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Abstract
Nowadays many cameras embed multi-imaging (MI) tech-

nology without always giving the option to the user to explicitly
activate or deactivate it. MI means that they capture multiple
images, combine them and give a single final image, letting some-
times this procedure being completely transparent to the user. One
of the reasons why this technology has become very popular is
that natural scenes may have a dynamic range that is larger than
the dynamic range of a camera sensor. So as to produce an im-
age without under- or over-exposed areas, several input images
are captured and later merged into a single high dynamic range
(HDR) result. There is an obvious need for evaluating this new
technology. In order to do so, we will present laboratory setups
conceived so as to exhibit the characteristics and artifacts that are
peculiar to MI, and will propose metrics so as to progress toward
an objective quantitative evaluation of those systems.

On the first part of this paper we will focus on HDR and
more precisely on contrast, texture and color aspects. Secondly,
we will focus on artifacts that are directly related to moving ob-
jects or moving camera during a multi-exposure acquisition. We
will propose an approach to measure ghosting artifacts without
accessing individual source images as input, as most of the MI
devices most often do not provide them. Thirdly, we will expose
an open question arising from MI technology about how the dif-
ferent smartphone makers define the exposure time of the single
reconstructed image and will describe our work around a time-
measurement solution. The last part of our study concerns the
analysis of the degree of correlation between the objective results
computed using the proposed laboratory setup and subjective re-
sults on real natural scenes captured using HDR ON and OFF
modes of a given device.

Introduction
Multi-image (MI) computational photography applications

have received lots of attention in recent years, mostly driven by
the smartphone market. MI technology involves combining mul-
tiple shots of a scene into a single image. These shots can be
taken simultaneously (multi-sensors, multi-cameras) or sequen-
tially. There exist many applications of MI: spatial or temporal
noise reduction [11], high dynamic range (HDR) [17, 9, 10, 16],
motion blur reduction [12, 13], super-resolution, focus stacking,
depth of field manipulation, high frame rate, among others.

The creation of a single image from a sequence of images
raises several problems. These problems and artifacts are mostly
due to motion in the scene or camera. For a review of methods
for dealing with these issues we refer to [5, 8] and references
therein. A different type of artifacts concern the tone mapping
of HDR scenes. Since the images must be displayed on screens
with limited range, the choice of tone mapping becomes a criti-
cal part of the MI system [16]. This process is more qualitative

(a) (b)
Figure 1. Picture (a) shows the proposed setup for measuring the capacity

of MI devices to capture HDR scenes. The target contains a color chart,

a texture chart, and a grayscale of 80 uniform patches linearly distributed

between 0 and 100% of transmittance. The luminance of the left light source

is always 170 cd/m2. The luminance of the right light source varies between

170 and 17000 cd/m2. In (b) a real scene is displayed in order to correlate

the measurement with a perceptual analysis.

in nature as it aims at tricking the observer into thinking that the
image shown on a low dynamic range medium has actually a high
dynamic range [2, 14].

This article is concerned with the artifacts resulting from the
MI technology used in modern photographic devices and pro-
poses objective metrics for evaluating some of those artifacts.
Currently, evaluating the quality of MI algorithms is very impor-
tant as this technology is more and more present in different de-
vices. Apart of being present, this technology is often transparent
to the user. Nowadays, the MI capture is mostly judged through
subjective evaluations [15, 3]. Other authors or assume access
to the complete stack of input images which is often hand anno-
tated [4]. But there is an obvious need of end-to-end objective
evaluations that do not require access to the intermediate images.
On the other hand, the traditional lab setup (tripod, flat shooting
targets) is particularly favorable to MI systems, more favorable
than real life, so that traditional evaluation methods tend to over-
estimate the real-world quality of MI systems. The goal of this
paper is to propose lab setups and objective metrics so as to sim-
plify the evaluation process of MI technology.

Ghosting. The most common artifact related to MI acquisition
is ghosting [8, 6]. When combining images acquired at differ-
ent instants, because of motion, there is no warranty of observing
the exact same image. When the underlying MI algorithm fails
at detecting or compensating this motion, “ghosts” appear in the
combined image as result of combining incoherent frames (see
Figure 2).
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(a) (b) (c)
Figure 2. Reproduction of ghosting artifacts using a synthetic video of a

moving pattern. (a) shows a real ghosting artifact. (b) is an image taken with

the iPhone 6+ with HDR OFF, while (c) is taken with HDR ON. We can ob-

serve the same kind of ghosting artifacts. As we do not know what happens

when HDR is off (we are not necessarily looking at a "single-source" im-

age, Maybe the device did some other (non-HDR) multi-image fusion without

telling us), it makes sense to test this mode.

