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Abstract. In this article, we propose a knowledge-based taxonomic
scheme of the objective image quality assessment metrics including
the key concepts involved for each approach. Our classification
is constructed according to six criteria based on the information
available at each stage of the design process. The novelty of
the present classification scheme is that the six layers are linked
via a single concept where each layer represents a single type
of knowledge about: 1) the reference image, 2) the degradation
type, 3) the visual perception field, 4) the human visual physiology
and psychophysical mechanisms, 5) the processes of the visual
information analysis, and finally 6) knowledge about perceptual
image representation and coding. The first layer helps delineate
boundaries between full-reference (FR) image quality assessment
metrics, that are further classified through layers 2–6, and other
families (reduced-reference [RR] and no-reference [NR]). In addition,
gradual degrees are considered for knowledge about specific areas
related to visual quality evaluation processes. The proposed
taxonomic framework is intended to be stepwise, to help sorting out
the fundamental ideas behind the development of objective image
quality metrics often working on the luminance channel or marginally
on the RGB channels. The aim is to congregate the already
published classification schemes and to methodologically expand
new aspects according to which an efficient and straightforward
classification of the image quality assessment algorithms becomes
possible. This is significant because of the increasing number of
developed metrics. Furthermore, a systematic summarization is
necessary in order to facilitate the research and application of image
quality techniques. c© 2016 Society for Imaging Science and
Technology.

INTRODUCTION
The evaluation of visual data quality is a critical task due
to the new ways of consuming multimedia contents and
the rapid growth of their availability. Indeed, there is a
wealth of research on both subjective and objective image
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quality assessment (IQA) measures. Their goal is to provide
computational models that can automatically and reliably
predict the perceived quality of images across different scenes
and distortion types. In other words, the predicted scores
should be as close as possible to those that would be given by
an average human observer. The latter task was the purpose
of the Video Quality Experts Group (VQEG)1 that validates
and establishes subjective and objective standard approaches
for visual data quality measurement.

Therefore, challenges behind developing objective image
quality metrics (IQMs) are manifold. First, they can be
employed for image quality monitoring during image
acquisition, transmission and reproduction. Second, they can
be deployed for benchmarking image processing algorithms
designated for restoration and enhancement. Third, they can
be embedded in compression and communication systems
for parameter optimization.2–4 In fact, an increasing range
of applications and fields need automatic evaluation of
the image quality either because of the impossibility to
ensure human inspection or because of the plethoric amount
of data. Indeed, the number of images and video hours
uploaded/downloaded every minute to/from the web is just
elusive. Furthermore, for a content to be noticed among
all the incoming ones, high visual quality as well as high
creative skills are required; hence new tools and editors
dedicated to online image processing are being proposed.
In addition, new research efforts are directed toward the
extension of search engines to exploit the deep layer of the
web not yet publicly accessible. This latter is significantly
bigger than the visible part of the web everybody is browsing
nowadays.5,6 On the other hand, the IQA issue can be dealt
with in a different way. In some cases, IQMs are designed
to estimate the performance of imaging systems that pertain
to printing technology, optical systems, capture systems,
image quality engineering, etc. In this article, we focus only
on computational metrics that take into account the visual
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Figure 1. Relationship between subjective and objective image quality
assessment.

perceived image quality, image fidelity or image distortion
since they constitute the largest majority of quality metrics
in the literature over the last 15 years.

Nevertheless, computational quality assessment metrics
are usually benchmarked using subjective test results that
constitute the ground truth. The aim of these experiments
is to provide accurate, consistent and reliable predictions
of the perceptual image appreciation. However, subjectively
evaluating the quality of image content is an extremely
difficult task due to the time and cost involved. Indeed,
reliable subjective tests require the participation of a large
number of human observers, evaluating the quality of images
under restricted and controlled psychometric experimental
conditions. In addition, perceptual quality may vary from
one individual to another depending on observers’ general
experience (if he/she is expert in image processing or not), on
their personal appreciation and may vary according to their
mood. To alleviate this problem, the given individual ratings
are aligned and averaged to compute the Mean Opinion
Score (MOS). In some cases where reference images are
also evaluated, the Difference Mean Opinion Score (DMOS)
is derived instead of the MOS. More details on subjective
ratings processing used to calculate the MOS/DMOS can be
found in Ref.1.

Despite their drawbacks, subjective IQA measurements
are essential to establish the perceptual predictive perfor-
mance of objective models. As recommended by the VQEG,1
this latter is defined in terms of several attributes namely
correlation, consistency and monotonicity. Thus, Pearson’s
Correlation Coefficient (PCC) gives indication on linear
correlation between objective and subjective ratings. Root
Mean Squared Error (RMSE) and Mean Absolute Error
(MAE) are computed to quantify the prediction accuracy.
Finally, Spearman Rank Order Correlation Coefficient
(RHO) and Kendall Rank Order Correlation Coefficient
(TAU) serve to indicate the monotonicity measure. There
exist an important number of image quality databases
publicly available to the research community. They are
systematically surveyed and analyzed such as in Refs. 2, 7
and 8. Figure 1 depicts the relationship between objective and
subjective visual data quality evaluation approaches.

In addition, in order to strike a balance between
precision and generality, we need to use some general terms
so as to maintain the reader’s attention on the core of our
contribution rather than on the very complex terminology
of image quality. Indeed, we use the term ‘‘quality’’ to refer
to perceived visual quality, fidelity, similarity and distortion
quantification. We also use the term ‘‘metric’’ to refer to
many other different terms employed in the literature, such
as model, measure, index, criterion and formula. For any
discussion about image quality terminology, the reader is
referred to Refs. 9 and 10.

In the present article, we propose a new knowledge-
based taxonomy for the state-of-the-art objective FR quality
metrics of grayscale still images. The purpose is more
than just a summary or collection of IQA metrics. It is
a hierarchical classification framework for understanding
the relationships among the different categories of IQMs,
as well as the connections between image quality on one
side and knowledge about visual content and human visual
system (HVS) on the other side. A knowledge structure of
IQA metrics would provide a checklist to the image quality
community. It is intended to help better see which research
topics need to be deepened and more investigated in the
future.

The article is organized as follows: section ‘‘Classifica-
tion of FR image quality metrics (IQMs)’’ provides a critical
overview of the prior classification schemes of image and
video quality assessmentmetrics, the novelty of the proposed
knowledge-based framework as well as a general description
of this latter. Also, a brief outline on how to progress
through the six layers of the proposed classification scheme
is given. Each layer (from layer 1 to 6) representing a type
of knowledge is then comprehensively described in section
‘‘Knowledge about the Environment’’ to section ‘‘Knowledge
about Perceptual Image Representation and Coding’’. Finally,
we conclude the article with discussion on the challenges,
possible trends and key directions of the visual quality
evaluation field.

