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Abstract
Realistic test data is needed to evaluate and rank the per-

formance and quality of dehazing algorithms for image enhance-
ment. Especially for professional photography and cinematog-
raphy, this test data has to fulfill high quality standards including
high dynamic range, sufficient resolution and natural color repro-
duction. For this purpose, we present a new multispectral data
set that includes RGB and near-infrared (NIR) images captured
by two professional digital motion picture cameras. Compared to
existing data sets, the benefits of our set are threefold. Due to our
two camera setting we are able to provide synchronous and well
registered RGB/NIR image pairs captured at the same instant of
time. High quality real image sequences allow future algorithms
to take account of the temporal consistency of the dehazed out-
put images. Furthermore, to facilitate a uniform and fair evalu-
ation of different algorithms we provide ground truth images for
selected RGB/NIR image pairs. The data set is freely available at
http://www.arri.com/innovations/.

Introduction
Haze in outdoor images is a weather phenomenon that leads

to loss of contrast, visibility and saturation and that is hardly to
avoid while capturing the image. Even in almost clear weather
situations there will always be decreasing visibility and contrast
in long distances (Fig.1).

In the last decade, image dehazing has become a popular
research area resulting in various algorithms that aim at remov-
ing the haze out of haze-afflicted images. Nowadays, these algo-
rithms have even found their way in image processing software
like Adobe Photoshop, allowing the user to easily remove fog or
haze from a photograph. Ongoing from algorithms that rely on
a single input image [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] to esti-
mate the missing parameters to recover contrast, visibility and sat-
uration, approaches that utilize additional input images that pro-
vide further information about the captured scene have emerged
recently [13, 14, 15, 16, 17]. In particular near-infrared (NIR)
images as additional input have been proven useful to enhance
visibility and contrast, due to the fact that haze is a visible phe-
nomenon that decreases with increasing wavelength of the cap-
tured spectrum [18].

Regarding this multiple input image setting, a common cause
for disturbing artifacts in the dehazed images is the deregistration
between the two modalities due to sequentially captured images.
Especially images and sequences that include moving objects are
prone to these errors. Another drawback of most of the existing
real-world data sets is the absence of ground truth. Thus, a perfor-
mance comparison between different approaches is hard since the
only way for an evaluation is to perform user perception studies

Figure 1: Haze in images leads to loss of contrast, saturation and
visibility

which are costly and time consuming. Since it is mandatory for
user perception tests to evaluate different algorithms at the same
instant in time, the evaluation with satisfying ground truth images
is more flexible. One approach to circumvent these drawbacks is
to synthetically generate the image data as well as the hazy in-
put. However, solely relying on computer-generated haze images
often results in parameter settings that are not applicable to real
world scenarios.

As a consequence, a data set for an adequate evaluation of
dehazing algorithms should offer the possibility to render high
quality real-world images and to compare the results with a cor-
responding ground truth. Our new RGB/NIR data set addresses
all these points. Compared to existing data sets the advantages of
our set are:

1. Due to our camera setup, we are able to provide well reg-
istered high quality RGB/NIR image pairs captured at the
same instant of time.

2. Multispectral sequences are made available, allowing the
evaluation of multispectral algorithms in terms of temporal
consistency, which is not feasible by any other data set.

3. For the first time, it is possible to compare the dehazed
images with reference haze free multispectral image pairs,
leading to a fair evaluation of single image and multispec-
tral image input algorithms.

The rest of the paper is organized as follows. After the introduc-
tion of the physical haze model, which the most significant dehaz-
ing algorithms are based on, we summarize existing data sets and
dehazing algorithms. Afterwards, the data set generation and the
RGB/NIR data set is described in detail. An evaluation of various
dehazing algorithms is presented in the evaluation section.
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Physical Haze Model
To generate a data set for dehazing algorithms, it is important

to understand the characteristics of light scattering, its influence
on radiant light and therefore on the camera capture. Most of the
existing dehazing algorithms are premised on a haze model to de-
termine the interfering parameters, which we will introduce in the
following. A single light ray never finds its way through the atmo-
sphere without being scattered by particles in the air. In general,
this phenomenon is described by Mie scattering of electromag-
netic waves. Dependent on the particle types and sizes, different
weather situations like e.g. haze, fog or rain can be categorized.
Haze is an aerosol with particle sizes of 10−2−1µm [6]. Since the
spectrum of visible and near-infrared light is composed of wave-
lengths in the range of λ = 380− 1200nm, this setting allows to
apply the Rayleigh approximation of Mie scattering. According to
[18], for particle sizes smaller than one-tenth of the wavelength,
the scattering follows Rayleigh’s law where the scattering is in-
versely proportional to the fourth power of the wavelength, i.e.