Contrast and texture loss. Very present defects are halos and
contrast and texture loss resulting from the tone mapping of HDR
images (see Figure 4, 3, 5). We observe that local contrast per-
ception, along with a spatial/intensity coherence in the image is an
important factor to account for a good HDR image. Tone mapping
algorithms allow to display an HDR image on a support with lim-
ited dynamic range. The tone mapping algorithm must produce a
pleasant rendering of the image while preserving low contrast de-
tails [1]. This is usually done by local contrast adaptations, which
are inspired on perceptual principles [2] (i.e. humans do not per-
ceive absolute intensities but rather local contrast changes).

Color appearance. Color is a very sensitive matter when deal-
ing with HDR scenes. The human visual system (HVS) adapts
differently in front of a real HDR scene and in front of a typical
LDR display. Even with an accurate HDR image of a scene, the
tone mapped and displayed image may appear different from the
real scene due to a different adaptation of the HVS [16]. Under-
standing the HVS and the models created to predict how colors
are be perceived under such different lighting conditions [18] will
have a direct impact on color fidelity. Moreover, color treatment
in HDR tone mapped images can be used to recover contrast and
texture [19], which influence directly the color fidelity. This im-
plies that color appearance is a key factor to a good final image.

Noise. Noise adds a new dimension of complexity to the MI
problem. When stitching multiple images, the risk is that the pro-
duced image may have incoherent noise (see Figure 6). As noise
is perceived as part of the image texture, its incoherence results
in an apparent boundary. Although the analysis below is not cen-
tered on noise coherence, we still observe its impact in the pro-
posed metrics.

Evaluation of multi-image systems. There is an obvious need
to evaluate these new technologies. Several papers in the literature
address the evaluation of MI artifacts, they usually focus on HDR
deghosting but their observations can be applied to most of the
MI applications. These papers can be roughly divided into two
categories.

In the first category we find perceptual evaluations carried
on by trained observers [3] instructed to look for precise artifacts

(a) (b)

(c) (d)
Figure 3. An important aspect of HDR rendering is texture preservation.The

picture (b) is less textured in comparison with (a). The texture target of the

HDR setup can highlight the preservation of texture. The picture (d) is less

textured than (c), even if it has higher contrast.

(a) (b)

(c) (d)
Figure 4. An important aspect of HDR rendering is perceptual contrast

preservation. The picture (a) is less contrasted and some colors are lost in

comparison with (b). The gray scale target of the HDR setup can highlight

the preservation of local contrast. The picture (c) shows a poorly contrasted

grayscale in comparison with (d).
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(a) (b)
Figure 5. (a) is an example of halo artifacts between the roof and the sky,

which can be reproduced by our setup (b). The homogeneous patches are

brighter on their upper edge than on their lower edge.

such as noise, blur, ghosts. However, these evaluations are diffi-
cult (and expensive) to put in place and the evaluation is inherently
noisy as different observers may have different opinions despite
of the instructions.

The second category of evaluation methods allow to compute
objective metrics for different artifacts. However, these methods
assume a setup in which the stack of input images is available
along with the HDR deghosted result [7, 4]. These methods com-
pute different artifact maps based on perceptual metrics. These
artifact maps are then combined to yield a single quality score.
These studies are usually accompanied by subjective studies that
validate the agreement of the subjective scores with the proposed
metrics.

Our contributions. In this paper we put forward several quan-
titative evaluations for multi-frame images. What distinguishes
our approach from other evaluations:

• We evaluate objectively the system as a whole, the proposed
metrics aim at measuring quantitatively the properties of the
final image.

• Existing metrics take as input a stack of exposures. How-
ever, intermediate images are often not available, as for in-
stance in most of the existing smartphone devices. There-
fore in this paper we propose laboratory setups that allow to
observe and measure the different MI artifacts without using
intermediate images. For example, we use synthetic videos
and high frame-rate screens that allow to evaluate ghosting
artifacts.

• The measured properties are precisely defined, they reflect
proven aspects of the human vision such as texture sensitiv-
ity.

• Whereas most of the metrics proposed today depend on the
content of the scene, the measurements through the pro-
posed setup are independent of the content of the scene. We
are interested by objective and repeatable metrics. The eval-
uation is performed in a controlled and repeatable environ-
ment.