CLASSIFICATIONOF FULL-REFERENCE IMAGE
QUALITYMETRICS (IQMS)
In this section, we expose a new hierarchical classification
framework for FR quality assessment metrics of monochro-
matic still images. There exists a long array of classifications
of image and video quality assessment metrics in the
literature, but only one taxonomic scheme introduced by
Engeldrum,9 as mentioned further. We then point out the
shortcomings of the prior classification schemes and describe
the new taxonomy proposed in this manuscript.

Prior Work
Given the rich literature of visual data quality assess-
ment, it seems worthwhile to bring systematic summa-
rization and comparison studies in order to facilitate the
search and application of image quality techniques. Indeed,
the very first classification of IQMs has been proposed
in 2002 by Avcibas et al.11 who divided the metrics
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into pixel-difference-based, correlation-based, edge-based,
spectral-based, context-based and HVS-based measures. A
short taxonomy has been later defined in 20049 where
Engeldrum distinguished ‘‘Beauty Contest’’ and ‘‘Detec-
tion/Recognition’’ models employed for perceived quality
evaluation and for visual systems, devices and algorithms
benchmarking, respectively. Each of the two categories
is further split into what he called ‘‘Ness’’-based and
‘‘Physically’’-based image quality, which refers to what is
currently known as subjective an objective IQA, respectively.

Since then, many other reviews and classifications of
IQMs have been published,3,4,12–30 in order to serve the
same purpose. Most of these articles appeared after 2010
where researchers particularly focused on objective FR
IQA metrics. Among these, Engelke and Zepernick made
a survey of the perceptual-based image and video quality
metrics with special emphasis on quality of service.12 The
proposed scheme reported on (a) subjective versus objective
quality approaches, (b) psychophysical versus engineering
approaches, and (c) reference-based classification. In a
different fashion, Gao et al. spotlighted the available
biologically inspired image quality models and divided
them into bionics and engineering categories referred to as
‘‘bottom-up’’ and ‘‘black-box’’ approaches, respectively.13 As
for Lin and Kuo, a distinction has been outlined between
model-based and signal-driven perceptual visual quality
metrics.14 Each of the classifications presented in Refs. 12–14
considers only two categories for the objective perceptual
FR IQMs; which is too restrictive compared to the growing
number of approaches.

Several proposals have been published later with the
aim to give more thorough classification schemes that
encompass a wider range of IQMs. Chandler and Hemami15
divided them into three groups including (a) mathematical
convenient metrics, (b) near-threshold psychophysics-based
metrics where a frequency-based decomposition is employed
in order to quantify the visual fidelity of distorted images, and
(c) a third unnamed category that brings together metrics
based on the premise that structural content of high quality
images most closely matches that of their original version.
Another literature review of subjective and objective image
quality algorithms according to their followed strategies
and used techniques can be found in Ref. 16. In the
latter, Thung and Raveedran categorized IQMs into FR, RR
and NR families. The FR family is, in turn, decomposed
into mathematical metrics, HVS-based metrics and a third
unnamed category of metrics. A similar classification has
been introduced in Ref. 17 by Pedersen and Hardeberg who
congregated the schemes presented in Refs. 15 and 16. They
described four groups of metrics namely (a) mathematically
based metrics, (b) low-level metrics, (c) high-level metrics
and (d) a group of other metrics which either do not fit
in the previous classes or use combined strategies. More
recently, Chandler proposed a comprehensive survey dealing
with full-, reduced- and free-reference IQMs.4 Likewise,
FR metrics are categorized into methods based on (a)
HVS models, (b) image structure, (c) image statistics and

machine learning, and (d) a general category based on
other techniques. Although surveys given in Refs. 4, 15–17
provided extensive lists of references, their major weakness is
related to the use of a general class that encloses all the quality
metrics that do not fit the previously defined categories. This
is due to the very large amount of concepts andmethods used
in the IQA framework, which makes it so hard to delineate
boundaries between them. However, the use of a general
category widely limits the classification scheme.

Other researchers defined more classes in their schemes
as in Refs. 18 and 19. Indeed, Chikkerur et al. introduced a
classification scheme for FR and RR objective video quality
assessment models.18 According to the suggested scheme,
three preliminary classes are defined: (a) traditional point-
based metrics, (b) natural visual characteristics divided into
natural visual statistics and natural visual features classes
and (c) perceptual models including frequency and pixel
domain categories. A different categorization was suggested
by Akramullah in Ref. 19 for subjective and objective video
quality assessment. So, metrics are sorted according to
the following categories: (a) error sensitivity, (b) structural
similarity, (c) information fidelity, (d) spatio-temporal, (e)
saliency and (f) network-based approaches. Both reviews in
Refs. 18 and 19 give performance comparison of presented
techniques, with the aim to demonstrate the differences
between them. Nevertheless, it is still hard to categorize
some models and techniques since there are bridge concepts
involved in many image and video quality assessment
metrics. This makes it unlikely to classify one metric in one
class rather than in another since there are no links between
the proposed classes.

Another interesting scheme was presented byWang and
Bovik in Ref. 3. The authors provided a classification of
IQMs based on three types of knowledge about: (a) the
reference image, (b) the distortion process and (c) the HVS.
Seven families of models are then distinguished following
this classification. They are all linked via a single notion,
namely knowledge. Furthermore, the HVS is extremely
complex and constitutes the main concept upon which
all bio-inspired image and video quality approaches are
built. The review aforementioned considers bottom-up and
top-down approaches for the latest stage of the classification.
However, knowledge about the HVS—when available—can
neither be simply considered without taking into account
the visual stimuli (image or video content, related coding
and representation), nor without accounting the multiple
aspects of the HVS (visual perception, related physiology
and psychophysics, information analysis mechanisms, . . .).
These notions need to be deepened and more detailed as
it is attempted in the present article. In addition to the
described works, one can cite other substantial surveys
and summaries,20,30 where the proposed categorization,
when provided, is similar to discussed ones. Furthermore,
some efforts have been dedicated to study and compare
the predictive performances of the objective quality ap-
proaches.14,17,18,28,31–33
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Motivation
The aforementioned surveys from the literature are un-
doubtedly very helpful and contain very high-level technical
material. However, most of the proposed classifications are
built upon a conceptual categorization approach, which is
based on what IQA metrics do. This may reduce the task
of visual data quality assessment to the testing of opponent
techniques. We do believe that the IQA problem should
be looked at as a ‘‘design process’’ where, according to the
progress of other related research fields, a given amount of
knowledge is available and may be efficiently exploited.