β ∝
1

λ 4 , (1)

with β as the scattering coefficient and and λ denoting the wave-
length. Due to the long wavelengths of near-infrared light, from
(1) it is immediately clear that NIR images are less affected by
haze and thus are beneficial in recovering structures.

Nayar and Narasimhan [6, 5, 19] split the mechanisms of
scattering into two fundamental phenomena. First, a light beam
traveling through the atmosphere gets attenuated due to multiple
scattering in the medium. Formally, with L0 denoting the intrinsic
luminance and d the scene depth, the attenuation is modeled via
L0e−βd . Second, the effect that more distant objects from an ob-
server appear lighter than nearer objects, caused by scattering of
environmental light, is described in terms of airlight. This term
is given by Ls(1− e−βd), with Ls representing the global atmo-
spheric light. Finally, these two components lead to the widely
used haze image formation model [3] that describes the observed
intensity L at the pixel position (u,v) via

L(u,v) = L0(u,v)e−βd(u,v)+Ls(1− e−βd(u,v)). (2)

This formation model provides the basis for state-of-the-art de-
hazing algorithms presented in the next section.

Related Work
Research on image dehazing concentrates on two different

kinds of algorithms: single image input and multiple image input.
The former approaches only rely on a single degraded input im-
age to estimate missing information of the captured scene and to
reconstruct e.g. contrast and color information. The second group
of dehazing algorithms uses image fusion of (multispectral) image
pairs to enhance the contrast and details of the resulting image.

Image Dehazing with Single Image Input
Based on a hazy image as single input image, Tan [1] obtains

the (global) atmospheric light by analyzing the pixel intensity of
the input image and models the airlight via contrast maximization
and a cost function using Markov random fields. Fattal [2] es-
timates the medium transmission and the albedo of the scene to
get two locally uncorrelated shading and transmission functions
to recover a dehazed image. Single image dehazing formulated

as a particular filtering problem is proposed by Tarel et al. [11].
The algorithm focusses on execution speed and thus only relies on
simple median filter operations. Kratz and Nishino [12] tackle the
image dehazing problem from a probabilistic point of view. Based
on a Factorial Markov Random Field of the image, the depth and
the albedo of the scene are estimated simultaneously. This formu-
lation allows to impose structural constraints on both the depth
and albedo values. This strategy is further pursued in [10]. He
et al. [3] propose a dark channel prior to remove haze from a sin-
gle image input. This model is based on the theory that at least
in one color channel of natural haze free outdoor images (and ex-
cept sky regions), the intensity value of every pixel is near zero.
Therefore the intensity of the dark channel of hazy images could
be assumed as thickness of haze in these images. This knowl-
edge leads to an estimation of atmospheric light and transmission.
Based on the assumptions of the dark channel prior of [3], Meng
et al. [4] derive a boundary constraint map by applying a mor-
phological closing on a patch wise transmission. In combination
with a weighted L1-norm based contextual regularization of the
single patches the scene transmission is estimated. Additional to
the dark channel, Tang et al. [7] extract three other haze relevant
features: local contrast, hue disparity and local saturation and as-
sume that these features show strong correlations with the amount
of haze. These different correlations help to estimate the trans-
mission more precisely than [3] if the haze-free image content is
very bright by nature where the single dark channel prior would
fail. Ancuti and Ancuti [8] derive two input images from a single
image input. The first input image is a white balanced version
of the hazy input image and a second input image is generated
by enhancing the contrast of the white balanced input. Addition-
ally, three different weighting maps (luminance, coloration and
saliency) are calculated from the two derived input images. The
final image is generated by the Laplacian pyramid representation
of the input images and the Gaussian pyramid representation of
the combined weighting maps. In [9], Fattal recovers the scene
transmission by analyzing the color lines of small pixel patches
of a hazy input image and validating the result of each pixel patch
with a defined formation model. A further interpolation and regu-
larization of the local transmission for the entire input image leads
to a dehazed version of the input image.