• The metrics we propose are based on the dynamic of the
scene. We propose a laboratory setup that creates a re-
producible high dynamic range scene with the use of two
diffuse light sources with precisely adjustable intensity and
printed transparent charts. Using the two adjustable light
sources gives the possibility to measure and trace the con-
trast and color gains due to MI technology for scenes with

(a) (b)
Figure 6. In (a) is shown an example of noise artifact due to bad stitching,

which can be reproduced by our setup (b). Notice in the 6th and 7th rows the

rupture of noise consistency.

increasing dynamic range through predefined stops.
• We expose the question of what is the definition of the ex-

posure time for a single reconstructed image through a MI
acquisition and how we can measure this specific time.

In the next section we focus on the most used application
of multi-imaging: HDR. We will present a laboratory setup con-
ceived so as to evaluate the percentage of contrast and color sat-
uration gain we can get from a multi-exposure acquisition. Then,
we will present an exploratory laboratory setup that gives the
possibility to observe one of the multi-imaging related artifacts,
ghosting, and some ideas about how to measure it. In the third
part, we will share our observations about the exposure time of
the final reconstructed image through the combination of the in-
termediate acquired images. Finally, we will describe our work
on correlating the observations on natural images with the results
of the proposed objective metrics.

HDR scene rendering evaluation
In HDR imaging, the aim is to capture a scene with higher

dynamic range than the camera is capable of capturing with a sin-
gle exposure. This is interesting as many natural scenes have a
dynamic range larger than the dynamic range of a camera image
sensor. Some of the existing camera phone devices give the choice
to acquire an image by activating or not the HDR mode. For our
HDR laboratory setup, we chose a static scene composed of two
diffuse light sources with precisely adjustable intensity (Kino Flo
LED 201 DMX devices, DMX for short) that can provide lumi-
nous emittance from 5 to 17000 cd/m2. In front of the DMX
devices we placed two identical transparent prints containing a
grayscale, a color, and a texture charts. Our final image contains
the two DMX devices as it can be seen in Figure 1. The two
DMX devices are then programmed. They begin with the same
luminous emittance (170 cd/m2), and the right one increase its
luminous emittance with predefined values: 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 12, 15, 20, 40, 60, 80, 100% of the maximum DMX luminous
emittance. By stretching the intensities of the two DMX devices
we intend to create scenes with increasing dynamic range, where
the left part of the scene has low light (LL) conditions while the
right part has bright light (BL) condition, as can be observed in a
strong backlit scene. For each dynamic range setting we acquire
4 images:

• Two with auto exposure (AE), one with HDR ON and one
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with HDR OFF.
• Two with forced exposure (FE), one with HDR ON and one

with HDR OFF. In most devices exposure can be "forced" so
that a point of interest is well exposed (by tapping on it). In
this setting we force the exposure on the low light part of the
HDR scene. This can be explained as most pictures of HDR
scenes involve a bright background (i.e. sky or bright light),
and a low light main subject (a person, a building, etc).

In addition to the charts we use for quantitative measure-
ments, we consider a target with a natural scene as shown in Fig-
ure 1b, which permits to perceptually validate the consistency of
our measures. This setup allows to:

• Compare the performance of different devices.
• Analyze the performance of a MI device in auto and forced

exposure mode.
• Compare the performance in a high dynamic scene between

the low light part (left DMX) and the high light part (right
DMX).

• Compare the performance with HDR ON and OFF, to ana-
lyze the gain of using HDR, and to highlight the trade-offs
made by the device maker.

• Show artifacts such as bad stitching, halo, glare, noise re-
duction (Figure 4, 5, 6).

The characteristics we want to highlight are the preserva-
tion of local contrast, texture and color. Simply scaling the high
dynamic range of the scene to fit the dynamic range of the dis-
play is not good enough to reproduce the visual appearance of
the scene [16]. We want to quantify how the device compresses
the HDR scene to fit the display range while preserving details
and local contrast. Preservation of fine details is different from
contrast; it is possible to have a locally low contrasted scene with
good texture and a locally highly contrasted scene with no texture.

It is worth noting that most devices are by default in mode
HDR AUTO, which means that the device chooses whether or not
to activate HDR mode. It could be interesting to evaluate this
mode, in addition to HDR ON and OFF, to analyze if the device
takes the optimal decision, in the sense that HDR AUTO attains
a higher score than both HDR ON and HDR OFF. This question
will be addressed in future works.

