sum of constant
value c and 3 highest values in a column strip row to a sum of c
and 3 lowest values in a column strip row, as given in Eqs. 5-7:

Ai+1(x,y) = Ai(x,y)−max(Ai(x,y)), (5)

Bi+1(x,y) = Bi(x,y)−min(Bi(x,y)), (6)

f2(x,y) =
c+∑

3
i=1 max(Ai(x,y))

c+∑
3
i=1 min(Bi(x,y))

, (7)

where both A1(x,y) and B1(x,y) are sets of values in the row y
and column strip x. Difference on a set is defined as removing an
element from a set. Hence, A2(x,y) is a set of values in the row y
and column strip x without the highest value and max(A2(x,y)) is
the second highest value in column strip x and row y. The range of
values that peaking factor can take is from 1 to 255∗3+1 = 766.

2.2.3. Feature 3. Side Difference (SD)
Sometimes the change in color background results in a small

peak in ∆E ′, which resembles the peak of dust streaks. In order to
distinguish change in content from a dust streak, we introduce the
third feature - side difference. Side difference shows difference
in color between the left side of the peak and the right side of
the peak. First, we find the edges of the peak. We define peak
edge as the index closest to the peak index, where the value drops
below 20% of the peak value. Second, we take the average of
3 pixels following the peak edge on both sides. We call average
value of the left side and average value of the right side as colorl

and colorr, respectively. Third, we compute the side difference
by using Eq. 8:

f3(x,y) =
√

∑
c
(colorl(x,y,c)− colorr(x,y,c))2, (8)

where x is columnstrip index, y is row index, c is channel index,
and l and r are relative sides of the peak.

2.3. Defective mask
After extracting features, we can decide whether the image

has dust streaks. This is done by thresholding the features. The
thresholds for features can be trained. If PLD is small, then the
peak location is not changing in the vertical direction. This means
that there is a vertical line in the image. Therefore, if the PLD
is smaller than threshold (PLDmax), then there is a vertical line.
The PF shows the strength of the peak relative to the columnstrip.
If PF is small, then the disturbance is very small and probably
not noticeable to the user. On the other hand, if it is very big,
then it is very likely to be a content, such as frame border or line.
Therefore, if PF is larger than threshold (PFmin) and smaller than
threshold (PFmax), then it might be a line caused by dust. The
SD shows whether the background color is changing. Therefore,
if the SD is smaller than threshold (SDmax), then the streak is a
vertical line.

The defective mask is formed by thresholding each feature
with corresponding thresholds. For a column strip row to be de-
fective, all 3 features has to pass thresholding. For example, if a
column strip row has a PLD, which is smaller than PLDmax, and
a PF, which is smaller than PFmin, then this column strip row
is not defective. Therefore, the defective column strip row has a
PLD value smaller than PLDmax, PF value smaller than PFmax
and larger than PFmin, and SD value smaller than SDmax.

2.4. Postprocessing
The output defective mask that we get after thresholding

3 features sometimes has false alarms. Number of these false
alarms can be greatly reduced by looking at a post processing fea-
ture(PPF) feature that is related to the number of defective pixels
in a columnstrip. This feature is not related to the actual image
data, but only to the output of thresholding 3 features introduced
in the previous section.

First, we obtain the lengths of all the defective segments in
each columnstrip. We call a run of consecutive defective rows
in a columnstrip a defective segment. The table of segments in
one columnstrip is given in Fig. 6a. Then we plot the number
of segments against the length in Fig. 6b. Next, we multiply the
curve by its length and obtain the plot in Fig. 6c. Eventually, we
integrate the new curve and get a PPF feature.

3. Training
3.1. Ground truth

The ground truth consists of a set of 128 images which were
scanned and provided to us by HP inc. Each image was manually
evaluated and scored based on the strength of the streak. Each
streak on each image was given a score from 1 to 9, where 1 is the
least visible and 9 is the most visible.
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3.2. Thresholds Training
We have three features and four thresholds associated with

them. We trained these thresholds on the ground truth. We know
that currently the algorithm cannot find all of the dust streaks
without finding streaks that were not caused by dust. Hence, we
will have some misses and some false alarms. Miss occurs when
the algorithm does not find the dust streak. False alarm occurs
when the algorithm finds a streak, which is not a dust streak.
There is a tradeoff between the miss rate and false alarm rate.
Miss rate and false alarm rates are computed as in Eqs. 9,10, re-
spectively.

missrate = 1− t p
t p+ f n

, (9)

f alsealarmrate =
f p

f p+ tn
, (10)

where t p is true positive, f p is false positive, tn is true negative,
and f n is false negative.

We needed to find optimal thresholds that would find most
of the dust streaks, while finding very little false alarms. The miss
rate has much smaller denominator compared to false alarm rate.
The denominator in miss rate is number of defective column strip
rows, whereas the denominator in false alarm rate is the number of
non-defective column strip rows. Therefore, we decided to set the
upper bound for the miss rate at 10% and looked for combination
of feature thresholds that would achieve the lowest false alarm
rate.

4. Results
We ran the training on the dust streaks that have a score of 4

and above. After training the algorithm, the minimum false alarm
rate was found to be 0.19% at miss rate of 9.47%. That is 110680
false alarm column strip rows and 8094 missed column strip rows.
The example images are given in Figs. 7-9. The ground truth im-
ages have two colored lines superimposed on the original image.
The yellow means that there is a dust streak with a score < 4 and
red means that the dust streak has a score ≥ 4

The feature thresholds were optimized to the following val-
ues:

PLDmax = 0.15, (11)

PFmin = 3.9, (12)

PFmax = 33, (13)

SDmax = 5, (14)

PPFmax = 1000. (15)

Also, the detection algorithm breaks up the dust streaks be-
cause of content. Some of the misses were due to dust streaks
being masked by the content. Overall, the algorithm found most
of the dust streaks.

We have images with tables and graphs in our training
database, which are currently identified as dust streaks by the al-
gorithm. These false alarms can be reduced in the future works.
Also, images that have vertical lines cause false alarm detection
by the algorithm. It is very hard to distinguish content lines that
were meant to be in the paper by a customer from those that were
produced as a result of a dust in the scanner.

5. Conclusion
In colncusion, we developed an algorithm for identifying

vertical streaks in scanned images that were caused by dust. Using
these detections, one can clean the scanner and remove the dust.
The algorithm was able to find most of the dust streaks. However,
the algorithm also detects some content lines as dust streaks. In
the future we are going to work on finding content streaks, so that
they are not detected by the algorithm.
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(a) Table of segments in one columnstrip

(b) Number of segments with length ≥ L as a function of L

(c) Curve on Fig. 6b multiplied by its length
Figure 6. PPF feature

(a) Original image

(b) Image with groundtruth superimposed

(c) Image with detections superimposed
Figure 7. Example of algorithm detection
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(a) Original image

(b) Image with groundtruth superimposed

(c) Image with detections superimposed
Figure 8. Example of algorithm detection

(a) Original image

(b) Image with groundtruth superimposed

(c) Image with detections superimposed
Figure 9. Example of algorithm detection
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