Image Dehazing with Multiple Image Input
As mentioned before there is also the opportunity to get

missing details out of more than one captured image. Schech-
ner et al. [14] use at least two images taken with different po-
larization orientations to recover the unknown scene radiance and
airlight for building a haze model. With a NIR image as addi-
tional input, Schaul et al. [15] convert the 3-channel RGB image
into one luminance and two chrominance channels and merge the
luminance image with the NIR image via edge-aware multiscale
representation. This method adds missing details from the NIR
image to the RGB but does not recover any missing color in a
hazy image. Another RGB/NIR image fusion is done by Zhang
and Wang [16], using the dark channel prior to estimate the scene
depth and to apply different color transfer schemes to merge the
RGB and NIR images. Feng et al. [13] capture a multispectral
image pair to estimate the airlight out of the dissimilarities be-
tween the two different captured spectra of visible light and near-
infrared light. The method of Connah et al. [17] expands the RGB
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and NIR image to a higher dimensional structure tensor represen-
tation. This representation is mapped to the gradient field of the
input RGB image to seek for a reintegrated output image, whose
gradient field is as close as possible to the input image.

Data Sets
In 2002, Narasimhan et al. [20] published the Weather and

Illumination Database (WILD). This data set contains images of
one outdoor scene captured automatically each hour over several
month to provide different weather and illumination situations.
The data set includes ground truth information such as detailed
weather information and a corresponding depth map. However,
the set is restricted to only one static scene without moving ob-
jects. The spatial resolution of 1.5 MPix is only moderate and
the frame rate is very low. Brown and Süsstrunk [21] provide
477 different natural RGB/NIR image pairs in different categories
(Fig.2). For each scene, the RGB and NIR images were captured
sequentially with a conventional DSLR camera where the hot mir-
ror has been removed. First, an infrared blocking filter has been
mounted in front of the lens to capture the RGB image. After-
wards, a visible light blocking filter has been used for the NIR
image. Due to the sequential capturing, the RGB and NIR im-
ages show slight differences (e.g. moving clouds, water, people
crossing, etc). An image fusion of these image pairs is prone to
artifacts due to the moving image content. Obviously, this acqui-
sition strategy is not applicable to capture image sequences. The
Foggy Road Image Database (FRIDA) of Tarel et al. [22] con-
sists of 90 synthetic images in urban road scenes. Each scene
set contains one haze free image (ground truth), four images with
different haze grades and a depth map (Fig.3). Since the images
are computer generated they do not represent natural surfaces and
structures like leaves, clouds, wood and stony surfaces and do not
show typical sensor characteristics such as sensor noise.

Contributions and Limitations
The goal of our work is to provide a data set that addresses

the limitations of previous sets. Thereby, our data set focuses on
the evaluation of algorithms that (i) rely on single and (ii) multi-
spectral image input. For this purpose, we provide high quality
test images containing different sceneries with varying surfaces,
distances, lighting conditions and with natural and artificially gen-
erated haze. The artificial haze allows us to additionally provide
ground truth images of the respective scene. Regarding the evalu-
ation of multiple input algorithms, we further provide synchro-
nized and well-registered RGB/NIR image pairs captured with
our innovative two-camera setup. The synchronized cameras al-
lowed to record interior as well as exterior image sequences and
camera panning without obtaining temporal artifacts between the
RGB and NIR images caused by moving objects.

Limitations The ground truth data for an objective evaluation
and comparison between single image and multiple image input
algorithms is only available for the indoor scenes that contain arti-
ficially generated haze. The pursued strategy of capturing a hazy
image with its corresponding ground truth is restricted to stills
and does not allow to provide ground truth for image sequences.
Furthermore, the data set does not contain any depth map or im-
ages with different polarization orientations, which might serve
as additional information in the dehazing process.

Specifications Our data set consists of 11 pairs of stills includ-
ing 7 outdoor scenes and 4 indoor scenes. Ground truth is avail-
able for indoor scenes as well. Another 6 temporal sequences
each containing 200 frames (8sec) are provided. Every image has
a resolution of 2800x1575 and comprises a bit depth of 16. The
RGB images are converted to ITU Rec 709 video-colorspace [23]
and the NIR images are converted with a corresponding video-
Look-Up-Table. The depth of the indoor scenes is 12 meters on
average.

Data Set Generation
A missing feature of existing image data sets like [21] is the

simultaneous capturing of the RGB and NIR data in stills and se-
quences. This feature is required for further image fusion to avoid
image artifacts due to any change in the pictures because of mov-
ing objects like clouds in the sky, etc. In the following the used
equipment and the simultaneous capturing method is explained in
more detail.