In this article, we develop a knowledge-based taxonomic
scheme of an up-to-date array of objective FR IQA algo-
rithms. It includes key relevantmodels from the conventional
approaches to the most prominent ones, with a primary
focus on computational metrics dedicated to the evaluation
of distortion or fidelity, constituting the vast majority of
IQMs in the literature. Hence, our aim is twofold: first,
we describe the diversity of categories of metrics and then,
we highlight the related types of information that have
led to this diversity. However, only abbreviated descriptions
of IQMs are provided for the classified IQMs since the
emphasis is on underlying connections between the different
categories rather on the technical aspects. Also, no analysis
of the predictive performance and computational costs of the
classified IQMs is performed.

The novelty of the present classification methodology
lies in the fact of showing the whole framework of IQA
algorithm development by defining a set of six layers for the
design process. The layers are linked via a single concept in
such a way that each layer represents a type of knowledge.
In addition, gradual degrees are considered for knowledge
about specific areas ranging from deep level to superficial
level. The proposed taxonomic scheme is intended to be
stepwise, to comprehensively review objective qualitymetrics
without focusing on specific color fidelity measures and help
sorting out the fundamental ideas behind their development.
It is worth noting that the proposed scheme is not intended to
include quality assessment metrics dedicated to video, audio,
multimodal or any other type of content.

Description of the Proposed Knowledge-based Taxonomy
The proposed knowledge-based taxonomy is illustrated in
Figure 2. It first classifies an IQM according to the prior
knowledge about the reference image considered as the
pristine version. We obtain FR, RR or NR families of models
whether this information is complete, partial or unavailable
at the quality prediction stage. The second layer considers
the knowledge about the possible degradations which can
be seen as very important information to be supplied about
the environment. In this way, IQMs can be either designed
for a specific distortion or general purpose according to
whether or not information or assumptions about the nature
of the distortion are exploited. This allows definition of
the distortion-aware metrics and the fidelity metrics. Our
classification scheme further subclassifies the distortion and
fidelity metrics according to the knowledge about the visual

Figure 2. Overview of full-reference, reduced-reference and no-reference
image quality assessment approaches.

perception into biologically inspired metrics (where this
type of information is required) and traditional error-based
ones (where no information about visual perception is
used). As per the application level of the findings on
visual physiology and cognitive phenomena, the biologically
inspired techniques in the fourth layer can be considered
either perceptual or signal-driven models, respectively. In
turn, the category of perceptual models encompasses vision-
model-based and embedded visual attention (VA) metrics
depending on the degree of understanding of the visual
information analysis mechanisms that can be deep or more
or less superficial. As for the signal-driven class, it covers
both natural scene statistics (NSS) and visual features-based
metrics as well as machine learning oriented techniques.
The last layer of our classification takes into account the
utilized knowledge about perceptual image representation
and coding which generates twenty different subclasses
for the whole existing objective FR IQMs. In this sense,
each IQM belonging to one of the ten subclasses of layer
6 of Fig. 2 (content-independent metrics, . . . mid-level
properties-based metrics) can be either distortion-aware
metric or fidelity metric, as they have been broken down in
layer 2 of the taxonomy.

KNOWLEDGE ABOUT THE ENVIRONMENT
In this section, two layers of the proposed scheme are de-
scribed. They concern knowledge about the reference image
and knowledge about possible degradations, respectively.

Knowledge about the Reference Image: Full-reference,
Reduced-reference and No-reference IQMs
Depending on the amount of available information about the
reference image at the time of estimation of the distorted
version(s), it is rather common to distinguish three broad
families of models in the literature as schematized in Figure 3
below. Note that the feature extraction step is optional for
both FR and NR IQA families of models.
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Figure 3. Knowledge-based taxonomic scheme for objective image quality measurement models. Each layer (1–6) represents the type of knowledge
required to make the subclassification at each stage. The horizontal axis represents the level of knowledge ranging from deep level to superficial level of
knowledge.

√
Full-reference models (FR)

Here the reference image is available when evaluating
its impaired version(s). The task consists in a pairwise
comparison and image quality evaluation can be seen in
that case as an image fidelity problem. The prediction is
expected to be fast and to correlate with human subjective
appreciation. Some sets of image features can eventually be
extracted prior to the image quality evaluation. When one
of the features requires both reference and test images to be
calculated, the quality metric falls in the FR category.
√

Reduced-reference models (RR)

In practice, it is often impossible to have the reference
image for the evaluation of the distorted version(s) available.
This is the case of broadcasting or streaming applications, to
give a few examples where there is no access to the pristine
content at the user side. Since the reference image is not
provided, a feature vector giving relevant information can be
transmitted with the aim to control the quality of transmitted
visual data.Methods based on these features are fast, but their
lack of genericity in addition to their variable performance
make their use restricted to some specific applications.2
√

No-reference models (NR)

Also called ‘‘blind models,’’ they attempt to evaluate
the quality of an image without any cue about its reference.
They are often distortion-oriented and are complicated to
elaborate but are very useful and interesting for many
applications. The feature extraction step here is optional.

Knowledge about the Degradation: Distortion-aware
versus Fidelity IQMs
In this section, we outline the difference between distortion-
aware and fidelity IQMs. Indeed, the a priori distortion
nature and/or intensity an image undergoes may be available
at the stage of appreciation of perceived quality. Thus an
IQM can be considered as distortion-aware (also called spe-
cialized) or distortion-unaware (commonly called generic).
Traditionally, the distortion-aware family of metrics requires
knowledge or assumptions about the type of the distortions
since the perceived quality may be affected by different
artifacts. Research in this category has been conducted
on designing algorithms that directly measure the possible
impact created by specific image distortions. Most of the
efforts have been directed toward NR and RR IQMs as
well as video quality metrics, but very few are the works
that have been interested in specialized FR quality metrics
of still images. In addition to metrics early introduced in
Refs. 34–36 but never confronted to subjective image quality
evaluation, number of distortion-aware metrics have been
developed and benchmarked. They are generally dedicated
to noise measure and to coding applications, as discussed in
section ‘‘Knowledge about Perceptual Image Representation
and Coding’’.

On the other hand, generic approaches are either fidelity
metrics, consisting of perceived image differences in the
presence of both original and test images, or perceived quality
metrics. Since our article deals only with FR metrics, then
distortion-unaware category is referred to as fidelity one.
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Furthermore, the real challenge for FRmetrics is to be robust
to wide panel of distortions. This property still remains very
difficult since the number of degradations an image can be
subjected to is somewhat unlimited. In addition, an image
may undergo more than a single degradation at a time.