Local contrast preservation
The grayscale part of the target is composed of 80 uniform

different patches with linearly increasing transmission. Having
two grayscales with two different dynamic ranges on the same
scene allows to measure how a device preserves the local dynamic
range of each. The metric used is the entropy of the normalized
grayscale histogram histgs.

Entropygs = ∑
k

histgs(k) log
1

histgs(k)
(1)

It can be seen as the quantity of information contained in the
grayscale. A grayscale with many saturated values in the dark
or in the bright parts will have an entropy value lower than an
evenly distributed grayscale. A gray scale with evenly distributed
values will have an entropy equal to the dynamic of the grayscale
(8 bits maximum).
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Figure 7. Local contrast preservation measurement results for 4 devices

(from top to bottom: iPhone 6+, Galaxy S7, HTC 10, Nexus 6P). The first

column shows the result with exposure forced on the left DMX texture. The

second column is the result with auto exposure. The abscissa is the differ-

ence of luminance between the two DMX in photographic stops.

The entropy has some clear limitations related to the fact that
it does not incorporate spatial information. A dithering grayscale,
for instance, can have bad entropy and good visual appearance,
and a grayscale with strong halos can have good entropy but bad
visual appearance. Nonetheless, the experiments show that this
choice seems to provide a good indicator of the perceived contrast.
As for the spatial artifacts mentioned above, they can be part of
a different metric that will complete the local contrast perception,
emphasizing the trade-off relation between reducing halo artifacts
and preserving image contrast. The results for four devices, with
auto and forced exposure, are presented in Figure 7. For each
device it shows the preservation of contrast for the left and right
DMX with HDR ON and OFF (4 curves).

Texture preservation
The texture measure is designed to evaluate how fine details

are preserved after tone mapping and denoising have been ap-
plied [20, 21, 26]. The Dead Leaves pattern [20] is used to sim-
ulate a texture with natural image properties, which are hard for
post processing to enhance. Let us define the texture spatial fre-
quency response (SFR) [21] as the measured power spectral den-
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Figure 8. This is an example of a tone curve extracted from the gray patches

shot by the iPhone 6 with HDR ON. We see the non-monotony due to halo

artifacts.

sity (PSD) of the texture divided by the ideal target power spectral
density

SFRtex( f ) =

√
PSDtex( f )−PSDnoise( f )

PSDideal( f )
, (2)

where PSDnoise denotes the noise power spectral density in the
image, measured on uniform patches. Then, the acutance metric
A is defined as the weighted average of the texture SFR with the
contrast sensitivity function (CSF), which represents the sensitiv-
ity of the HVS to different frequencies

A =
∫

SFRtex( f )CSF( f )d f . (3)

The acutance gives information about how texture is pre-
served, however it is contrast dependent. So in order to compute
it, a preprocessing step is required, a normalization that linearizes
and scales the gray levels of the observed image. This is done
by estimating a tone curve using the gray patches surrounding the
texture target (see Figure 1a).

It is worth noting that a tone curve would not undo the local
adaptation effects of HDR tone mapping, so this step is very sen-
sitive to tone mapping. Moreover, glare induced by the brighter
DMX causes a gradient of intensity on the low light DMX. These
two problems imply that there is no guarantee that the estimated
tone curve is monotone (as seen in Figure 8) and that the tone
curve measured on the gray patches is valid on the texture.

To lessen these effects we forced the monotonicity of the es-
timated tone curve and make the hypothesis that this curve is ap-
plied uniformly over the texture. The perceptual validation con-
firm that this setup can measure the effects of texture loss. Nev-
ertheless, this measure is not in its final state. For instance, this
measure can be wronged when strong noise is present in the im-
age. An efficient denoising will result in an underestimated noise
power spectrum, texture sharpening will result in a false ampli-
fication in high frequencies. This would improve wrongly the
acutance. Those problems can be corrected by phase informa-
tion [26, 27]. Some work on normalization may have to be done
if local tone mapping becomes an issue.
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Figure 9. Texture preservation measurement results for 4 devices (from

top to bottom: iPhone 6+, Galaxy S7, HTC 10, Nexus 6P). The first column

shows the result with exposure forced on the left DMX texture. The second

column is the result with auto exposure. The abscissa is the difference of

luminance between the two DMX in photographic stops.