RGB- and NIR-Camera
For the image capture we used two different configurations

of the ARRI Alexa, a professional digital motion picture camera.
Since the presented data set is comprised of images captured with
the same sensor as many international film productions, it em-
phasizes the importance of the evaluation of different algorithms
based on this data set. Algorithms which produce artifacts on
these images would be useless for cinematic post production.

Alexa RGB Sensor The sensor which is built in a standard
ARRI Alexa is a CMOS sensor in the APS-C format class with
a Bayer pattern color filter array. The camera captures the RGB-
signal of the data set using the 16:9-ARRIRAW-format. Since
a plain CMOS sensor would be sensitive to wavelengths up to
1200nm there is a lowpass filter pack in front of the sensor to cut
the sensitivity to visible light. The filterpack contains an optical
lowpass filter as well as an UV- and an IR-filter. This so-called
hot mirror is the standard IR-elimination filter of the ARRI Alexa
camera.

Alexa NIR Sensor The NIR-images are captured with a spe-
cial ARRI Alexa camera called Alexa B&W (Black and White).
This camera type contains the same CMOS sensor as the stan-
dard ARRI Alexa, but without Bayer pattern color filter and an
infrared pass (visible light block filter) instead of the hot mirror in
front of the lowpass filterpack. All other technical specifications
are corresponding to any standard ARRI Alexa.

ARRIRAW format Both images, RGB and NIR, are captured
in ARRIRAW-format, since it is the only supported format of the
Alexa B&W. Like any other raw-format, an ARRIRAW-file is a
one-channel image which is not debayered before the recording.
In postprocessing the RGB-images need to be rendered to a 3-
channel-image. Since the ARRI Alexa B&W does not contain a
Bayer pattern on the sensor, there is no need for any debayering
in the postprocessing. Thus, the NIR-image is stored as a one-
channel luminance image.

Optics To get the best matching image pair in RGB and NIR,
the axial aberration of the NIR-image has to be compensated,
since the NIR wavelength leads to a different refraction index and
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Figure 2: Example image pair of RGB and NIR capture in [21]

Figure 3: Example images of FRIDA with 4 different fog grades [22]

hence to a slightly different focal length. The image plane of the
NIR wavelength was corrected by modifying the flange focal dis-
tance (FFD) between the NIR camera sensor and the lens mount.
To calibrate the FFD, a standard prime lens was mounted in front
of a movable camera sensor that is sensitive to both, visible and
IR light. For different axial positions of the sensor the modulation
transfer function (MTF) was measured with two different passfil-
ters (visible light and NIR) mounted in front of the lens. The
offset between both maxima determines the compensation of the
FFD for both modalities.

Synchronous Capture To enable a synchronous capture of the
RGB and NIR images, the cameras were mounted on a 3D-mirror
rig and the camera sensors were set on sensor sync, meaning that
the image frames of both cameras were captured at identical time
instances. We used a stereoscopic analyzer [24] for a visual as
well as a feature based inspection to correct possible parallax er-
rors due to vertical or horizontal displacements. This setup allows
capturing RGB and NIR-image sequences at the same time and
from the same viewpoint in the RGB and NIR-camera channels.

Artificial Haze
We used a haze machine and a water-based haze fluid to cap-

ture hazy images and their corresponding target image (ground
truth). In contrast to, e.g. [7], who synthesize haze on already
existing images which are randomly collected from the internet
we get realistic multiple scattering from natural light sources (at-
mospheric light) by adding the haze to the scene before the image
capture. We have reasons to believe that for the artificial haze
scenarios, Rayleigh scattering still holds true because the particle
size is small enough. In accordance with equation (1) the near-
infrared wavelengths are less scattered and thus the NIR images
show more details than their corresponding RGB images, which

can be easily seen in figure 4. Since the haze fluid affects the
scattering of light sources like in real haze images this procedure
allows to create almost natural haze scenes.

Ground Truth
In comparison to [21], we offer RGB/NIR image pairs with

and without haze (Fig.4). The clean image pairs serve as ground
truth and enable an objective comparison between processed im-
ages and the clean target images. To generate the ground truth
image pairs, we first shot the clean scene to get the target image.
After that, the entire scenery was filled with haze to achieve a
natural scattered light effect like in the atmosphere. This process
took approximately 5-10 minutes. We had another 10 minutes to
capture the hazy scene until all the haze was faded away. Ground
truth images are available for 4 different indoor scenes.