KNOWLEDGE ABOUT THE HUMANVISUAL SYSTEM
In this section, three layers of the proposed scheme that
concern knowledge about the HVS are introduced.

Knowledge about Visual Perception: Bio-inspired versus
Raw-error IQMs
Fig. 2 shows that objective FR IQA algorithms can be, in turn,
categorized on the basis of the knowledge about the outcomes
of the visual perception field. Visual perception is the ability
to interpret and understand the surrounding environment
by processing information contained in the retinal images
acquired by our eyes. This allows humans to distinguish
objects, events, people and situations. Visual perception is
very complex and requires some awareness coming from
different fields such as psychology, cognitive science and
neuroscience.

Raw-error-based measures do not rely on any infor-
mation about human vision while biologically inspired
quality metrics are built upon the characteristics or the
functionalities of the HVS and the visual cortex. This makes
them more consistent with the subjective judgment in spite
of the fact that knowledge on the visual process is still
incomplete.37

√
Biologically inspired IQMs

Considerable efforts have been devoted to the devel-
opment of new objective quality metrics accounting for
human vision characteristics. A variety of models belonging
to this category exists and can be classified using our scheme
according to the knowledge about the HVS anatomy and the
psychophysicalmechanisms. Hence, the biologically inspired
metrics can be split into perceptual and signal-driven
categories as shown in section ‘‘Knowledge about Physiology
and Psychophysical Phenomena: Perceptual versus Signal
Driven IQMs’’.
√

Raw-error-based IQMs

Initial investigations on objective IQA focused, for
decades, on mathematical metrics based on error quantifi-
cation between a pair of images (original and impaired).
Among this category, signal to noise ratio (SNR), peak
signal to noise ratio (PSNR) and mean squared error (MSE)
were derived by hypothetically considering that the image
distortion is produced by only additive noise, which is
independent from the signal. However, the latter metrics
do not rely on any model of noise. They can be seen
as the precursors and are still widely used especially for
compression evaluation purposes. Their popularity is due to
their simplicity and their very low computational cost, at the

price of a lack of correlation with human judgment. More
discussion about the predictive performance of the raw-error
metrics can be found in Refs. 33, 38–40.

Knowledge about Physiology and Psychophysical
Phenomena: Perceptual Versus Signal-driven IQMs
The HVS is very complex and not fully understood yet.
Most visual properties of the HVS are not intuitive,
hence the development of physiological and psychophysical
experiments that have been conducted to understand the
involved phenomena. Psychophysics involves the study of the
response (psycho) to a known stimulus (physics) in order to
establish an empirical relationship between them.13,37

As it appears from Fig. 2, two different approaches can
be discerned to formulate the biologically inspired image
quality evaluation problems according to whether we make
use of the research findings of the vision community or just
make assumptions/approximations of the functionalities.
On the one hand, perceptual algorithms’ design requires
scrupulous understanding of the HVS as well as the inherent
psychophysical features, such as Contrast Sensitivity Func-
tions (CSF), luminance and contrast masking phenomena,
perceptual decomposition into channels, Just Noticeable
Difference (JND), saliency andVA. Thus, theHVS functional
components that may be relevant to the process of image
quality appreciation are simulated, combined and integrated
into the quality prediction schemes.

In contrast, the signal-driven approach leads to establish
visual perception behavioral representations by making
hypotheses about the overall functionalities of the HVS
viewed as a black box. Systems that belong to this family
simulate theHVS feedbackwhen evaluating the visual quality
of an image but do not necessarily operate in the same
manner. This difference does not matter provided that the
qualitymeasure successfully predicts the human judgments.3

Knowledge about Visual Information Analysis Mechanisms
Tremendous work continues to be devoted to develop IQMs
with the constraint of being consistent with the human
judgment of quality. Knowing that the quality appreciation
activity is supported by the analytical reasoning abilities
of human, one can understand why it may vary from one
individual to another for the same visual data. This fact may
be taken into account in order to distinguish the scenario-
based (perceptual models) and the hypothesis-based (signal-
driven methods) analytical techniques in terms of the
knowledge about the mechanisms of visual information
analysis.
√

Vision modeling versus VA for IQMs

Both perceptual and signal-driven IQMs are developed
to mimic the cortical decomposition performed by the HVS.
However, the first family of techniques requires in-depth
understanding of the human visual mechanisms.

Vision modeling approaches attempt to scrupulously
build an HVS model with regard to quality evaluation,
whereas another recent trend (attention-based models)
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aims at integrating VA principles into the process of
quality evaluation. Most of those models are based on
the hypothesis that the image distortion in salient regions
generates more annoyance for the observer. However, using
saliency information in the quality function in order to
improve its predictive performance remains an open issue
since it depends on many parameters such as the features
used for saliency prediction and/or the fusion of conspicuity
maps.41

√
NSS, visual features andmachine learning oriented IQMs

Unlike model-based and attention-based philosophies
which consist in designing models related to ‘‘what’’ does
the HVS achieve when shown a distorted image, the
signal-driven image quality measures operate based on
assumptions on ‘‘how’’ the overall human visual cortex
respond to such stimuli. They consider the HVS as a
black box and focus on (a) signal modeling using Natural
Scene Statistics for example, (b) processing of visual signals
under consideration using low-level image attributes (visual
features) or (c) input–output matching (machine learning).

KNOWLEDGE ABOUT PERCEPTUAL IMAGE
REPRESENTATION AND CODING
In the context of IQA, the content can undergo some
transformations and features computation prior to the
quality/impairment measurement when it is believed that
this process is relevant to the subjective quality appreciation
and may positively affect the predictive performance of
the algorithm. This last criterion allows dividing each of
the categories obtained in the previous stage into two
subcategories as depicted in Fig. 2. It is thoroughly explained
in the following subsections. We also provide examples,
together with abbreviated descriptions, of metrics that
belong to each defined class. The chosen IQMs examples
have significant insights in the current state of the art
and derive from various approaches considered in the
classification.We also categorize the IQMs according to their
respective classes as defined in taxonomic scheme of Fig. 2.

Vision Modeling-based Metrics: Content-independent
versus Content-dependent IQMs
Emphasis of the content-independent model-based mea-
sures is placed on human visual properties including
the well-known and deeply explored CSF, temporal/spatial
multichannel decomposition, various masking effects, JND
function and luminance adaptation. Earliest HVS-inspired
image distortion measure (DM) has been developed by
Mannos and Sakrison42 who exploited, for the first time,
vision science findings to the image processing field.
They proposed a model of human CSF that is still quite
popular and widely used in computational metrics. The
rationale behind using such a function is to account for the
nonuniform sensitivity of theHVS and to filter images as they
were perceived by the human eyes. The DM is then given by
the squared difference between the resulting filtered images.