Color preservation
The classic image color reproduction evaluation [24, 23] can

be extended to MI devices.
Color preservation can be described as the ability of a cam-

era to preserve colors across different dynamic ranges. The target
chart in Figure 1 contains a set of 24 representative colors, in-
spired by the Macbeth ColorChecker.

The color coordinates of each uniformly colored patch are
measured in RGB and then converted to L*a*b* coordinates (as-
suming that the color space of the shot is sRGB). For evaluating
the color preservation, in this article, we use the classic color dif-
ference metric ∆ab∗, which, by removing the lightness L∗, min-
imizes the dependency on exposure. Considering two colors ex-
pressed in L*a*b* coordinates the measure is computed as:

Colorre f =(L∗
re f ,a

∗
re f ,b

∗
re f )

Colortest =(L∗,a∗,b∗)

∆ab∗=
√
(a∗re f −a∗)2 +(b∗re f −b∗)2.

(4)

This metric aims at removing most of the differences result-
ing from the difference in brightness (neglecting nevertheless sat-
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Figure 10. Color preservation measurement results for 4 devices (from

top to bottom: iPhone 6+, Galaxy S7, HTC 10, Nexus 6P). The first column

shows the result with exposure forced on the left DMX texture. The second

column is the result with auto exposure. The abscissa is the difference of

luminance between the two DMX in photographic stops.

uration effects). To prevent the measurement to be penalized by
any color bias that a device maker could apply for aesthetic ap-
pearance, each reference value of (a∗re f ,b

∗
re f ) is computed with

HDR OFF on a scene with the two DMX at the same intensity.
The results are presented in Figure 10 for four devices with auto
and forced exposure. For each device it shows the ∆ab∗ for the
left and right DMX with HDR ON and OFF (4 curves).

Ghosting evaluation
In this part of our paper, we explore artifacts related to the

deghosting algorithms present in MI technology. These artifacts
are often due to bad blending and lack of correspondence between
the different images and can be observed as merging artifacts,
color artifacts, motion artifacts, blurring or noise artifacts (as seen
in Figure 11). We propose a setup for objectively evaluate those
ghosting artifacts.

To have a reproducible setup, we explore the use of a high
refresh rate desktop monitor (Asus Rog Swift PG278QR 27) as
shooting target. We have created different synthetic videos of
moving patterns (see Figure 12 for one example) that allow us
to reproduce the observed artifacts (Figure 11). The videos of the

(a)

(b)
Figure 11. (a) Ghost artifacts in natural scenes. From left to right and

top to bottom: iPhone 6+, HTC 10, Nexus 6P, Galaxy S7. The iPhone 6+

produces a strong discontinuity (an arm appears in the sky and the hand and

the electric pole are confounded). The HTC 10 shows classic ghosts (the

ghost of the arm). The Nexus 6P has a strong noise inconsistency and the

hand and the foliage are confounded. The Galaxy S7 has limited ghosting on

the edge of the arm. (b) Ghost artifacts highlighted by our setup. From left

to right: iPhone 6+, HTC 10,Nexus 6P, Galaxy S7. The iPhone 6+ produces

also strong discontinuities (the moving target and the building are merged.

The HTC 10 shows also classic ghosts (the moving target is multiplied). The

Nexus 6P also mixed the black part of the moving target with the window

fence. The Galaxy S7 has also a limited ghosting. The correlation between

artifacts present in natural scenes and in our setup for each device is good.
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Figure 12. Frames of the moving pattern and a fix circle. The fix pattern

of our video, allows us to reproduce artifacts related to occlusion of different

moving objects in the scene.

moving patterns are played on the desktop monitor. Displays have
well known artifacts like motion blur, pixel persistence, asymmet-
ric pixel transitions, inverse ghosting due to overshoot of the pixel
response, pulse-width modulation artifacts etc. Some are intrinsic
to a specific technology.

So as to isolate the blur and other artifacts related to the
display technology, we characterized the frame rate and pixel re-
sponse time of the device with the help of a high frame rate and
high shutter speed device (Sony RX100 IV) on a tripod at a known
distance to the screen. In this way, we are able to qualitatively
distinguish the display artifacts from those related to the HDR fu-
sion algorithms. In a second part, a validation was made of the
setup. We link the type and occurrence rate of ghosting artifacts
that a device can produce in a natural scene with the artifacts that
our setup is able to reproduce (see Figure 11).