RGB/NIR Dataset
In this section the different parts of the data set are described

in more detail along with potential challenging features for exist-
ing and future algorithms. Figures 4,5, and 6 illustrate the diver-
sity of the scenes.

Stills
Ballroom (Fig.4:1,2,5,6) The Ballroom-images were captured
in front of a white wall. While image fusion techniques might be
suitable to enhance the contrast in the RGB images, this image
set should be pretty challenging to algorithms that work with a
dark channel prior, since there is no dark background in these
images. All images have been captured with natural daylight only,
appearing through windows from camera left.

Innolab (Fig.4:3,4) The recovery of the original colors, hue and
saturation is a very challenging task in image dehazing. Dehazing
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algorithms that ignore color management, e.g. by solely merging
the converted luminance channel of the RGB input with the NIR
input, could generate tinged results. We think that this image pair
facilitates the evaluation of the color reproduction ability of the
respective dehazing method.

Greenhouse (Fig.4:7,8) The Greenhouse-set was captured in a
greenhouse to benefit from direct sunlight. The internal setting al-
lows to provide hazy image pairs with corresponding ground truth
images. The scene consists of many repetitions like the lighting
set or the trusses of the greenhouse as well as many natural sur-
faces like different kind of plants, wood and the windows of the
greenhouse. This image set could help to enhance dehazing algo-
rithms based on RGB- and NIR-image fusion. Algorithms based
on combining the details of the RGB- and NIR-image only may
have difficulties with the leaves of the plants in the setting be-
cause the NIR-image reflects a brighter surface in these parts than
the RGB-image.

Natural (Fig.5) To provide some natural sceneries as well, we
also included a data set which contains outdoor daylight images
without corresponding ground truth. This set includes mountain
panoramas, urban architecture and different structures and sur-
faces like rooftops, concrete, dressed stone, moss and green.

Sequences (Fig.6)
Additionally, we provide six sequences that enable to evalu-

ate the consistency of dehazing algorithms across successive im-
age frames. The sequences are denoted as Bicycle Ride (daylight,
indoor, artificial haze), Rhythmic Gymnastics (daylight, indoor,
artificial haze, with 3 different backgrounds), Mountain Pan, and
Mountain Cable Car. For video processing it is not only impor-
tant to get high-quality processed single frames but it is even more
important that rendered image sequences do not show temporal
artifacts. As we captured both channels simultaneously we can
provide image sequences with camera panning or movements in
front of the camera to evaluate algorithms spatially and tempo-
rally as well. In the Rhythmic Gymnastics-scenes we provide dif-
ferent background colors (white, green and black). Since these
sequences include movements, there is no ground truth available.

Evaluation
In this section, we exemplarily present results of various de-

hazing algorithms to show the advantage of a reference based ob-
jective evaluation. For this purpose, we present the results pro-
duced by the algorithms of Nishino et al. [10], Meng et al. [4],
and Tarel & Hautière [11] which are all publicly available. The
parameters are set to the ones suggested by the authors. Further-
more, for selected images we have included results from Tang
et al. [7] and the algorithm of Connah et al. [17].

Regarding previous image dehazing publications, the
restoration quality of different algorithms is often assessed only
visually which is a highly subjective evaluation criteria. In [8],
the authors mention that the only existing method for a quanti-
tative interpretation of the dehazing performance is a blind mea-
sure introduced in [25] and also used in [11]. In [25], the authors
present blind quality metrics that base on the gradient of visible
edges in the image before and after contrast restoration. First,
the value e denotes the ratio of newly visible edges, i.e. positive

values reveal the ability of the dehazing method to restore edges
which were not visible in the input image but are existent in the
processed one. Since only the plain number of edge pixels is eval-
uated, this measure can not distinguish between true edges that
become visible after dehazing and artificial edges that are gener-
ated by the restoration process, e.g. noise. Second, the ratio of the
image gradient norms between the restored and the hazy image is
computed. An increase in the gradient norm indicates a contrast
stretch. The indicator r̄ specifies this average gain of visibility
level. Important to note is that both measures only operate on
gray-value images and thus do not take into account any color in-
formation. Since most of the considered algorithms are tested on
images that have a resolution comparable to the VGA standard,
all images have been resized to 800×450 pixels and converted to
a bit depth of 8-bit before processing. Figure 7 depicts the results
and blind quality measures of different dehazing methods applied
to one of the images from the Natural data set. Please note that
for these images no ground truth is available. One can observe
that all methods are able to increase the contrast and to recover
structures that are not visible in the hazy input images. The given
quality scores are in accordance with these observations.