Later, Faugeras43 used the CSF to build the first color image
DM. More elaborate FR impairment estimators mimicking
the HVS have been researched where the basic idea is
the multichannel decomposition drawn from Campbell and
Robson’s experiment.44 In fact, several multiple subband
vision models have been proposed using sophisticated
transforms such as the cortex transform in Ref. 45 which was
used further in a modified version to design the well-known
Visible Difference Predictor (VDP) by Daly.46 It provides a
visibility map indicating the areas where two images differ
from the human perception point of view. The Sarnoff
Visual Discrimination Model (SVDM) was designed by
Lubin 47 and uses a Laplacian pyramid to separate the
spatial frequencies of the image. Safranek and Johnston48
used the generalized quadrature mirror filter transform
for decomposing the image signals into sixteen subbands
of the frequency space. Following the same objective,
Heeger and Teo introduced an IQM in Ref. 49 including
a steerable pyramid decomposition with six orientations.
The latter transform has also been used to perform the
spatial decomposition of images. It resulted into the design
of the Perceptual Distortion Metric (PDM) by Winkler.50
After that, Gao et al.51 proposed the incorporation of a
technique based on multiscale geometric analysis. Though,
the complexity of the multichannel decomposition imposes
heavy computational and memory requirements, even for
moderately sized images15 compared to the single-channel
approaches. These latter demonstrate a relative simplicity but
a less predictive accuracy since they are not related to the
neural responses in the primary visual cortex.

In order to meet predictive performance requirements
of IQA algorithms as well as computational efficiency, simple
subband decomposition transforms have been tested giving
satisfactory results. Some examples includemetrics using the
Discrete Cosine Transform (DCT) such as in the DCT-based
Perceptual Error Measurement (DCT-PEM) proposed by
Watson in Ref. 52 Moreover, Watson et al.53 proposed a
method that can quantify noise by means of the wavelet
transform. Lu et al. introduced a metric in Ref. 54 based on
wavelet transform that takes into account the variance of the
visual sensitive coefficients in order to measure the quality
of a distorted image. The wavelet version of the Daly’s VDP
has been suggested by Bradley in Ref. 55 under the name
of Wavelet Visible Difference Predictor (WVDP). The Haar
wavelet has been later employed by Lai and Kuo in Ref. 56
to implement an IQM for compressed images. On the other
hand, DCTune has been proposed byWatson in 1993.57 It is a
tool originally developed for the visual optimization of DCT
quantization matrixes in the JPEG compression scheme.
It is based on the ‘‘image-dependent perceptual (IDP)’’
method to solve the bitrate–perceptual quality tradeoff. IDP
method implements the following properties of the HVS:
luminance masking, contrast masking, perceptual error and
JNDs, spatial error pooling and frequency error pooling.
DCTune has been commonly used within the image quality
community as an IQM.

70
IS&T International Symposium on Electronic Imaging 2017

Image Quality and System Performance XIV



The interaction of the eyewith image content is therefore
ill-considered by the first family of image quality measures
based on vision modeling. Humans instinctively analyze
the visual content whether they are asked to evaluate its
perceived quality or to perform a different test. Hence, in
the content-dependent IQA methods, HVS functionalities
are underlined rather than the HVS properties. The existing
models describe color vision, frequency-orientation analysis,
contour detection, perceptual and localization of patterns,
object discrimination, and visual memory. Criterion 4 (C4)
introduced by Carnec et al. is a quality estimator falling in
this category.58 It assesses perceived quality using elaborate
models of several processing areas of the visual cortex as
shown earlier but also by extracting structural information
from the representation of images in a perceptual space.
Albeit the C4 criterion is based on similarity measures, the
authors consider it as a RR IQM since it uses features as side
information that can be transmitted.

Visual Attention Integrated Methods: Top-down versus
Bottom-up Models
Approaches consisting in the integration of VA into IQM
—with the aim to potentially improve their predictive
performance—have been built upon experimental results
showing that the image distortion in salient regions is
more annoying for human observers.59 VA models are
incorporated in a number of other applications such as
object detection and recognition, image retrieval, image
retargeting and image/video coding.60 An overview of the
most significant saliency models in the literature is available
in Ref. 61. Computational VAmodels can be divided into two
groups: top-down models driven by visual processing tasks
and bottom-up models driven by low-level stimuli. From
the quality assessment point of view, the top-down family
of metrics is voluntary influenced by high-level features
such as semantic objects in the scene (faces, bodies,. . .)
or their location, while in the bottom-up category, it is
supposed that VA is driven by low-level information of the
scene (intensity, color, orientation,. . .).60 Several studies have
been conducted to evaluate the potential benefits brought by
incorporating VA into already existing and commonly used
IQA metrics62–71 by using bottom-up or top-down saliency
models, separately or jointly.

In addition to these investigations, novel algorithms
have been developed in the aforementioned framework.
Sadaka et al.72 integrated the famous bottom-up Itti’s
model73 into a NR sharpness metric using a multiplicative
weighting function. This metric is stated here because it was
the first original image quality measure in the VA-driven
class. Later on, Zhang et al. proposed a new bottom-up
saliency model named Saliency Detection by combining
Simple Priors (SDSP)74 used later to develop the Visual
Saliency-Induced Index (VSI).75 The visual saliency map is
used as a weighting function to characterize the importance
of local image regions. Top-down saliency models have
especially been used for the design of NR perceptual quality
measures. To the best of our knowledge, one original

algorithm can be found for the FR metrics where Saha and
Wu designed the Global Local Distortion using the Spectral
Residual- based saliency metric (GLD-SR) and the Global
Local Distortion using the Phase Fourier Transform-based
saliency metric (GLD-PFT).76

After the effervescence known by this field, it has been
concluded in Ref. 59 that the VA embedding is generally
positive; however, it ismore significant in video than in image
applications. This is probably due to the fact that the new VA
models have been tested onto already existing image quality
measures especially because of their computational efficiency
and competitive accuracy. It is consistent to think that if new
metrics are developed by embedding aVA strategy, the results
would be more successful as in the case of VSI introduced in
Ref. 75.

Natural Scene Statistics: Structural Similarity versus
Information Theoretic Based IQMs
The class of FR IQMs based on statistical features can be
subdivided into structural similarity and information theo-
retic methods according to whether the concern is focused
on image fidelity or on information fidelity, respectively.