This shows that the proposed setup has the potential to sys-
tematically reproduce ghosting artifacts as they appear on real-
world scenes. This opens the door for defining a quantitative and
reproducible measure for such artifacts, which we will address in
the future.

A proposal for defining MI exposure time
The exposure time, also called shutter speed (usually de-

noted as E), is the effective time interval during which light fills
up the sensor photosites. Classical measurements [25] assume
that all pixels of the sensor have the same integration time. With
MI technology that assumption does no longer hold true as some
pixel may be composed from different source images than other
pixels. Besides, classical timing measurement may fail because
of ghost removal algorithms, as seen in Figure 13.

We observe that device makers do not agree on the value

Figure 13. Ghost observed during classic timing measurement. Exposure

time is computed by counting the number of lit LEDs. As the LEDs are lighted

on and off at a known speed, we can deduce the resulting exposure time.

Thus Ghosting can result in a wrong exposure time.

of exposure time to be reported in the image metadata (EXIF)
in the case of MI processing. We see in Figure 14 for the
Nexus 6P that the exposure time with HDR ON is underestimated
by the EXIF. On the contrary the exposure time measured for the
iPhone 6+ with HDR ON is consistent with the exposure time in
the EXIF. However, other MI techniques like temporal noise re-
duction might be used even with HDR set to OFF. As the value
provided for the iPhone 6+ with HDR OFF in the EXIF is about
four times larger than one measured may raise questions (61 ms
measured, 250 ms reported in the EXIF).

In this section we want to expose the challenges in extending
the notion of exposure time to the MI case. The objective of this
discussion is to come to a consensus about what should be stored
in the EXIF field corresponding to exposure time in the MI case.
The ideal knowledge to be extracted from an HDR MI device is:
how many pictures have been combined, their individual settings
(exposure time, ISO...), and the spatially varying contributions of
each image to the final result. However, besides being unrealistic
to store so much information along with the image, this level of
detail is against the intuitive concepts behind exposure time.

For this reason we start by recalling the effects of exposure
time in the single-image case and see if these properties can be
preserved by a multi-image generalization.

• First of all, increasing the exposure time increases exposure.
So the image becomes brighter.

• Increasing the exposure time and decreasing the ISO re-
duces noise. However, noise is not a reliable reference as
denoising may greatly reduce it. Adjusting the MI expo-
sure time so that noise is preserved would inevitably lead to
questions about the texture preservation as mentioned in the
previous sections.

• Longer exposure times lead to more motion blur. This
property is exploited in [25] to measure the exposure time
and could be easily adapted to the MI case. However, de-
vices may freeze the motion of some parts of the image,
while blurring others, leading to a confuse statement.

The Exposure time Envelope (EE). By defining the exposure
time as the absolute time interval between the beginning of light
integration in the first line in the first image and the end of light
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Figure 14. Exposure time reported in EXIF compared with exposure time

measured for the Nexus 6P with HDR ON and OFF.

t0 tN

t0 t1 t2

t0

tN

t2t1 tN

t3

Figure 15. The exposure time of a traditional single-image device (rep-

resented as a line in the first row) can be used by a multi-image device to

allocate multiple exposures in different ways (second and third rows).

integration in that same line in the last image used by the fusion al-
gorithm, we preserve the intuitive properties of this measure (see
Figure 15).

• If the fusion simply averages the images (possibly compen-
sating for gain differences), then the result tends to behave
as a standard long exposure photograph, both in terms of
noise and motion, and the envelope EE reflects this.

• If the algorithm picks only a single image (a "lucky frame"),
then the exposure time of the selected image would be Ei =
EE, which is exact in terms of noise and motion.

• If the fusion combines the images using spatially varying
weights, then both noise and motion blur can severely dif-
fer from an equivalently exposed single-image shot. Motion
can be frozen by multi-image devices and noise could be re-
duced unevenly across the image. Nevertheless, a large EE
value permits to inform the user about the manipulation that
the image has undergone, which may explain processing ar-
tifacts.

Clearly the exposure time envelope cannot capture the full
complexity of a multi-image process, so in order to complement
its information we also propose two additional exposure time
metadata: the minimum Emin and the maximum Emax exposure
times in the burst. The three values EE, Emin, and Emax can sum-
marize the multi-image process and the effects that may result
from it.