Since the presented dataset additionally consists of selected
image pairs with ground truth, we are able to apply several full
reference based quality metrics. To be precise, we list the widely
used mean structural similarity (SSIM) [26] and visual informa-
tion fidelity (VIF) [27] measures. To take into account the color
information we also computed the feature similarity index includ-
ing the chrominance information (FSIMc) proposed by [28]. Ad-
ditionally, we applied the color-image-difference (CID) metric,
which was introduced in [29]. The outcome of all these measures
lies in the interval between zero and one. However, please note
that while SSIM, VIF, and FSIMc values close to one indicate
perfect reconstruction, a CID value near zero represents a perfect
match. In figure 8 the restored images as well as the correspond-
ing values of the quality metrics are presented. The SSIM (except
for one of the Innolab images) as well as the VIF values are higher
compared to the values computed on the hazy input. This indi-
cates that the restored images contain more structures resulting in
an increase in visual information. The positive values of e and
the r̄ values greater than one further indicate that the output im-
ages contain more edge pixels and that the contrast of the edges is
enhanced, respectively. However, the range of both values is not
consistent across the two different input images. Especially the
e values corresponding to the restored Innolab-images differ in a
great extend from the values achieved after processing the Green-
house-image. Thus, it is very hard to quantify which value range
corresponds to an acceptable outcome. The authors of [8] already
mention that increasing the local contrast too strong will result in
higher values of the indicator r̄. As a result, a moderate value for
r̄ seems to be best which is hard to determine in practice. On the
contrary, the reference based quality measures allow for a con-
sistent evaluation across several input images. The mean ranking
across the four different metrics reflects the visual perception of
the restored images.

Another aspect one can deduce from figure 7 and 8 is that
although all methods recover missing structures, the color repro-
duction seems to be one of the major difficulties in image dehaz-
ing. Quantitatively, this can be seen for example in the last row
of figure 8, where high values of SSIM and VIF indicate the best
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Figure 4: The RGB/NIR data set provides hazy RGB and NIR image pairs (2,4,6,8) with corresponding ground truth image pairs (1,3,5,7)
for visual and mathematical comparison

Figure 5: The RGB/NIR data set Natural contains mountain panoramas and urban architecture to evaluate various surfaces and structures

reconstruction of image structures, but the tinged outcome results
in a large color difference CID.

To conclude, we believe that reference ground truth images
will definitely simplify and encourage the development of new

approaches that can face the problem of accurate color reproduc-
tion. Reference based quality metrics can be calculated quickly,
they are easy to interpret and their outcome is in accordance with
the visual perception.
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Figure 6: Synchronous capture of RGB and NIR sequences for the evaluation of algorithms with multiple image input

(e = 1.680, r̄ = 4.333) (e = 0.628, r̄ = 2.964)

(e = 0.780, r̄ = 1.876) (e = 0.437, r̄ = 2.523) (e = 0.359, r̄ = 1.877)
Figure 7: Restoration results of different dehazing methods for an image from the Natural dataset. Top row, from left to right: Hazy input
image. Result of Nishino et al. [10]. Result of Meng et al. [4]. Second row from left to right: Result of Tarel & Hautière [11]. Result of
Tang et al. [7]. Result of Connah et al. [17].

Conclusion
In this paper we present a new multispectral RGB/NIR data

set which meets the image quality level of professional motion
picture imaging in respect of resolution, dynamic range and color
reproduction. The data set offers the ability to evaluate and com-
pare single as well as multiple input dehazing algorithms, due to
the synchronously captured NIR images. Furthermore, the ex-
istence of ground truth images enables an objective evaluation
while the provided image sequences are useful to assess the tem-
poral consistency of the recovered images. Our preliminary re-
sults reveal that further developments and improvements of de-
hazing algorithms are required to recover natural colors and to
meet a professional image quality level.
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Figure 8: Restoration results and quality metrics for the Greenhouse and Innolab images. Top row: Ground truth color image. Second
row: Hazy input image. Third row: Result of Nishino et al. [10]. Fourth row: Result of Meng et al. [4]. Fifth row: Result of Tarel &
Hautière [11]. Sixth row: Result of Tang et al. [7]. Last row: Result of Connah et al. [17] (where available).
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