One of the findings on the HVS is that it is highly
adapted to extract structural information from images. By
following the assumption that image quality degradation
is due to the loss of structured information in images,
then designing a quality metric that measures structural
distortions should have good correlation with the perceived
image dissimilarity.77

In Ref. 77, Wang et al. suggested that the HVS behavior
can be decomposed into three independent channels:
Luminance, Contrast and Structure. The universal quality
index (UQI) has then been constructed using the product
of the comparison equations of the three image components
pairs. The formula incorporates the mean pixel intensity
values, the standard deviation of the pixel intensity values and
the covariance between pixel intensity values of the reference
and the test images.

It has been found later that the UQI suffers from
an instability problem. One solution to solve the latter
problem has been suggested in Ref. 78 by making some
modifications to the luminance, contrast and structure
comparison definitions. The changes consist of introducing
positive nonzero parameters (α, β , γ ) to define the
importance of each of the three components, which has led to
a new qualitymetric called structural similarity index (SSIM)
that uses the same image attributes as the UQI.

Three variants of the SSIM have been suggested
later including the multiscale SSIM (MS-SSIM)79 which
incorporates the variations of the image resolution and
viewing conditions, the SSIMwith automatic down-sampling
(MSSIM),80 and the Complex Wavelets-SSIM based on the
principle that structural information ismore contained in the
phase than in the magnitude of the signal.81

Shnayderman et al.82 proposed a FR quality metric for
multichannel image based on SingularValueDecomposition.
TheM-SVDmeasures the distortion as a function of distance
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between the reference and test image block singular values. A
globalmeasure is then derived from the individual DMs of all
images’ block pairs. Thus, the global error is the average of the
differences between the distance measure for each block and
themedian of all block distancemeasures. Based on the same
theorem, the R-SVD quality predictor has been developed
later by Mansouri et al.83 where the right singular vector
matrix of the original image is used.

Since 2004, a new approach to IQA problems has
emerged and new quality metrics have been developed using
an information and communication theoretic framework.
The information fidelity criterion (IFC)84 and its extensions
visual information fidelity (VIF) index and pixel-basedVIF85
metrics proposed by Sheikh et al. belong to a different class
of IQA methods, built upon NSS models. The employed
premise in the present case is that visual fidelity can be
accurately quantified if it is known how much Shannon
information the test image brings about from its reference
version. Following Shannon’s communication scheme, the
transmitter, the channel and the receiver correspond to the
reference source image, the distortion model applied on it
and the test generated distorted image, respectively.

An example of specialized IQMs belonging to the NSS
class is the local standard deviation-based image quality
(LSDBIQ). It has been developed by Gore et al.86 to assess
the quality of JPEG-coded images. The approach is based on
the comparison of the local standard deviation of the original
and test images.

Visual Features Based Methods: Spatial Domain versus
Frequency Domain Based IQMs
Metrics based on natural visual statistics principles discussed
in section ‘‘Natural Scene Statistics: Structural Similarity
versus Information Theoretic based IQMs’’ are particularly
attractive due to their mathematical foundations which
facilitate their analysis and optimization. However, because
these metrics do not consider the detectability of distortions,
their applicability to determine whether or not a distorted
image is of perfect visual quality remains unclear.15 The
idea to overcome this drawback is to use some well-known
signal processing techniques that have similar features as the
human visual perception. Image quality metrics relying on
the principles of characterizing low-level but also mid-level
visual properties are reported in this subsection.

A new era has been initiated by the development
of image quality measures that incorporate global HVS
properties to simulate the perceived reference and test
images. The Picture Quality Scale (PQS) for achromatic
image coding87 and the Noise Quality Metric (NQM) for
image restoration purposes88 are typical examples. Both PQS
and NQM belong to the distortion-aware IQMs class. PQS
measures the image quality degradation caused by coding
impairments. It is a linear combination of three weighted
factors of distortion, including the amount of error, the
location of error and the structure of error. NQM actually
includes two quality measures: a DM (DM) computed to

quantify the effect of linear frequency distortion, and aNQM
computed to measure the effect of additive noise.

From the beginning of the 90s, one can notice a revival
of the raw mathematical metrics including SNR and PSNR
combined to some basic human visual features in the state
of the art of image quality evaluation. This has resulted in
WSNR, SNRWAV1, SNRWAV2, SNRW , PSNRW , PSNR-HVS,
and PSNR-HVS-M explained below.

Theweighted version of the signal to noise ratio (WSNR)
has been derived by Mitsa et al.89 using the spatial Contrast
Sensitivity Function (CSF) defined as the ratio of the
averaged weighted signal power to the average weighted
noise power. The HVS-based PSNR (PSNR-HVS) developed
in Ref. 90 takes only the CSF into account as a visual feature.

The PSNR-HVS-M metric is a frequency-based version
of the PSNR-HVS where an improvement has been brought
thereafter by introducing the model of visual correlation
between-coefficient contrastmasking ofDCTbasis functions
based on theHVS.91 Iordache et al.92 developed an image dis-
similarity measure based on a joint spatial/spatial-frequency
representation using Wigner–Ville distribution. The SNRW
measure is built upon the assumption that structured
distortions aremore annoying than unstructured distortions.
SNRWAV is another image DM proposed by Beghdadi et al.93
and based on nonredundant wavelet decomposition. The
multiresolution analysis computed by means of wavelet
transform allows accounting for the effect of the distortions
at different scales. Two families of wavelets have been
employed, the biorthogonal 9/7 wavelets and the cubic
spline wavelets giving birth to the SNRWAV1 and SNRWAV2
measures, respectively. PSNR versions of the aforementioned
image qualitymeasures includingPSNRW andPSNRWAV can
be found in Ref. 94.

Another quality estimator, the Visual SNR (VSNR)
proposed by Chandler et al. in Ref. 15 evaluates image quality
according to a contrast model accounting for low-level
HVS properties and mid-level HVS property of global
precedence.95 In Ref. 96, Larson and Chandler proposed an
IQA metric they named most apparent distortion (MAD).
MAD combines two different adaptive strategies of the HVS
according to the amount of distortion in images: a detection-
based and an appearance-based perceived distortion strategy.
The first strategy is adopted by the HVS when observed
images are high quality. It is modeled via local luminance and
contrast masking. In the case of low-quality images where
the distortion is most apparent, changes in the local statistics
of log-Gabor coefficients are employed to model the second
HVS strategy.