Evaluation of four well known devices
Our final objective is to develop a single metric that quanti-

fies the system performance to simplify comparisons between de-
vices. In this paper we compare the devices using the individual
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Figure 16. Results of the HDR setup for the Galaxy S7 (green), HTC 10

(orange), iPhone 6+ (red) and Nexus 6P (blue). Each measurement is com-

puted as the mean of the measurement of the bright light DMX and the low

light DMX on HDR ON picture. The abscissa is the difference of luminance

between the two DMX in photographic stops.

metrics, which will eventually be combined into a single one. For
that purpose, the laboratory setup and the metrics presented above
are tested and compared against subjective evaluations conducted
on natural scenes captured with four devices. The four devices
are:

• iPhone 6+
• HTC 10
• Galaxy S7
• Nexus 6P

HDR scene rendering metrics
The laboratory results of the HDR scene rendering evalua-

tion are summarized in Figure 16. For the sake of simplicity, we
present the average of the metrics computed on the two DMX
(low and high light), only for the case HDR ON. Averaging the
measures of the two DMX means that we do not prefer any of
them. For instance, a device with good contrast (8 bits) in low
light and poor contrast (4 bits) in bright light is seen as equivalent
to a device with medium contrast (6 bits) in each range.

Local contrast. All devices have roughly 7.5 bits of local con-
trast in a low dynamic range scene (up to 3 stops of luminance
difference) both in AE and FE. For higher dynamic range, ac-
cording to the results shown in Figure 16, in AE, the Galaxy S7

IS&T International Symposium on Electronic Imaging 2017
Image Quality and System Performance XIV 137



(a)

(b)

(c)

(d)

(e)
Figure 17. Natural HDR scene. (a) HDR scene shot with the Galaxy S7.

(b), (c), (d) and (e), from left to right: Galaxy S7, Nexus 6P, HTC 10 and

iPhone 6+. Compared to the sky, (b) has 2 stops of luminance difference, (c)

and (d) have 4 to 5 stops of luminance difference, (e) has 7 stop of luminance

difference.

leads the competition. In FE, the Galaxy S7 and Nexus 6P have
the best performance until 5 stops. Beyond 5 stops we see that
the HTC 10 becomes better. If we look in details (see Figure 7),
we can see that the HTC 10 gain against the Galaxy S7 is in the
bright light.

In FE and HDR OFF, we identified two different strategies
adopted by device makers. The first, like the iPhone 6+, chooses
to correctly expose the select part of the scene (the low light
DMX). That saturates the bright light DMX, yielding a poor lo-
cal contrast preservation score on this DMX (see Figure 7). On
the other hand, devices like the HTC 10 underexpose the selected
part of the scene. This allows to better expose the other DMX,
and also to gain local contrast in both DMX when HDR is ON,
while for the iPhone 6+ the gain can only be on the bright light
DMX. This explains why the HTC 10 comes out best in forced
exposure. The Nexus 6P and the Galaxy S7 also adopt this strat-
egy, but less marked. But such behavior should be penalized to a
certain extent. When exposure is forced on the dark scene, it is to
see the details of the dark scene. If it is underexposed in a way
that contrast is lost, this is not appreciated.

Color preservation. The iPhone 6+ is clearly the worst in pre-
serving its color in both AE and FE when HDR is ON. For the
other three devices the color preservation is approximately the
same.

Texture. In AE and HDR ON, the best of the 4 devices for
scenes before 5 stops is the HTC 10. After 5 stops, the iPhone 6+
is the best. It compensates its poor gain in local contrast with a
huge gain in texture preservation (see Figure 7).

In FE, the HTC 10 is the only one who recovers texture in
bright light, which makes it the best for dynamics superior than
5 stops. The iPhone 6+ is not good after 4 stops because it looses
all its texture by doing a good exposure on the scene manually
selected (the low light DMX). Variation in acutance can be of
several reasons: change of focus in AE (Nexus 6P, HTC 10), acti-
vation of denoising (iPhone 6+), glare (iPhone 6+ and HTC 10).

Validation on natural scenes
For our validation, several natural HDR scenes were shot in

auto exposure mode with the four devices. The scenes were ac-
quired on a cloudy day and had a dynamic range of around 7 to
8 stops. We define the dynamic range of a scene as the expo-
sure difference between a picture well-exposed on the brightest
part of the scene and a picture well-exposed on the darkest part.
We measure this by bracketing the scene with a DSLR, increas-
ing the exposure by 1 stop in each image. For the scene of Fig-
ure 17, we observe 8 stops of exposure difference between the
sky and the darkest brush. While the maximum ∆EV that could
be attained with our setup using the Kino Flo LED 201 DMX is
about 12 stops, our initial laboratory setup only explored a ∆EV of
∼ 6.5 stops. For this reason we extrapolate the curves of Figure 7
by 1.5 stops.