Another example of distortion-aware IQMs is DCTex
proposed by Zhang et al.97 DCTex metric is dedicated for
coded images with the key assumption that the signal error
in each subband and each local region contributes to the
entire distortion independently. Therefore, the distortion
is decomposed into independent blocks and subbands by
taking into account two properties of the HVS, including
the texture masking effect and contrast sensitivity function
(CSF).
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The Riesz-transform-based feature similarity metric
(RFSIM)98 was proposed based on the hypothesis that the
HVS perceives an image mainly according to its low-level
features at key locations. The 1st and 2nd order Riesz-
transform coefficients of the image are taken as image
features. Moreover, key locations are indicated by a feature
mask generated by the Canny edge detection. The similarity
index between the reference and test images is then derived
by taking only the Riesz features coefficients within the
feature mask.

Another feature similarity index for FR images (FSIM)
has been designed by Zhang et al.99 It is based on the finding
that image understanding is essentially based on the low-level
features of image. In the first stage, the image local quality is
characterized by combining the phase congruency (PC) and
the image gradient magnitude (GM) used as primary and
secondary features, respectively. In the second stage, the PC is
used again as aweighting function to derive an overall quality
score from the previous similarity map.

Machine Learning Oriented Metrics: Low-level versus
Mid-level Properties Based IQMs
According to the machine learning oriented approach,
the visual data quality evaluation is generally formulated
as a supervised regression problem (also called function
approximation) where the goal is to train the system to
find the best input–output relationship by optimizing the
difference between the estimated output and the desired one.
In this application, the output is the subjective quality rating
while the input is the image for instance. Hence, the input
vector is as large as the image size, which causes a complex
phenomenon named ‘‘curse of dimensionality.’’ One possible
solution that attempts to overcome this pitfall is the use
of feature extraction and selection.3 Furthermore, finding
appropriate image features is critical for themachine learning
oriented image quality measures, which are mostly artificial
neural network based.

Many methods extract low-level descriptors. For in-
stance, in Refs. 100, 101, the authors estimate image quality
using a circular back-propagation neural network using
two different set of features. In Ref. 102, Bouzerdoum
et al. used a Multilayer Perceptron (MLP) to predict the
MOS. The results were obtained by feeding the MLP with
statistical indicators vector including the mean, the standard
deviation, the covariance and the mean square error of both
reference and test images. Narwaria and Lin103 proposed
an IQA algorithm based on support vector regression.
The input features are the singular vectors out of singular
value decomposition. The machine learning techniques have
also been used for feature selection to define the most
relevant image descriptors to image quality evaluation task.
Support Vector Machines have been employed in Refs.
104, 105. The authors have further used the multilayer
perceptron in Ref. 106 for feature selection on the same
set of low-level image features mentioned above. After
identifying the image attributes that are the most relevant
to the image quality appreciation, Lahoulou et al.107 derived

Table I. Summary of bio-inspired full-reference image quality metrics belonging to
vision modeling-based methods from perceptual category, where (DM = Distortion-
aware metrics, FM= Fidelity metrics).

Vision Modeling-based Metrics

Metric’s description Symbol DM FM Authors Year Ref.

Content Independent Metrics

Distortion measure for
monochrome still images

— x Mannos et al. 1974 42

Generalized quadrature mirror
filter transform-based metric

— x Safranek et al. 1989 48

Visible Difference Predictor VDP x Daly 1993 46

DCT-based Perceptual Error
Measurement

DCT-PEM x Watson 1993 52

Visual optimization of DCT
quantization matrixes

DCTune x Watson 1993 57

Sarnoff Visual Discrimination
Model

SVDM x Lubin 1995 47

Steerable pyramid
decomposition-based measure

— x Heeger et al. 1995 49

Noise quantization measure
using DWT

— x Watson et al. 1997 53

Perceptual Distortion Metric PDM x Winkler 1998 50

Wavelet Visible Difference
Predictor

WVDP x Bradley 1999 55

IQM based on the variance of
DWT coefficients

— x Lu et al. 2008 54

Multiscale geometric
analysis-based measure

— x Gao et al. 2009 51

Content Dependent

Criterion 4 C4 x Carnec et al. 2008 58

Table II. Summary of bio-inspired full-reference image quality metrics belonging to VA
embedded methods from perceptual category, where (DM = Distortion-aware metrics,
FM= Fidelity metrics).

Visual Attention Embedded Metrics

Metric’s description Symbol DM FM Authors Year Ref.

Bottom-up saliency

Saliency Detection by combining
Simple Priors

SDSP x Zhang et al. 2013 74

Visual Saliency-Induced Index VSI x Zhang et al. 2014 75

Top-down saliency

Global Local Distortion using the
Spectral Residual- based saliency

GLD-SR x Saha et al. 2015 76

Global Local Distortion using the
Phase Fourier Transform saliency

GLD-PFT x Saha et al. 2015 76

twomeasures called Error-based Cost Function (ECF) image
qualitymeasure andCorrelation-based Cost Function (CCF)
image quality measure designed to optimize the accuracy
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Table III. Summary of bio-inspired full-reference image quality metrics belonging to
NSS-basedmethods from signal-driven category, where (DM=Distortion-awaremetrics,
FM= Fidelity metrics).

NSS-based Metrics

Metric’s description Symbol DM FM Authors Year Ref.

Structural similarity based metrics

Universal Quality Index UQI x Wang et al. 2002 77

Structural Similarity Index SSIM x Wang et al. 2003 78

Modified SSIM with automatic
down-sampling

MSSIM x Wang et al. 2004 79

Multiscale SSIM MS-SSIM x Rouse et al. 2004 80

Complex Wavelets-SSIM CW-SSIM x Wang et al. 2005 81

Quality metric for
Multichannel image based
on SVD

M-SVD x Shnayderman et al. 2006 82

Right singular vector of the
SVD-based measure

R-SVD x Mansouri et al. 2009 83

Local Standard Deviation
Based Image Quality

LSDBIQ x Gore et al. 2015 86

Inf. theoretic based metrics

Information Fidelity Criterion IFC x Sheikh et al. 2005 84

Visual Information Fidelity
index

VIF x Sheikh et al. 2006 85

Pixel-based VIF P-VIF x Sheikh et al. 2006 85

and the correlation/monotonicity predictive performance
parameters, respectively.

On the other side, the mid-level image features can
be derived for a machine learning framework. Mid-level
descriptors are interesting since they are typically close to
image-level information with no attempt at high-level or
structured image description. Examples of mid-level features
which integrate some human visual factors include the edge
amplitude, the edge length, the background activity and
the background luminance. The very first IQA metric that
exploited these descriptors has been proposed by Babu et al.
in Ref. 108 where the authors used a radial basis function
neural network. However, this metric is outside the scope
of the present taxonomic scheme since it belongs to the NR
category. Most recently, the Machine Learning-based Image
Quality Measure (MLIQM) has been introduced by Charrier
et al. to predict the visual quality of color images.109 A vector
of 25 image criteria is generated and trained in an SVM
framework to predict the subjective scores provided in the
image quality databases.