Contrast. Our measurements for high-light local contrast in a 7
to 8 stop dynamic scene rank the four devices as:

1. Galaxy S7
2. iPhone 6+ ≈ HTC 10
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3. Nexus 6P

The crops (c), (d), and (e) of Figure 17 correspond to low
light parts of the scene. They are respectively 5,5 and 7 stops be-
low the exposure of the sky. Crops (c) and (e) correlate well with
the local contrast metric except for the Galaxy S7 which has bet-
ter local contrast on the HDR scene than our setup would suggest
according to Figure 7. To be sure, the setup must be extended to
8 stop.

The picture (b) of Figure 17 corresponds to the high light part
of the scene, which is 1/2 stop under the the exposition of the sky.
In that picture, the Galaxy S7 has the best contrast, the iPhone 6+
and HTC 10 has relatively similar contrast, but the Nexus 6P is
quite under estimated by our setup.

Color. Regarding the colors, our setup extrapolation classes the
devices as:

1. Nexus 6P ≈ HTC 10 ≈ Galaxy S7
2. iPhone 6+

It is difficult to draw conclusions about the preservation of
colors, but it seems that the HTC 10 is over evaluated by our setup
as its performance is closer to iPhone 6+ than the others.

Texture. Regarding texture, our setup in the case of low light
texture classes the devices as (see Figure 9):

1. Nexus 6P
2. Galaxy S7 ≈ iPhone 6+
3. HTC 10

The crops (c) and (d) in Figure 17 correlate well with the metric.
In (d), the Galaxy S7 is similarly textured than the iPhone 6+,
and it highlights well that Nexus 6P is better than HTC 10. The
HTC 10 texture is very uneven between (c) (more sharp) and (d)
(flatten), but always worse than the Nexus 6P and the iPhone 6+.

On the other hand in the bright parts of the image our setup
would class the devices as:

1. iPhone 6+
2. Galaxy S7
3. HTC 10 ≈ Nexus 6P

The iPhone 6+ and the Galaxy S7 have a good texture, and the
HTC 10 a bad one, but then again the Nexus 6P is quite under
evaluated by our setup. This is because Nexus 6P privileges al-
locating contrast in the low dynamic range of the image, thus
loosing texture in the bright parts. Because of this behavior in
Figure 16 the Nexus 6P has a low score. This may point to a
limitation of our setup, which is discussed next.

Limitations of our current setup
The constant underestimation of the Nexus 6P in the high-

lights may be due to the framing choice in our setup (see Fig-
ure 18. More generally, the reparation of high light and low light
in the scene may have consequences that we have not taken into
account. We see in that figure that the Nexus 6P chooses to better
expose the table in front of the DMXs than the Galaxy S7. This
implies that the Nexus 6P focuses more on the low lights, and
therefore lowers its contrast in high lights. As we see our setup

(a) (b)
Figure 18. Our setup for ∆EV =6.5. (a) Galaxy S7. (b) Nexus 6P.

results in high lights for the Nexus 6P diverge from natural HDR
scene, we must investigate towards that direction. This argument
is sustained when looking at our setup target with a natural scene
natural image (fig 1 .b). The ranking of contrast perception for
∆EV = 5 by a DxO Mark perceptual analyst change when only the
target are taken into account ( ranking: 1-Galaxy S7, 2-Nexus 6P,
3- iPhone 6+ ≈ HTC 10) or when the contrast of the whole im-
age is perceived (ranking: 1-Nexus 6P, 2-Galaxy S7, 3-HTC 10,
4-iPhone 6+).

Conclusion
In this paper, we put forward three setups with associated

metrics for the quantitative evaluation of multi-image system
properties which are shown to be consistent with human visual
system. We evaluate objectively and repeatably the system as a
whole, without using intermediate images, independently of the
content of the scene. We also brought to light the issue of the
definition of exposure time in the context of MI acquisitions and
proposed a new notion better adapted to this type of devices. The
proposed setups are consistent with real world conditions and can
reproduce the artifacts observed in multi-imaging systems. Over-
all, the experiments showed a good correlation between the quan-
titative and subjective measurements, nevertheless some will be
further optimized in future works.
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