In addition to low-level features including contrast
and structure factors calculated at five different levels, the
luminance factor estimated on the achromatic component
of the reference and the test images, a local chrominance
distortion feature and a local colorimetric dispersion feature
both calculated in the CIELab color space, a set of mid-level
criteria has been derived in an attempt to modeling the HVS
characteristics. Thereby, the steerable pyramid transform

Table IV. Summary of bio-inspired full-reference image quality metrics belonging
to visual features-based methods from signal-driven category, where (DM =

Distortion-aware metrics, FM= Fidelity metrics).

Visual Features-based Metrics

Metric’s description Symbol DM FM Authors Year Ref.

Spatial Domain Metrics

Weighted Signal to
Noise Ratio

WSNR x Mitsa et al. 1993 89

Picture Quality Scale PQS x Miyahara et al. 1998 87

Noise Quality Metric NQM x Damera-Venkata et al. 2000 88

Human Visual
System-based Peak
Signal to Noise Ratio

PSNR-HVS x Egiazarian et al. 2006 90

Visual Signal to
Noise Ratio

VSNR x Chandler et al. 2007 15

Most Apparent
Distortion

MAD x Larson et al. 2010 96

DCT-based metric
combining texture
masking and CSF

DCTex x Zhang et al. 2011 97

Transform Domain Metrics

SNR using
Wigner–Ville
distribution

SNRW x Iordache et al. 2001 92

SNR based
on wavelet
decomposition

SNRWAV x Beghdadi et al. 2003 93

PSNR using
Wigner–Ville
distribution

PSNRW x Beghdadi et al. 2006 94

Modified PSNR-HVS PSNR-HVS-M x Ponomarenko et al. 2007 91

Riesz-transform-
based feature
similarity metric

RFSIM x Zhang et al. 2010 98

Feature similarity
index

FSIM x Zhang et al. 2011 99

is performed with three levels and four orientation bands
yielding to 12 low-pass filters.

Machine learning oriented image quality methods have
been extensively explored to develop RR and blind (NR)
quality measures. They are known to be data-hungry, that is,
they require a very large number of annotated image samples.
The training stage of the design process is also known to be
time-consuming.

DISCUSSION AND FUTURE TRENDS
This article has been dedicated to the description of a
knowledge-based taxonomy for objective state-of-the-art FR
image quality algorithms. A list of references interested
in classification of IQMs has been supplied as well as a
comprehensive listing of the literature for each topical area.
The classification scheme is based on six kinds of knowledge
of different levels: deep knowledge, intermediate knowledge
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Figure 4. Examples of the use of the proposed knowledge-based taxonomic scheme.

Table V. Summary of bio-inspired full-reference image quality metrics belonging
to machine learning oriented methods from signal-driven category, where (DM =

Distortion-aware metrics, FM= Fidelity metrics).

Machine Learning Oriented Metrics

Metric’s description Symbol DM FM Authors Year Ref.

Low-level properties

Circular back-propagation
neural network-based metric

– x Carrai et al. 2002 100

MLP-based metric – x Bouzerdoum et al. 2004 102

Circular back-propagation
neural network-based metric

– x Gastaldo et al. 2005 101

SVM-based metric – x Narwaria et al. 2010 103

SVM/MLP for feature
selection-based metric

– x Lahoulou et al. 2010 106

Customized Cost
Function-based image
quality measure

ECF/CCF x Lahoulou et al. 2012 107

Mid-level properties

Radial basis function neural
network-based metric

— x Babu et al. 2007 108

Machine Learning-based
Image Quality Measure

MLIQM x Charrier et al. 2012 109

and superficial level. The first layer of the proposed
framework represents knowledge about the reference image.
It allows outlining differences between FR IQMs on one
side, and RR/NR metrics on the other side. The remaining
layers are used to classify the FR image quality measures.

They represent knowledge about degradations applied to
images, visual perception field, HVS mechanisms, image
analysis techniques, and finally knowledge about image
representation and coding. The latter structure allows
sorting out, in a more complete manner, the different
theoretic foundations upon which the objective IQMs are
built. Tables I–V are given with the aim to synthesize
the evoked examples related to the proposed taxonomic
scheme. They provide global and clear view on the fields
that are generously explored and the ones where much
work still to be accomplished. Figure 4 below represents
a sketch on how to use the presented taxonomy and how
to progress through the layers of knowledge. It is to note
that the bold arrow corresponds to the path followed for
this taxonomy for FR IQA metrics. For example, if we
then follow the red arrows, we find the list of IQMs where
(2) knowledge about the degradation is of higher level
(distortion metrics), (3) knowledge about visual perception
is deep (bio-inspired metrics), (4) knowledge about visual
physiology and psychophysics is superficial (signal-driven
approach), (5) knowledge about visual information analysis
mechanisms is medium (visual features-based metrics), and
(6) knowledge about perceptual image representation/coding
is low level (transformdomain class). One canmake the same
reasoning following the second example illustrated in Fig. 4
with blue arrows.

A natural extension of this work corresponds to the
classification of RR and NR approaches as well as the
classification of video quality assessment metrics.

The new trends in visual quality evaluation field follow
three key directions, namely new applications, new content
types and new models of human vision. Indeed, security
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related applications are of major concern in the almost all
vision processing systems.110 IQA is increasingly employed
for liveness detection in biometric images. It allows the
recognition of faked images used in attempt to violate the
access right to secure physical or virtual areas. IQA has
been extensively exploited for biometric,medical and satellite
images. It has also been extended to 3D images and video and
is about to be used for the complete and coherent summariza-
tion of visual data systems. Such schemes become absolutely
necessary due to the huge amount of visual data available
on the Internet which needs to be efficiently organized,
exploited and analyzed. Another evolution concerns the
understanding of the visual perception mechanisms. Several
years ago, researchers were interested in the human vision
as a phenomenon that occurs in the visual cortex ignoring
thus the cerebral learning activity that often goes with the
visual appreciation. Machine learning oriented category of
IQA methods have been researched in order to include the
experience in the perceptual quality judgment. However, the
main shortcoming of those methods is that their predictive
performance relies on the reliability of the subjective
quality opinion scores available in the quality databases.
Deep learning is being introduced in the field of visual
quality assessment especially to design opinion-unaware
metrics that have many implications for a broad range of
applications. In addition to design models that can learn
to predict human opinion without any prior knowledge,
some endeavor is being directed toward distortion-unaware
free-reference measures.111 In fact, the NR algorithms were,
for many years, degradation dependent; they rapidly became
victims of early obsolescence due to the constant evolution of
vision processing techniques.
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